The Surface Defects Detection of Citrus on Trees Based on a Support Vector Machine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Light Source
2.2. Structural Design of the Visual System
2.3. Image Acquisition
3. Method
3.1. Training of SVM Model
3.2. Analysis of Image Color Features
3.3. Selection of SVM Kernel Function
4. Fluorescent Detection for Citrus Defects
4.1. Detection Algorithm Flow
4.2. Segmentation of Citrus UV Image
4.3. Marking and Defect Detection of Citrus Areas
5. Experiment Design and Results Analysis
5.1. Running Time Test of Detection Algorithm
5.2. Effect Test of Citrus Region Detection
5.3. Effect Test of Defect Detection
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, C.J.; Gu, Y.M.; Zeng, Y. Research progress of Chinese citrus industry economy. J. Huazhong Agric. Univ. 2021, 40, 58–69. [Google Scholar]
- Mo, X.Y.; Mao, L.L.; Wang, Z.; Xu, M.X. Summary of citrus industry development at home and abroad. Rural. Pract. Technol. 2021, 2, 9–10. [Google Scholar]
- Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine vision systems in precision agriculture for crop farming. J. Imaging 2019, 5, 89. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.; Patel, B. Machine vision based fruit classification and grading-a review. Int. J. Comput. Applications 2017, 170, 22–34. [Google Scholar] [CrossRef]
- Lin, K.Y.; Liu, C.; Si, H.P.; Wu, J.H.; Chen, J. Review on the Application of Machine Vision Algorithms in Fruit Grading Systems. Int. Conf. Intell. Interact. Syst. Appl. 2020, 1304, 271–280. [Google Scholar]
- Li, X.H.; Zhang, B.F.; Zhu, J.C. Non-destructive inspection of fruits’ defect based on multi-spectral imaging. J. Tianjin Univ. Technol. 2010, 4, 36–39. [Google Scholar]
- Li, C.; Yan, Z.G.; Zhu, J.C.; Yang, J.F. Quality detecting algorithms of orange based on multi-spectral imaging. Comput. Simulation 2012, 29, 262–265. [Google Scholar]
- Rong, D. Study on Machine Vision Rapid Detection of Navel Orange Surface Defects Based on Machine Vision and Embedded System Application . Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2017. [Google Scholar]
- Abdelsalam, A.M.; Sayed, M.S. Real-time defects detection system for orange citrus fruits using multi-spectral imaging. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Al Riza, D.F.; Saito, Y.; Itakura, K.; Kohno, Y.; Suziki, T.; Kuramoto, M.; Kondo, N. Monitoring of fluorescence characteristics of satsuma mandarin (Citrus unshiu Marc.) during the maturation period. Horticulturae 2017, 3, 51. [Google Scholar]
- Kondo, N.; Nishizu, T.; Minami, Y.; Ling, P.; Kurita, M.; Kuramoto, M.; Falzea, P.D.; Ogawa, Y. A double image acquisition system with visible and UV LEDs for citrus fruit. J. Robot. Mechatron. 2009, 21, 533–540. [Google Scholar]
- Zhang, R.; Yin, J.; Sui, Z.; Han, L.; Li, Y.; Huang, J. Biocontrol of antifungal volatiles produced by Ceriporia lacerate HG2011 against citrus fruit rot incited by Penicillium spp. Postharvest Biol. Technol. 2022, 194, 112094. [Google Scholar] [CrossRef]
- Wang, C.; Lee, W.S.; Zou, X.; Choi, D.; Gan, H.; Diamond, J. Detection and counting of immature green citrus fruit based on the Local Binary Patterns (LBP) feature using illumination-normalized images. Precis. Agric. 2018, 1, 1–22. [Google Scholar] [CrossRef]
- Goel, N.; Sehgal, P. Fuzzy classification of pre-harvest tomatoes for ripeness estimation–An approach based on automatic rule learning using decision tree. Appl. Soft Comput. 2015, 36, 45–56. [Google Scholar] [CrossRef]
- Momin, M.A.; Kondo, N.; Ogawa, Y.; Ido, K.; Ninomiya, K. Patterns of fluorescence associated with citrus peel defects. Eng. Agric. Environ. Food 2013, 6, 54–60. [Google Scholar] [CrossRef]
- Song, J.D. A Study on Determination of the Geographical Origins and Internal Qualities of Oranges Based on NIR Spectroscopy Analysis. Ph.D. Thesis, Chongqing University, Chongqing, China, 2017. [Google Scholar]
- Islam, N.; Rashid, M.M.; Wibowo, S.; Xu, C.Y.; Morshed, A.; Wasimi, S.A.; Moore, S.; Rahman, S.M. Early weed detection using image processing and machine learning techniques in an Australian chilli farm. Agriculture 2021, 11, 387. [Google Scholar] [CrossRef]
- Basak, J.K.; Madhavi, B.G.K.; Paudel, B.; Kim, N.E.; Kim, H.T. Prediction of total soluble solids and pH of strawberry fruits using RGB, HSV and HSL colour spaces and machine learning models. Foods 2022, 11, 2086. [Google Scholar] [CrossRef]
- Chen, S.; Xiong, J.; He, Z.; Jiao, J.; Xie, Z.; Han, Y. Citrus Fruits Harvesting Sequence Planning Method Based on Visual Attention Mechanism: A Novel Cognition Framework for Citrus Picking Robots. In Proceedings of the 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI), Kunming, China, 17–19 September 2021; pp. 806–809. [Google Scholar]
- Mirhaji, H.; Soleymani, M.; Asakereh, A.; Mehdizadeh, S.A. Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions. Comput. Electron. Agric. 2021, 191, 106533. [Google Scholar] [CrossRef]
- Wang, X.M.; Wu, H.L.; Nie, J.F.; Li, Y.N.; Yu, Y.J.; Yu, R.Q. Rapid determination of thiabendazole in orange extract using excitation-emission matrix fluorescence and second-order calibration based on alternating trilinear decomposition/alternating normalization-weighted error algorithms. Sci. China Ser. B Chem. 2008, 51, 729–735. [Google Scholar] [CrossRef]
- Ploydaeng, M.; Rajatanavin, N.; Rattanakaemakorn, P. UV-C light: A powerful technique for inactivating microorganisms and the related side effects to the skin. Photodermatol. Photoimmunol. Photomed. 2021, 37, 12–19. [Google Scholar] [CrossRef]
- Ding, S.F.; Qi, B.J.; Tan, H.Y. An overview on theory and algorithm of support vector machines. J. Univ. Electron. Sci. Technol. China 2011, 40, 2–10. [Google Scholar]
- Vapnik, V. The nature of statistical learning theory. Springer Sci. Bus. Media 1999, 188. [Google Scholar]
- Song, Q.; Lin, H.P.; Zhou, Q.D. Research on theory of support vector machines. Inf. Technol. 2013, 9, 152–159. [Google Scholar]
- Mohan, L.; Pant, J.; Suyal, P.; Kumar, A. Support vector machine accuracy improvement with classification. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 477–481. [Google Scholar]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- Pardede, J.; Husada, M.G.; Hermana, A.N.; Rumapea, S.A. Fruit Ripeness Based on RGB, HSV, HSL, L ab Color Feature Using SVM. In Proceedings of the 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), Medan, Indonesia, 28–29 November 2019; pp. 1–5. [Google Scholar]
- Giménez-Gallego, J.; González-Teruel, J.D.; Jiménez-Buendía, M.; Toledo-Moreo, A.B.; Soto-Valles, F.; Torres-Sánchez, R. Segmentation of multiple tree leaves pictures with natural backgrounds using deep learning for image-based agriculture applications. Appl. Sci. 2019, 10, 202. [Google Scholar] [CrossRef]
Citrus Region | Defective Area | Non-Defective Area |
---|---|---|
Area number | 91 | 317 |
TP | 80 | - |
FN | 11 | - |
TN | - | 313 |
FP | - | 4 |
Correct number | 393 | |
Recall | 87.91% | |
Precision | 95.24% | |
Accuracy | 96.32% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Liu, K.; Feng, L.; Peng, H.; Yang, Z. The Surface Defects Detection of Citrus on Trees Based on a Support Vector Machine. Agronomy 2023, 13, 43. https://doi.org/10.3390/agronomy13010043
Sun B, Liu K, Feng L, Peng H, Yang Z. The Surface Defects Detection of Citrus on Trees Based on a Support Vector Machine. Agronomy. 2023; 13(1):43. https://doi.org/10.3390/agronomy13010043
Chicago/Turabian StyleSun, Baoxia, Kai Liu, Lingyun Feng, Hongxing Peng, and Zhengang Yang. 2023. "The Surface Defects Detection of Citrus on Trees Based on a Support Vector Machine" Agronomy 13, no. 1: 43. https://doi.org/10.3390/agronomy13010043
APA StyleSun, B., Liu, K., Feng, L., Peng, H., & Yang, Z. (2023). The Surface Defects Detection of Citrus on Trees Based on a Support Vector Machine. Agronomy, 13(1), 43. https://doi.org/10.3390/agronomy13010043