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Abstract: Machine vision for precision agriculture has attracted considerable research interest in
recent years. The aim of this paper is to review the most recent work in the application of machine
vision to agriculture, mainly for crop farming. This study can serve as a research guide for the
researcher and practitioner alike in applying cognitive technology to agriculture. Studies of different
agricultural activities that support crop harvesting are reviewed, such as fruit grading, fruit counting,
and yield estimation. Moreover, plant health monitoring approaches are addressed, including weed,
insect, and disease detection. Finally, recent research efforts considering vehicle guidance systems
and agricultural harvesting robots are also reviewed.
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1. Introduction

Precision agriculture is a farming management concept based on monitoring, measuring, and
responding to variability in crops. The research on precision agriculture aims to define a decision
support system for farm management by optimizing the returns on input while preserving resources.
Machine vision has been widely used to support precision agriculture by providing automated solutions
to tasks that are traditionally performed manually. Manual methods tend to be tedious and error
prone. Machine vision can provide accurate and efficient solutions to support agricultural activities.
Moreover, machine learning algorithms enable the analysis of massive volumes of data quickly and
accurately, providing a means for the implementation of machine vision applications in agriculture.

Due to the recent advancements in machine vision applications in agriculture, there are several
reviews that have been performed focusing on this subject [1–11]. The state-of-the-art published in
the last decade pertaining to computer vision for the automatic detection and classification of fruits is
reviewed in [1]. A review of 40 research efforts that employed deep learning techniques for agricultural
tasks is implemented in [2]. A survey on diseases detection in citrus plant leaves and their classification
is presented in [3], while a review on the application of computer vision in the production of grains
(maize, rice, wheat, soybean, and barley) is conducted in [4]. In [5], a general overview with a detailed
description and technical support is provided regarding spectral bands, imaging sensors, optical
systems, and geometric visual system arrangement with respect to specific applications in agriculture.
A review is conducted in [6] to map the research progress in vehicle automation in North America
over the last 15 years. The key elements of the latter review include navigation sensors, navigation
planners, vehicle motion models, and steering controllers. The review presented in [7] investigates
the research effort, developments, and innovation in agricultural robots for field operations, and the
associated concepts, limitations, and gaps. The review conducted in [8] focus on recent innovations in
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autonomous navigation systems in agricultural environments. The research in [9] provides a short
overview of the worldwide development and current status of precision agriculture technologies of
the past years. Relevant research in autonomous agricultural vehicles in Japan is also presented in [10].
In [11], machine vision techniques applied to agriculture are reviewed. This review deals with machine
vision technologies for image acquisition and their processing and analysis in agricultural automation,
focusing on two types of images, namely visible and infrared.

The work presented in this paper aims to include the machine vision techniques in
agriculture-related tasks focusing on crop farming. The purpose of this work is to serve as a
guide for the researcher and practitioner in the agricultural field providing the latest advancements on
machine vision applications in agriculture. To this end, the review conducted in this paper not only
focuses on a specific agricultural challenge (e.g., disease detection) or fruit type or plant (e.g., citrus),
but rather outlines research conducted in different agricultural activities covering more technical
subjects, such as vision-based vehicle guidance systems and autonomous mobile agricultural robots.
In particular, the following main issues are to be addressed:

• Plant and fruit detection approaches
• Harvesting support approaches, including fruit grading, ripeness detection, fruit counting, and

yield prediction
• Plant and fruit health protection and disease detection approaches, including weed, insect, disease,

and deficiency detection
• Camera types used for machine vision in agriculture
• Vision-based vehicle guidance systems (navigation) for agricultural applications
• Vision-based autonomous mobile agricultural robots

In order to consider any automated precision agriculture engineering design, it would be useful
for researchers to be able to find all recent effective machine vision techniques implemented for
the broader categories of agricultural tasks, from the out-field development of simple segmentation
algorithms, through the in-field integration of sophisticated algorithms, to automated vehicles. Thus,
regarding the above considerations, this work addresses the above-mentioned six main issues that
need to be considered before the appropriate machine vision system is selected to be installed onboard
an agricultural robot for specific tasks in fields. The proposed review on machine vision techniques
contributes towards the design of a (semi-)autonomous robot harvester in precision farming applications
as part of a national project entitled “Personalized Optimal Grape Harvest by Autonomous Robot”
that is being acknowledged.

This work is compiled according to the defined process for conducting reviews based on
Kitchenham [12]. Articles reviewed were limited to those published in English. The used search terms
were “machine vision in agriculture” and “agricultural robots” which were keyed in GoogleScholar
engine, with a recent publication date after 2017. This search initially resulted to 229 papers, from
which some of them were discarded due to several reasons e.g., absence of a clear methodology, not
enough reference list, publishing houses of low reputation etc. The selected studies should report on
the use of machine vision in agriculture for corps farming and the machine vision-based robots in
agriculture in the defined time-range. This is the Benitti [13] approach. However, this work focuses on
the results of the review, rather than on the approach to conducting the review.

Plant and fruit detection approaches are presented in Section 2, which is a critical task for
performing agricultural activities automatically, such as harvesting, yield estimation, and disease
detection. Machine vision approaches for supporting harvesting are reviewed in Section 3, including
fruit grading, ripeness detection, fruit counting, and yield estimation. In Section 4, plant and fruit health
protection and disease detection approaches are discussed. Specifically, machine vision approaches
for weed detection, insect detection, disease and deficiency detection are presented. In Section 5, the
different camera types that can be used are presented, aiming to help researchers and practitioners alike
in deciding on the equipment to use in each task. Vision-based vehicle guidance systems (navigation)
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for agricultural applications are reviewed in Section 6. In Section 7, vision-based autonomous mobile
agricultural robots are discussed. Lastly, the main findings of this analysis are discussed in Section 8,
and conclusions are summarized in Section 9.

2. Plant and Fruit Detection Approaches

The role of image segmentation in agriculture is the separation of the plant from the background
and/or the fruit from the rest of the plant and the background. This task is a key requirement for
performing agricultural activities automatically like harvesting, yield estimation and disease detection.
Image processing technologies can conduct object detection accurately, quickly and non-invasively,
i.e., non-destructively for the plants and fruits. Image processing for plant and fruit detection can be
challenging for several reasons. First, different lighting conditions can cause the color degradation
of the target’s appearance. Thus, segmentation based on color information can be seriously affected
by illumination. The segmentation problem becomes even harder when the target has a similar
color to the background. For example, when the target is a green fruit, like an apple or grape, it is
difficult to separate the fruit from the background containing leaves and branches which also have a
green color. In those cases, segmentation based on color does not provide good results. To this end,
methods that deploy different types of features, such as texture [14] and shape, and examine a group of
pixels and their relations to each other have been proposed. However, many approaches require the
usage of thresholds for the features’ (e.g., color, shape or size) values that need to be defined for any
different image, leading to threshold-dependent performances. It is obvious that the overall accuracy
of fruit and plant detection is highly dependent on image segmentation performance. Therefore,
a robust segmentation algorithm is needed, displaying high accuracy regardless of the fruit color or the
surrounding environment. Thus, due to the varying challenges, a literature review of recent research
efforts in plant and fruit detection is considered to be of great importance. In what follows, relevant
recent methodologies of the bibliography are presented.

A grape identification method based on an artificial neural network (ANN) and a genetic algorithm
(GA) using color features is presented in [15]. A GA is employed to optimize the ANN structure
and select superior color features simultaneously. Although this method performs well for a specific
task, i.e., for mature grapes, it does not have the same performance when the color of the fruit is
similar to the rest of the plant. This is the main disadvantage of segmentation algorithms that use color
features. In order to perform well, a higher contrast is needed between the target and background.
An approach that considers the aforementioned disadvantage is presented in [16]. The proposed
algorithm can detect green apples in natural scenes where the background has a similar color to the
targets. Firstly, the image is represented as a close-loop graph with superpixels as nodes. Then, these
nodes are ranked based on their similarity to the background and foreground queries in order to
generate the final saliency map. Finally, Gaussian curve fitting is carried out to fit the V-component
in YUV color space in salient areas, and a threshold is selected to binarize the image. This method
displays poor performance in segmenting the edges with shadows and intense facula around the
object. Moreover, the performance of the method is threshold-dependent, yet easily affected by varying
lighting conditions.

An alternative method developed to perform under realistic and uncontrolled conditions is
proposed in [17]. The method is tested to detect apple flowers. The generalization capability of the
proposed approach on additional datasets is also examined. The method consists of three stages:
(i) computation of region proposals, (ii) feature extraction using a fine-tuned Convolutional Neural
Network (CNN) based on Clarifai architecture, and (iii) the application of Principal Component Analysis
(PCA) to reduce the feature dimensionality and classification of each region according to the presence
of flowers with a Support Vector Machine (SVM) classifier. Among the research findings of this work
is that color analysis alone leads to limited applicability in scenarios involving changes in illumination.
The technique presented in [18] is based on both color and texture features in order to detect cucumbers
in a greenhouse. SVM is used for the identification task. Deep learning techniques currently represent
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the state-of-the-art for computer application systems. However, a large amount of both data and
computational power are required to meet the expectations of better performances. Moreover, uneven
illumination on the cucumber surface and the irregular growth of fruit obstructed the segmentation
task. To detect fruits/plants of different sizes, multiscale algorithms for multiple fruit/plant sizes need
to be developed. An image segmentation approach based on color, texture and shape is presented
in [19]. This approach applies Otsu thresholding on hue, saturation, intensity (HSV), and luminance,
chromaticity blue, chromaticity red (YCbCr) color space for mango leaves. Segmentation results are
promising, yet they are also threshold-dependent and unstable under varying illumination.

The aforementioned drawbacks, i.e., different plant/fruit sizes and varying illuminance, are
addressed in [20]. The intensity of sunlight changes from morning to night, inducing change in
color features. Therefore, the segmentation system needs to be trained for all the conditions so as
to be applicable for real-time use during all day. In [20], a new color space in field conditions for
segmenting green plants from their background is suggested. The algorithm can perform well under
different light intensities and with different crop growth stages. The suggested machine vision system
is comprised of two steps: the first step consists of identifying the color conditions and the second step
includes segmentation using a hybrid artificial neural network-harmony search (ANN-HS) classifier.
A computer vision system for the classification of wheat grains to their species using a multilayer
perceptron (MLP) ANN is proposed in [21]. Images are converted to grayscale, binarized using the
Otsu method and segmented using the thresholding operation. The properties of size, color, and
texture are captured for each grain, and are given as input to the classification model. The main
disadvantage of the method is that grain images are captured in artificial lighting (strip LED lighting)
and not refer to real environmental lighting conditions.

A flower and a seedpod detection method in a crowd of soybean plants under completely
outdoor environments is presented in [22]. The detection of flower regions is performed using image
segmentation by SLIC (simple linear iterative clustering) [23], which conducts pixel clustering based
on the hue similarity and the distances between two pixels. A CNN is introduced to make the
final decision for flower detection. For flower counting, features from an accelerated segment test
(FAST) are used for all the detected flower regions [24] to find saliency features (i.e., key points) from
the surrounding regions of the detected flowers. Then, Oriented FAST and Rotated BRIEF (ORB)
features [25] are calculated for all the key points and find the matched points in the two consecutive
pictures in order to avoid counting the same flower twice, due to overlapped regions. For detecting
soybean seedpods, the Viola-Jones object detection method [26] is adopted. Contrast limited adaptive
histogram equalization (CLAHE) [27] is performed to enhance the robustness against various lighting
conditions. Finally, CNN [28] is used to predict which of the candidate regions are seedpod parts.
Although the method returns good performances, open issues still remain. Such issues include the
flowers of other plants located behind a target plant sometimes being detected together, and stems and
leaves sometimes wrongly being detected as seedpods, and there are several cases whereby seedpods
are wrongly detected

An image segmentation method for rice panicles in the field is implemented in [29]. First, Simple
Linear Iterative Clustering (SLIC) [23] is used to generate candidate regions. Then, a CNN [30] is
applied as a candidate region classifier. Finally, the entropy rate superpixel (ERS) [31] algorithm is
developed for optimizing the segmentation result. Compared with other segmentation approaches,
namely HSeg (hue plane threshold segmentation) [32], i2 hysteresis thresholding [33], and jointSeg [34],
the proposed Panicle SEGmentation (Panicle-SEG) algorithm shows higher segmentation accuracy.
Parallel computing and deep learning with graphical processing unit (GPU) acceleration is adopted.
The algorithm runs comparatively faster, however is still not suitable for real-time applications. A cotton
leaf segmentation method based on an immune algorithm (IA) and pulse coupled neural networks
(PCNN) is presented in [35]. Three anti-light color components are selected by histogram statistical
with mean gray value. Then, the optimal parameters of PCNN model and the optimal number of
iterations are determined by using IA optimization so that PCNN model can segment the objects
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in cotton regions more effectively. Four image segmentation methods, namely the Otsu algorithm,
K-Means algorithm, FCM algorithm, and PCNN, are compared with the proposed method to show
that it has good resistance to light changes and complex backgrounds. However, the disadvantage of
this method is the dependence on the iteration step, and its real-time performance is relatively poor.
Meanwhile, weeds with a similar color to cotton may also be detected as the target region. An image
segmentation method of overlapping leaves based on the Chan-Vese (C-V) model and a Sobel operator
is implemented in [36]. First, the background is removed using a threshold with respect to the relative
levels of green in the image. The contour of the target leaf is extracted using the C-V model. Then,
eight directional Sobel operators are applied to detect the edges of the leaf. Finally, the overlapping
target leaf is extracted by combining the results obtained by the C-V model and the Sobel operator. The
method needs to be extended to different types of crop, and improved in terms of robustness against
environmental conditions.

Table 1 summarizes the main characteristics of recent methods of the literature for plant and fruit
detection. In the Discussion section, additional information on the literature is provided regarding
research gaps, pros and cons, and potential future directions.

Table 1. Plant/fruit detection approaches.

Ref. Fruit/Plant Type Task Feature Type Method Performance Indices

[16] Green apples Detection of green apples
in natural scenes

Color (V-component of
the YUV color space)

Saliency map
and Gaussian
curve fitting

Accuracy = 91.84%

[17] Apples Apple flower detection Color and spatial
proximity

SLIC + CNN
SVM + PCA

AUC-PR and
F-measure

93.40% on Apple A
dataset

F-measure 80.20%
on Apple B
F-measure

82.20% on Apple C
F-measure 79.90% on

Peach

[15] Grapes Grape identification Color (HSV and L* a*
b* color spaces) ANN+GA Accuracy = 99.40%

[19] Mango Mango leaf image
segmentation

Color (HSV and
YCbCr color spaces) Otsu

Precision = 99.50%
Recall = 97.10%

F-measure = 98.30%

[20]
Plants of 6 different
types e.g., Potato,

Mallow.

Segmentation of different
plants in different growth
stages, different conditions

of the day and one
controlled state and

different imaging
situations

Color
(Five features among

126 extracting features
of five colour spaces

RGB, CMY, HSI, HSV,
YIQ and YCbCr were

selected using a hybrid
ANN)

ANN-HS Accuracy = 99.69%

[21] Grains Classification of wheat
grains to their species Size, color and texture Otsu + MLP Accuracy = 99.92%

[22]
Flower and
seedpods of

soybean plants

Flower and seedpods
detection in a crowd of

soybean plants

Color (Hue of HSV
color space) for flower

detection.
Haar-like features for
seedpods detection

SLIC + CNN
Viola-Jones
detector +

CLAHE + CNN

Precision = 90.00%
Recall = 82.60%

F-measure = 84.00%

[29] Rice Image segmentation for
rice panicles

Color (L, a, b values of
the CIELAB color

space)

SLIC + CNN +
ERS F-measure = 76.73%

[35] Cotton Cotton leaves
segmentation

Color (three anti-light
color components were
selected by histogram
statistical with mean

gray value)

PCNN +
Immune

algorithm
Accuracy = 93.50%

[36]
Overlapping leaves

(tested on
cucumber leaves)

Image segmentation of
overlapping leaves Color and Shape Sobel + C-V

model Accuracy = 95.72%
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Table 1 reveals the need to analyse the fruit/plant images in an appropriate color space in order
to better detect the fruit/plant by extracting discriminative color-based features. Moreover, from the
contents of Table 1, it is deduced that the CNN models do not show the highest accuracy in all cases,
but there are shallow models (e.g., MLP, SVM) that perform well in some cases where the available
data are limited.

3. Harvest Support Approaches

Harvesting is a critical agricultural activity which involves the gathering of ripe crops or fruit
from the fields. Intensive labor is required for detecting and collecting the mature crop/fruit. A manual
process of sorting is then performed based on various characteristics like size, maturity level, shape,
and damage level. However, manual sorting is time consuming and subject to human errors, leading to
variability in the quality of the final product [35]. Thus, there is a need for more accurate and efficient
methods for evaluating the fruit or crop collected. Sorting agriculture products automatically is more
efficient compared to the manual approach, which is slow, tedious, and error prone. Fruit counting is
another very important task for supporting harvest. An accurate and automated fruit counting method
could assist farmers in optimizing their harvest process. A better understanding of the variability of
yields across fields can help growers to make more informed and cost-effective decisions for labor
allotment, storage, packaging, and transportation [37].

Machine vision has been widely used for automating the harvest process allowing faster and
accurate sorting and counting of fruit without the use of intensive labor. However, there are many
factors that make those tasks difficult and challenging. Different lighting conditions can cause variation
in the color of the fruit, leading to misclassification. In case where the fruit has a similar color to the
rest of the plant (like green apples), the task becomes even more challenging, making it hard to detect
them using color information. Moreover, overlapping fruits make the detection harder and can lead
to misclassification and miscounting. In what follows, recent approaches for the support of harvest
are presented. Since harvesting is about detecting and collecting the mature crop/fruit, the selected
approaches of the literature are divided and presented into two relevant sections: Section 3.1 presents
fruit grading and ripeness detection approaches, while Section 3.2 deals with fruit counting and yield
prediction. Section 8 summarizes the presented methods of this section, by providing the research
gaps, pros and cons, and potential future directions for both approaches.

3.1. Fruit Grading and Ripeness Detection

Fruit grading refers to the sorting of fruit based on parameters like size, shape, and maturity level.
Manual fruit grading is labor intensive and leads to errors due to human involvement in the sorting
process. To this end, machine vision is used for the automated and accurate grading of fruit.

A mango grading approach is proposed in [38]. An image processing algorithm based on region
global thresholding color binarization, combined with median filter and morphological analysis is
developed to classify mangos into one of three mass grades (large, medium and small). The algorithm
is simple and can be used in real-time applications. Moreover, it is general in nature and with proper
adjustment can be applied to other crops as well. However, fluorescent light may be efficient for
experimenting, yet real-field applications need algorithms that are able to perform well outside of
the laboratory. An approach on mango size estimation is presented in [39]. A cascade classifier with
histogram of oriented gradients (HOG) features is used. Then, Otsu’s method, followed by color
thresholding is applied in the CIE L*a*b* color space to remove background objects (leaves, branches
etc.). A 1D filter is developed to remove the fruit pedicles, and an ellipse fitting method is employed to
identify well-separated fruit. Finally, fruit lineal dimensions are calculated using the RGB-D depth
information, fruit image size, and the thin lens formula. This method is suitable for rapid in-field fruit
size estimation, practical in terms of cost and ease of use, but cannot be used in direct intense sunshine.

A methodology to estimate the maximum/minimum (polar/equatorial) diameter length and mass
of olive fruits by means of image analysis is presented in [40]. Image segmentation is performed based
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on mathematical morphology, which maximizes the contrast between the olives and the background.
Then, the olives are segmented by automated thresholding based on statistical bimodal analysis.
Results underscore the robustness and accuracy of the method. However, future trials in different
lighting systems need to be investigated in order to verify the generality of the method to other
cultivars. In [41] a method for detecting the maturity levels (green, orange, and red) of fresh market
tomatoes (Roma and Pear varieties) is presented. The proposed technique combines the feature color
value with the backpropagation neural network (BPNN) classification technique. Results indicate that
the classification based on color features can potentially be applied for the in-field yield estimation of
fresh tomatoes. Yet, when the maturity of the tomatoes is green, identification results range within a
considerable margin of error.

A soya bean ripeness and health detection method based on color and texture features is proposed
in [42]. The input images are converted from an RGB to HSI color model. For extracting the texture
features, a gray level cooccurrence matrix is used, and statistical parameters such as energy, contrast,
correlation, and homogeneity are extracted. Lastly, an ANN is trained based on the extracted features
for the classification into been ripe, unhealthy, leaf, unripe or ripe but not ready for harvest. Though
the use of soya beans differs around the globe, predicting their ripeness period will help reduce losses.
The used images are captured under an uncontrolled environment to obtain their natural color without
introducing any variation in intensity/brightness to the images.

An analysis of the performance of RGB, NIR, and depth images for immature citrus fruit detection
using machine vision techniques is conducted in [43]. First, circular object detection is performed to
find potential fruit areas. For this purpose, circular hough transform is used for RGB and NIR images
and CHOI’s circle estimation (‘CHOICE’) algorithm is developed for depth images. The ‘CHOICE’
algorithm looks for the center of the circles that have the maximum divergence and vorticity values.
Moreover, the boundary of the circle is chosen according to the sign of the divergence and vorticity
values. This way, the CHOICE algorithm can find possible spherical objects in the depth images. Lastly,
the classification of citrus fruit from the background is implemented using AlexNet convolutional
neural network [44]. The results of this study can play a significant role in evaluating the most efficient
image types in an outdoor machine vision systems for citrus yield prediction. The proposed algorithm
can be improved by adopting a tolerance factor to ignore noise from sunlight. Moreover, it can be
implemented in real-time and combined with unmanned aerial or ground vehicles to have a fully
automated citrus yield prediction system.

Table 2 summarizes the main characteristics of the recent fruit grading and ripeness detection
approaches of the literature.

Table 2. Fruit grading and ripeness detection approaches.

Ref. Fruit
Type Task Feature

Type Method Performance Indices

[38] Mango

Grading based on size
(classifying mangos into one

of three mass grades, e.g.,
large, medium, and small)

Color, Geometrical and
Shape

Region based global
thresholding color

binarization, combined
with median filter and
morphological analysis

Accuracy = 97.00%

[39] Mango Size estimation
Histogram of Oriented

Gradients (HOG), Color
(CIE L*a*b* color space)

Cascade classifier, Otsu
thresholding & ellipse

fitting method

Precision 100% on fruit
detection.

R2 = 0.96 and RMSE = 4.9 mm
for fruit length estimation and
R2 = 0.95 and RMSE = 4.3 mm

for fruit width estimation

[40] Olive

Estimation of the
maximum/minimum

(polar/equatorial) diameter
length and mass of olive fruits

HSV color space (the value
and saturation channels) &

morphological features

Mathematical morphology
& automated thresholding

based on statistical
bimodal analysis

Relative mean errors
below 2.50% for all tested

cases

[41] Tomato Ripeness detection Color (HSI color model) BPNN Accuracy = 99.31%

[43] Citrus Ripeness detection Color & shape
Circular Hough Transform
+ CHOI’s Circle Estimation

(‘CHOICE’) + AlexNet

Recall = 91.60%, 96.00% and
90.60 for, NIR and depth

images respectively
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From the contents of Table 2 it is deduced that the fruit grading and ripeness detection are two
quite easy tasks since the reviewed works solved these problems with high accuracy rates (above 90%).
However, a more careful analysis of the above methods reveals that these tasks are not so difficult
for the cases of the examined fruits (mango, olives, tomato, citrus) since their shape is very clear and
with large variations, while their ripeness can be easily measured visually by processing their color
changes. However, there are cases where the shape of the fruit is not so clear, or with small variations
due to overlaps, and their ripeness is not indicated so much by color changes, as in the case of green
grapes [14].

3.2. Fruit Counting and Yield Prediction

Fruit counting is important for estimating the yield. The estimation of fruit count using machine
vision is quite challenging. Counting the number and measuring the size of fruit by machine vision
is based on the suggestion that all fruit on a tree can be seen and are not obstructed by leaves. The
scientific challenge is to identify each fruit in the tree image with some fruit hidden within the canopy,
especially in the early period. The appearance of fruit may vary due to illumination and occlusion
caused by the surrounding foliage and fruits, leading to miscounting. However, early prediction is
essential for planning labor, bins, and harvest management as well as transport, grading, and storage.
Recent research efforts which address the problem of fruit counting are presented in this section.

A methodology for the detection and counting of marigold flowers using HSV color space for
segmenting the flowers from the background and fitting with circular hough transform (CHT) for
counting is presented in [45]. The advantage of this approach is that it is capable of detecting and
counting marigold flower even in occlusion and/or overlapping conditions. For better results, high
resolution cameras and high-quality images are required. In [46], a fruit detecting and counting
approach is implemented based on a CNN. A counting algorithm based on a second convolutional
network is then used for the estimation of the number of fruits and a linear regression model for
mapping what fruit count estimates to a final fruit count. The advantage of this approach is that it
addresses the issue of overlapping fruit. However, it is susceptible to errors due the human-generated
labels (ground-truth) for the input data. In [47], a method for citrus detection and counting is proposed.
The method consists of the following steps: conversion of RGB image to HSV, thresholding, orange color
detection, noise removal, watershed segmentation, and counting. The watershed transform is effective
for the segmentation of objects with unclear boundaries. However, it can cause over-segmentation
due to the presence of many local minima [31]. For that purpose, marker-controlled watershed
transformations are deployed. A disadvantage of this approach is that fruits could be detected twice
due to their areas being split by branches or leaves.

An image analysis algorithm to detect and count yellow tomato flowers in a greenhouse is
implemented in [37]. This method uses an adaptive global threshold, segmentation over the HSV color
space, and morphological cues. The adaptive threshold divides the images into darker and lighter
regions. Then, segmentation on the HSV color space is performed, and classification is made according
to the size and location of the flowers. The main advantage of this method is that it considers the
varying illumination conditions. However, images taken in the afternoon from an angle facing the
plants provide better results in terms of precision and recall than any other angle. An approach of
using image analysis and tree canopy features to predict early yield with ANNs is presented in [48].
Tree canopy features are proposed in order to overcome the difficulties of counting when leaves cover
the apple fruit. Two back propagation neural network (BPNN) models are developed (for the early
period after natural fruit drop in June and the ripening period). For each sample image (canopy image),
pixels are segmented into fruit, foliage, and background using image segmentation. Four features are
extracted from the images, namely total cross-sectional area of fruits, fruit number, total cross-section
area of small fruits, and cross-sectional area of foliage. Then, a BPNN is deployed to learn their mutual
relationship in order to predict the actual weighted yield per tree. The proposed method may reduce
the adverse influence from foliage. Hence, the method could be used for apple yield prediction in early
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and late growing periods. However, all experiments were conducted on a general model of tree form.
Further research will focus on separating a site-specific model from the general model, and investigate
the adaptation of the algorithm to other tree forms or similar fruits.

Table 3 summarizes the main characteristics of the recent fruit counting and yield prediction
approaches of the literature.

Table 3. Fruit counting and yield prediction approaches.

Ref. Fruit/Plant
Type Task Feature

Type Method Performance Indices

[49] Marigold
flowers

Detection and
counting

Color (HSV color
space)

HSV color transform and
circular Hough transform

(CHT)
Average error of 5%

[37] Tomato flowers Detection and
counting

Color (HSV) and
morphological

(size & location)

Adaptive global threshold,
segmentation over the
HSV color space, and
morphological cues.

Precision = 80.00%
Recall = 80.00%

[46] Apples and
oranges

Fruit detection
and counting Pixel based CNN and linear regression

Mean error (in the form of
ratio of total fruit counted
and standard deviation of
the errors) of 13.8 on the

oranges, and 10.5 on
the apples.

[48] Apples Early yield
prediction

Colour (RGB &
HIS) and Tree

canopy features
Otsu + BPNN R2 0.82 & 0.80

[47] Citrus Detection and
counting Color (HSV) Histogram thresholding +

Watershed segmentation
Mean of the absolute error

5.76%

Table 3 indicates that fruit counting constitutes a difficult task, mainly due to the complex
background generated by the presence of the tree leaves, which increases the overlapping regions.
Although the color features can help with fruit detection, the accuracy of fruit counting is highly
dependent on the size of the fruit.

4. Plant/Fruit Health Protection and Disease Detection Approaches

The health of plants and fruits can be affected by various factors. One of most important factors
that can affect the fruit and plant health is weeds. Weeds require nutrition, light, and moisture, which
are shared with the growing plant. Thus, if a weed is not detected and removed early it will have
a negative impact on the growth and quality of the final product. Machine vision has been widely
used for automating weed detection. This task becomes very challenging when there is not significant
difference in the color between the plant and the weed. Another factor that can have a negative impact
in the health of a plant is insects. The monitoring of insects automatically can help growers to protect
plants and fruits. Machine vision has also been used for detecting diseases and deficiencies. There is a
considerable body of literature regarding disease detection [5]. Disease detection is a challenging task,
mainly due to the variability in color and texture of the diseased part. Changing lighting conditions
can also affect disease detection approaches significantly [3].

The aim of this section is to provide insight into the recent machine vision algorithms that address
the aforementioned factors affecting the health of plants. Thus, recent research efforts using machine
vision in (1) weed detection, (2) insect detection, and (3) disease and deficiency detection are briefly
presented. In the Discussion section, additional information on the literature is provided, regarding
research gaps, pros and cons, and potential future directions for all three tasks.

4.1. Weed Detection

Weed detection refers to the task of automatically detecting weeds between crops. Weeds can
affect the growth of the plant and the quality of the final product. The challenge in this task is to



J. Imaging 2019, 5, 89 10 of 32

accurately discriminate weed from plant. The presence of illumination variations, overlapping leaves,
and insignificant color differences between weed and crop make this task more challenging.

In [50], a weed detection approach is implemented based on HSV color space for the image
segmentation and a CNN for the classification to weed and carrots. Apparently, due to the great
difference of color between carrots and weeds, this method based on color performs well. Color
features are most effective for crops with a distinguishable and unique color [42]. Consequently, in
cases whereby the color difference is not so significant, it is very possible that this method could not
accurately discriminate weed from crop. Moreover, color-based methods are susceptible to different
lighting conditions.

For that purpose, a texture-based approach to segment the weeds from the main crop based on
wavelet texture features and ANNs is presented in [51]. Wavelet transformation extracts information
from several spatial orientations which is helpful for analyzing the content of images, texture
discrimination, and fractal analysis [52]. Principal component analysis is also used for transforming
the feature space to a lower number of dimensions. Experimental results reveal that the proposed
approach is able to distinguish weed from crop even when there was significant amount of occlusion
and leaves overlapping. Errors occurred mainly in areas where the crop’s leaf surface was wrinkled or
deformed. However, these errors were very small, accounting for less than 1% of the misclassifications.
A weed detection approach from video streams is proposed in [42]. The HSV color space is used for
discriminating crop, weeds and soil. The region of interest (ROI) is defined by filtering each of the
HSV channels between certain values (minimum and maximum threshold values). The region is then
further refined using a morphological erosion and dilation process, and the moment method is applied
to determine the position and mass distribution of objects in video sequences so as to track crops. High
accuracies are obtained in the classification of various categories of crop leaves.

A weed recognition system is proposed in [53] to be used in a robotic system for the weed detection
problem. It uses an image resolution of 200 × 150 pixels, speed-up robust feature (SURF) [54] features
over dense feature extraction, an optimized Gaussian Mixture Model based codebook combined
with Fisher encoding, a two level image representation, and a linear classifier. The method stands
out for its simplicity of computation, leading to an improved speed of execution. However, the
possibilities of further improvements to the speed of execution using advanced parallel and GPU
based computing methodologies needs to be investigated. Moreover, the dataset acquisition process
needs to be extended in order to better represent realistic working conditions in various environmental
and illumination conditions. A weed detection approach that relies on a fully convolutional network
with an encoder–decoder structure incorporating spatial information by considering image sequences
is presented in [55]. The experimental results show that it performs better compared with recently
published approaches: (i) using a semi-supervised vision and geometry based approach based on
random forests [56] and (ii) employing a purely visual FCN classifier solely based on RGB data [57],
which takes vegetation indices as additional plant features (PF) into account. Results reveal that the
proposed system generalizes well previously unseen fields under varying environmental conditions,
without retraining of the model. A vegetation segmentation and classification method is proposed
in [58]. First, the normalized difference vegetation index (NDVI) images used as training data are
represented by the max-tree hierarchy [59]. The segmentation step selects regions from the hierarchy
based on their size stability over a series of grey levels. In contrast to the global thresholding methods
like Otsu’s thresholding [60], a decision about each region is taken locally. This way, even in the presence
of noise, the plant regions are easily visually distinguishable due to their high local dissimilarity
with their background. The segmentation process results in a set of distinct regions with associated
attributes, which are used as region features for the training of an SVM classifier. Although the
advantage of the region-based approach is that it only classifies a few objects per image, it cannot
accurately classify the pixels of regions that contain both value crop and weed pixels. For those cases,
a pixel-based classifier is proposed to be investigated in future work.

Table 4 presents the main characteristics of recent weed detection approaches of the literature.
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Table 4. Weed detection approaches.

Ref. Fruit/Plant
Type Task Feature

Type Method Performance Indices

[61]
Weed in

cauliflower
plants fields

Weed detection
Color (HSV color

space) and
morphological

Morphological Image
Analysis

Recall = 98.91%
Precision = 99.04%

[50] Weed in carrots
fields Weed detection Color (HSV color

space) CNN
Precision = 99.10%

F-measure = 99.60%
Accuracy = 99.30%

[53] Broad-leaved
dock weed Weed detection Speed-Up Robust

Feature (SURF) [54], SURF + GMM Accuracy = 89.09% and
false-positive rate 4.38%

[57] Weed in crop
fields Weed detection

Color (RGB) and plant
features (vegetation

indices)

Deep encoder-decoder
CNN

Results in 3 datasets: Precision
98.16% & Recall 93.35%,

Precision 67.91% & Recall
63.33%,

Precision 87.87 & Recall
64.66%

[51] Weed in
sugarbeet fields Weed detection Wavelet texture

features PCA+ANN Accuracy = 96.00%

[55] Weed in
sugarbeet fields Weed detection Spatial information

CNN +
encoder-decoder

structure

Results in 2 datasets: Precision
97.90% & Recall 87.80%,

Precision 72.70% & Recall
95.30%

[58] Weed in
sugarbeet fields Weed detection Attribute morphology

based

Selection of regions
based on max-tree
hierarchy [59] and
classification with

SVM

F-measure = 85.00% (onions)
F-measure = 76.00%

(sugarbeet)

From Table 4 it is obvious that the problem of weed detection can be solved with high accuracy
only in the cases where the fruit/plant differs significantly in color to the weed, e.g., carrots. On the
contrary, when the color of the fruit/plant is very close to the color of the weed, more sophisticated
features (e.g., texture features) need to be deployed in order to detect accurately the weed.

4.2. Insect Detection

Pest management is one of the main concerns for farmers. Reductions in production loss and crop
damages can affect marketable yields. Therefore, farmers use several methods to control and protect
fields against pest damages. During recent years, the use of pesticides has increased due to their initial
low cost, easy accessibility, quick influence, and the lack of knowledge on the part of farmers, resulting
in dangerous consequences for public health, animals, and the environment. Thus, better methods of
pest control, other than the use of chemical pesticides, are needed. Insects can cause great damage
to plants and fruits. For example, Lobesia botrana is an invasive insect considered as one of the most
damaging pests in vineyards (Vitis vinifera L.) [53]. The traditional methods for insect identification
are time-consuming and require expert knowledge. To this end, machine vision has been deployed
for automatically identifying insects. Machine vision for automated insect identification, may lead
to increasing the work speed and precision, and decreasing human errors, since farmers may have
limited pest scouting expertise.

A method for L. botrana recognition is presented in [62] using a clustering-based image segmentation
with descriptors, which considers gray scale values and gradients in each segment. The proposed
system allows for fast and scalable cloud-computing analysis of the images, providing an ideal
environment for in-field applications. In [63], a grapevine bug detection method is implemented. The
method involves the use of scale-invariant feature transform (SIFT) for calculating low-level features,
bag of features (BoF) for building an image descriptor, and an SVM classifier. This method claims to be
robust to realistic scenarios, i.e., in outdoor, under natural field conditions, in winter, without artificial
background, and with minimal equipment requirements. A pest detection method in strawberry
plants is proposed in [64]. The methodology uses an SVM model using hue, saturation and intensify
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color indices, and the ratio of major diameter to minor diameter as a region index. The method is
implemented for real-time detection of parasites from flower surface images with relatively small error.

Table 5 summarizes the main characteristics of the above research efforts on insect detection.

Table 5. Insect detection approaches.

Ref. Fruit/Plant
Type Task Feature

Type Method Performance Indices

[62] Grapes L. botrana
recognition

Color (gray scale values
and gradient) Clustering Specificity = 95.10%

[63] Grapes Grapevine bug
detection SIFT SVM Precision = 86.00%

[64] Strawberry
plants

Pest detection
in strawberry

plants

Color (HSI color space) &
morphological (ratio of

major diameter to minor
diameter in region)

SVM MSE = 0.471

From Table 5, it is obvious that the task of insect detection constitutes a typical object recognition
problem, which can be addressed by applying shallow machine learning models with acceptable
accuracy. However, it seems that it is quite difficult to detect multiple types of insects simultaneously,
probably due to the small size of the insects compared to the size of the fruit/plant.

4.3. Disease and Deficiencies Detection

Disease and deficiency detection refers to the automatic detection of parts of the plant that are
not healthy. This subject is under research due to its importance and variability, a fact that makes
this task quite challenging. Depending on the kind of disease or deficiency, and the type of fruit or
plant, the diseased part varies in color and texture. Changing of lighting conditions can also affect the
appearance of the diseased part [3].

The study presented in [65] focuses on the automatic identification of nutritional deficiencies of
Boron (B), Calcium (Ca), Iron (Fe) and Potassium (K), using descriptors of the shape and texture of
coffee leaves images. Image segmentation is performed using the Otsu method, the blurred form model
(BSM) descriptions, and the gray-level co-occurrence matrix (GLCM) to extract shape and texture
features. Then, k-Nearest Neighbors (k-NN), naïve Bayes and neural network classifiers are trained
by using the extracted features in order to predict the type of deficiency presented in each analyzed
image. Although the experimental results show that the naïve Bayes classifier and the BSM descriptor
have higher performance than the rest of the methods, the general performances were relatively poor
(F-measure 64.9%). An approach for disease detection in citrus plants is presented in [66]. Delta E (DE)
is used for segmentation, RGB, HSV (color histogram) and LBP (textural information) as descriptors
on the collected images. Fine k-NN, Cubic SVM, boosted tree, and bagged tree ensemble classification
methods are used, with the bagged tree ensemble classifier performing better by using any color
features compared to the other classifiers. The experimental results showed that the color features are
important as well as the textural features in the detection of plant diseases. Further, the combination
of these features is also useful in the detection of the diseased area in the plant. A correlation-based
feature selection method to identify apple leaf disease is proposed in [67]. Color, texture, and shape
features are used as inputs to an SVM model to classify apple leaf diseases. However, the proposed
method fails to identify apple leaf diseases under natural illumination. In [68], a method for plant
disease detection based on SIFT features is proposed. The input image is pre-processed to extract the
whole region of the leaf. the scale-invariant feature transform (SIFT) features are extracted from the
pre-processed image. The extracted SIFT features are modeled by a generalized pareto distribution
(GP). The two parameters of the GP model are combined with GLCM statistical features to form the
new proposed feature vector. Finally, an SVM classifier is trained using the extracted feature vectors.
The proposed features achieve acceptable classification accuracy. However, although the training time
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and prediction speed of the classifiers may be acceptable for mobile devices, but not applicable for
real-time prediction.

A method for detecting lesions on wheat leaves based on the C-V model [69] is presented in [70].
The C-V model is used in agricultural image processing, where the data contents of a region of interest
are extracted as prior information. However, in the C-V model the R, G, and B channels in the region
of interest are fixed, and the weights for each channel of the color images are determined artificially.
In this paper, PCA is used for selecting three color channels from the R, G, B, H, S, and adaptive weights
of each channel are obtained by calculating the contrast of the object and background pixel values.
K-means clustering is then used for separating the lesion region from the rest of the leaf. Experimental
results show that this method achieves better segmentation accuracy than those of the initial circle
curve or initial Otsu segmentation with fewer iterations. However, when the examined regions are
ambiguous with respect to the background, the proposed method does not achieve satisfying results.

In [71], a content based image retrieval system (CBIR) for retrieving diseased leaves of soybean
is presented. CBIR based system involves two steps; feature extraction and feature matching. For
this purpose, color, shape and texture features are extracted. Specifically, color features are extracted
using HSV color histogram. Shape features are provided in the form of matching key points by the
SIFT algorithm. Finally, a new texture feature is proposed, namely local gray Gabor pattern (LGGP),
by combining local binary pattern (LBP) and Gabor filter. The extracted feature vectors are stored
and when a query image is given, its features are extracted, and its distance to the feature vectors is
calculated in order to find the one with the smallest distance. The proposed system provides promising
results. These results are database dependent. If size of database is changed then result may alter.
A method for detecting diseases in potato leaves is implemented in [72]. Leaf is segmented from
the background with the determination of thresholds for L*, a* and b* channels instead of using
auto-threshold like Otsu. Then, the GLCM is applied for extracting statistical texture features like
contrast, correlation, energy and homogeneity. Numerical indicators like mean, standard deviation,
entropy, skew and energy are calculated from the histograms of the extracted color planes. Finally,
an SVM classifier is trained on the extracted features to classify the leaves into affected and healthy
ones. The classification rates of the method are high, pathing the way toward automated plant diseases
diagnosis on a massive scale. Potentially, more types of diseases affecting various types of plants will
be integrated to the system.

An image processing method using color information and region growing for segmenting
greenhouse vegetable foliar disease spot images captured under real field conditions is presented
in [73]. The quality of color index-based segmentation decreases dramatically when locally uneven
illumination occurs. For that purpose, a comprehensive color feature (CCF) is proposed which
combines excess red index (ExR) [74], H component of HSV color space, and b* component of L*a*b*
color space, which are invariant to illumination [75]. Then, an interactive region growing method based
on the CCF map is used for disease spot segmentation from the clutter background. The experimental
results indicate that the algorithm performs better than K-means clustering and Otsu algorithm for
the segmentation of disease spots on images captured under real field conditions. Both the K-means
clustering algorithm and Otsu algorithm are affected by locally uneven illumination and background
noise, causing a lot of false positives segmentations. A method for the detection and classification
of diseases in citrus leaves is implemented in [76]. Image segmentation is performed with K-means
clustering. GLCM texture features are extracted and used for training an SVM classifier for the disease
classification. Results are promising, and future work includes the experimentation of diseases in
different plant species. In [77], a disease detection and classification method for citrus leaves and fruit
is presented. First, image pre-processing is performed to improve the contrast of input images by
applying a top-hat filter and Gaussian function. Specifically, the top-hat filter is used to improve the
visual quality of input image, which is further improved by a difference-Gaussian image. For the
segmentation of the disease lesion spots a weighted segmentation method is proposed, which uses
chi-square distance and threshold function. Then, color, texture, and geometric features are fused in
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a codebook. Feature selection is performed by a hybrid feature selection method, which consists of
PCA score, entropy, and skewness-based covariance vector. The selected features are given as inputs
to a multi-class support vector machine (M-SVM) for citrus disease classification. A comprehensive
comparison shows that the proposed method outperforms the existing methods in the literature when
tested on the same datasets. Future work includes a deep model to be applied to the selected citrus
datasets, as the deep learning is reported to perform well in the field of computer vision. However, the
latter needs a big dataset in order to be implemented.

A cucumber disease recognition approach is proposed in [78]. The method consists of segmenting
diseased leaf images by K-means clustering, extracting shape and color features from lesion information,
and classifying diseased leaf images using sparse representation (SR). An advantage of this approach
is that the classification in the SR space can effectively reduce the computation cost and improve
the recognition performance. Although the SR based recognition method shows its advantage over
other methods, at the current stage it is not clear how to efficiently construct the over-complete
dictionary of SR. A plant disease detection and classification method based on fusion of super-pixel
clustering, K-means clustering, and pyramid of histograms of orientation gradients (PHOG) algorithms
is proposed in [79]. First, the images are divided into a few compact super-pixels by super-pixel
clustering algorithm (after transformation to L*a*b* color space from RGB). Then, K-means clustering is
used to segment the lesion image from each super-pixel. Finally, the PHOG [80] features are extracted
from three color components of each segmented lesion image and its grayscale image. The concatenated
four PHOG descriptors are given as inputs to a context-aware support vector machine (C-SVM) classifier
with a radial basis kernel function for the plant disease classification. The effectiveness of applying
super-pixels to parameter estimation of the algorithm is because they reduce the complexity of images
from thousands of pixels to only a few hundreds of super-pixels.

Table 6 summarizes the main characteristics of the discussed research efforts on disease and
deficiencies detection.

Table 6. Disease and deficiencies detection approaches.

Ref. Fruit/Plant
Type Task Feature

Type Method Performance Indices

[65] Coffee leaves

Identification of
nutritional deficiencies
of Boron (B), Calcium

(Ca), Iron (Fe) and
Potassium (K)

Color, shape &
texture Otsu + BSM + GLCM F-measure = 64.90%

[68] Plants Plant disease detection
SIFT+

statistical
features

SVM Accuracy = 78.70%

[70] Wheat Detecting lesions on
wheat leaves Color (C–V) + PCA +

K-means Accuracy = 84.17%

[71] Soybean leaves
Image retrieving

diseased leaves of
soybean

HSV Color +
SIFT + LGGP

Calculation of distance
of the feature vectors

to find the one with the
smallest distance.

Average retrieval
efficiency of 80.00%

(for top 5 retrieval) and
72.00% (for top 10

retrieval)

[72] Potato leaves Disease detection Color, texture
and statistical

Hard thresholding (L*,
a* and b* channels) +

SVM
Accuracy = 93.70%

[72] Greenhouse
vegetable

Detection of foliar
disease spots CCF + ExR

Interactive region
growing method based

on the CCF map
Precision = 97.29%
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Table 6. Cont.

Ref. Fruit/Plant
Type Task Feature

Type Method Performance Indices

[66] Citrus plants Disease detection

Color (RGB,
HSV color

histogram) and
texture (LBP)

Delta E (DE) + Bagged
tree ensemble classifier Accuracy = 99.90%

[75] Citrus leaves Disease detection and
classification GLCM K-means + SVM Accuracy = 90.00%

[76] Citrus leaves Disease detection and
classification

Color, texture,
and geometric

PCA + Multi-Class
SVM.

Accuracy = 97.00%,
89.00%, 90.40% on

three datasets

[77] Cucumber
leaves

Disease detection and
classification

Shape and
color K-means + SR Accuracy = 85.70%

[78] Cucumber and
apple leaves

Disease detection and
classification PHOG [80] K-means +

Context-Aware SVM

Accuracy = 85.64%
(apples)

Accuracy = 87.55%
(cucumber)

[67] Apple leaves Disease identification
Color, texture

and shape
features

SVM Accuracy = 94.22%

The problem of disease and deficiencies detection seems to be a difficult task as can be concluded
from Table 6. The accuracy of the reviewed methods is mostly limited, below 90%, with almost of
them using texture features and shallow machine learning models. The difficulty of this problem
comes from the need to describe the diseased surface of the leaves in such a way as to discriminate it
from the healthy surface. Moreover, the high overlap regions of the leaves do not permit the accurate
quantification of the leaves’ surfaces.

5. Camera Types Used for Machine Vision in Agriculture

The selection of the appropriate camera equipment for a specific machine vision application in
crop farming constitutes a quite laborious task, considering the diverse cameras that are available in
the market. Therefore, some selection criteria need to be defined by the designer considering mainly
the application requirements that need to be satisfied. The purpose of this section is to give useful
insights to researchers by outlining the general types of equipment used for acquiring images/video for
machine vision applications in agriculture according to the literature. The camera’s sensor resolution,
frame rate, image transfer rate (connectivity), and price seem to be the most important factors that
need to be examined in order to select the appropriate camera that fits the needs of each application.

Based on the application, the camera device can be decided based on three broader categories,
namely: RGB cameras, multispectral cameras and stereovision cameras. The most simple and affordable
vision system consists of a single RGB camera. This is the main reason why they are extensively used in
agricultural machine vision applications for fruit/plant detection [16,17,22,45–47], yield prediction [48],
segmentation tasks [21,29,35,36], disease detection [66,69,71,73], ripeness detection [40,41], weed
detection [53,58,61] and insects detection [63,64]. As an alternative affordable and convenient solution
for image capturing, the RGB build-in cameras of mobile devices are also used [19,37]. When using
RGB cameras, the potential for effective image processing is due to the use of efficient image analysis
algorithms, rather than image quality. RGB color space is adequate for image display, but not for color
processing, since the intensity is not decoupled from the chromaticity and there is a high correlation
between the components R, G and B [81]. For this reason, RGB images are not appropriate for
algorithms that use color processing. Moreover, it is well-known that the color information in an
image is very important in image segmentation, but it is very sensitive to illumination. The negative
effects of nonuniform illumination may be reduced by normalizing the color vectors, however, they are
not totally eliminated [81]. On top of that, the complex background increases any induced difficulty.
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The quality of images depends on camera’s intrinsic properties dealing with lighting conditions, sizes
of objects, and distance from the object. For better results, cameras with higher resolution are preferred.

Humans perceive colors in the three broad channels R, G, and B, but plants are potentially
discriminated by higher-precision color measurements [82]. Some studies utilize multispectral
images, referring to hyperspectral, thermal, or ultrasonic camera technologies for object (fruit, plant,
insects, leaves etc.) detection [20,38,43,55,83]. These technologies typically provide better results
than conventional RGB color images. This is because objects with similar color may exhibit different
reflectance in non-visible regions, and thereby, they are easily distinguished with non-conventional
RGB cameras. On the other hand, these technologies require expensive devices compared with RGB
cameras, and therefore are not affordable for practical use. The combination of the two technologies,
i.e., the addition of multispectral filters to a low-cost vision system, has the potential to provide features
of interest strongly related to discriminatory wavelengths [82].

Furthermore, the differentiation of distinct plants, such as crops and weed, is difficult in a 2D
image. As an additional parameter, the dimension of crops (depth information, crop height, leaf shape,
leaf area etc.) can be monitored. This can be achieved with stereo vision. Three dimensional plant
structure derived from stereoscopic cameras is used in applications to crop and plant monitoring and
species discrimination [39,43].

The above analyses reveal that there are diverse types of cameras available for image acquisition,
depending on the specific agricultural application. However, the critical factor in all cases is the
camera’s resolution, which should be high enough to capture the details of the scene especially in the
cases of insect and disease detection [71]. Moreover, when there are needs for embodying machine
vision capabilities to an autonomous vehicle (agrobot), the usage of an industrial camera [20,55] with
high speed communication abilities (e.g., GigE) and increased frame rate is, in some sense, inevitable.

6. Vision-Based Vehicle Guidance Systems for Agricultural Applications

After examining the most representative approaches in machine vision applications for crop
farming and the camera equipment used to implement them, it would be very constructive to review
briefly the vision-based vehicle systems proposed in the literature that deployed such kinds of machine
vision approaches.

Automated agricultural vehicles are capable of a longer duration of work, as an autonomous
vehicle may outlast a human worker, increase productivity, increase application accuracy, and operation
safety. Autonomously driven robots can help farmers reduce the manpower and hours needed to fulfill
the needed agricultural tasks, and at the same time conduct other high-level tasks, as navigation is
automated. Moreover, autonomous navigation is environmental and economically friendly compared
to traditional methods of accomplishing the same assignment, since vehicles do not wander around
the fields meaningless but navigate optimally to specific areas of interest by choosing the shortest
paths. Thus, farmers can better use their resources in terms of time and money (i.e., fuel and salaries),
therefore saving money and economizing a better product for the masses. With these benefits in mind,
autonomous vehicles no longer exist at the fantasy level, but are becoming feasible, and they are much
needed nowadays [84]. For these reasons, automatic vehicle navigation in agricultural applications is
considered as a separate field of science.

Early guiding systems used sophisticated sensors, demonstrating technical feasibility [85]. High
cost and low reliability were the main reasons for non-commercialization of these systems. Nowadays,
navigation is strongly related to positioning information of the vehicle in a global or a local coordinate
system. Global positioning systems (GPS) are widely used as global guidance sensors [86,87]. The main
disadvantage of GPS-based navigation is the low precision of GPS receivers. Typical GPS precision is
about ±50cm, which is an important tolerance in the case of precision farming.

Machine vision is used complimentary to GPS and sensors in order to enhance the precision of
navigation. When crop row structure is distinct in a field, machine vision can be implemented to
automatically guide a vehicle in the field. On one hand, the guiding sensor (camera) is only local,
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since it reveals information regarding the relative location of the vehicle. On the other hand, the use of
local features can be used to fine-tune the vehicle navigation course [88]. Machine vision provides the
technological characteristics to simulate the eyes of a human operator, thus, has a great potential in
navigation systems [89]. The problem of navigation in plant structures is the fact that harvesting or
mowing changes the scene of the lines of the field. In most of the cases, though, the plants grow in rows,
producing a natural set of lines, which define the image, thus making the processing more distinct. In
general, autonomous navigation systems for agricultural mobile robot consists of navigation sensors,
computational methods, and navigation control strategies. Figure 1 presents the aforementioned
basic elements.

Image processing techniques have been implemented to crop row images in order to define the
directrix for a vehicle. In what follows, the most recent techniques of the literature are briefly described.
Table 7 summarizes the selected applied techniques and comparatively presents their reported pros
and cons. The aim of this section is to suggest the deep insights and general knowledge regarding
vision-based vehicle guidance systems by grouping or analyzing approaches through similar research
articles of the literature.

In [90], crop rows are identified in images using Hough transform. The platform proposed
in [91] uses an E/H steering system and a feedforward-plus-PID steering controller in support of
automated guidance actuation. Redundant posture sensor, including GPS, geomagnetic direction
sensors (FOG), and machine vision sensing systems are used on this platform for providing automated
guidance information. A robust procedure with row segmentation by K-means clustering algorithm,
row detection by a moment algorithm, and guidance line selection by a cost function are proposed
in [88]. Auxiliary information, such as known crop row spacing, is used for the development of the
guidance directrix. In order to guide an autonomous vehicle through the field in [92] a vision-based
row detection system is used based on grey-scale Hough transform on intelligently merged images.
The experiment takes place in a sugar beet field in a greenhouse. A method to detect crop rows to
guide agricultural robots to work in real time even under a wide range of illumination situations is
described in [93]. Image pre-processing is conducted to obtain the binarization image and vertical
projection method to estimate the position of the crop rows for image strips. The detection of crop
rows is defined by Hough transform. The machine vision-based autonomous navigation system in [94]
constitute three steps. Firstly, the camera calibration is applied to obtain the relationship between the
image coordinates and the world coordinates. Then, pattern recognition and image processing are
used to obtain a quasi-navigation baseline. Lastly, the real navigation line is extracted from the quasi
navigation baseline via Hough transform.
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A color image of an orchard is classified into orchard elements by a multilayer feedforward
neural network in [95]. The extraction of the desired path is performed by Hough transform after
a filtering operation. A novel vision-based technique for navigation of agricultural mobile robots
in orchards is suggested in [96]. The captured color image is clustered by the mean-shift algorithm.
Then, a classification technique based on graph partitioning theory classifies clustered image into
defined classes including terrain, trees and sky. Hough transform is applied to extract the required
features to define the desired central path for robot navigation in orchard rows. A RTK-DGPS (real time
kinematic differential global positioning system)-based autonomous field navigation system including
automated headland turns is presented in [97] to provide a method for crop row mapping combining
machine vision, and to evaluate the benefits of a behavior-based reactive layer in a hybrid deliberate
system architecture. Vision-based row guidance is presented in [98]. The camera is used to detect and
identify crop plants, and then accurate and stable navigation information is extracted from the binary
image, which includes the offset and heading angle of the robot relative to the guidance row from
the image. The vehicle in [99] uses a combination of GPS and machine vision to navigate kiwifruit
orchards, maneuver around obstacles such as posts, and recognize braces. In [84], a machine vision
sensor is proposed to guide a vehicle in a row of trees. The basic concept of applying machine vision
for navigation is for measuring the relative position of the vehicle concerning a landmark and use that
to estimate the vehicle’s heading. The goal of [84] is to develop an algorithm to autonomously guide a
small robotic ground vehicle platform along an orchard row, following the path of the row using an
upward looking camera combined with a controller based on feature recognition from the contrast
between the tree canopies and the sky. The method presented in [100] is based on a particle filter
(PF) using a novel measurement model, where a model image is constructed from the particle and
compared directly with the measurement image after elementary processing, such as down-sampling,
excessive-green filtering and thresholding. Machine vision and laser radar (ladar) are individually
used for guidance in [101]. A rotary encoder is used to provide feedback on the steering angle. A PID
controller is developed to minimize the path error. The vehicle’s guidance accuracy is tested in flexible
test paths constructed of common hay bales. A stereo image processing algorithm is developed in [102]
which detects and tracks ground features captured in two consecutive field images, acquired using a
vehicle-mounted stereo camera. These ground features are used as reference points to calculate the



J. Imaging 2019, 5, 89 19 of 32

lateral offset. A precise measurement of the vehicle’s lateral offset can help achieve navigation accuracy.
A variable field-of-view machine vision method is developed in [103] allowing an agricultural robot to
navigate between rows in cornfields. Guidance lines are detected using an image processing algorithm,
employing morphological features in a far, near and lateral field of view, and the robot was guided
along these lines using fuzzy logic control. In the method presented in [104] natural frames are analyzed
in RGB vector space to research the feasibility of curve path detection of unstructured roads. Perceptual
color clustering and morphological image processing have been used as pre-processing to obtain the
segmented path. The pixels of the segmented image are analyzed from right to left, line-by-line to find
the middle points of the path. In order to obtain the optimal navigation path, the least-squares curve
fitting method is implemented, and finally, a new method of obtaining the navigation parameters is
introduced. In [105], the HSI (hue, saturation, intensity) color model is used to process images, and a
threshold algorithm based on the H component is used to produce grayscale images. According to
the characteristics of the crop rows in the image, a method of crop line identification based on linear
scanning is proposed. Fuzzy control is used to control the agricultural implement.

Although there have been research developments in machine vision guiding systems during the
last years, shortcomings such as low robustness of versatility and dependability of technologies are
obstructing the improvements required for the commercialization of guidance systems. It should be
noted that GPS and machine vision technologies need to be combined or at least one of them needs to
be fused with another technology (e.g., laser radar) as to develop efficient agricultural vehicle guidance
systems in the future. Moreover, autonomous navigation in an agricultural environment is demanding
due to the inherent uncertainty of the environment. The robot needs to navigate in an unstructured,
dynamically changing environment with many sources of noise (e.g., rough terrain or varying shapes,
sizes and color of the plants or inconsistency in the environment structure). This problem is enhanced
by adding the hardware related noise like imprecise sensor measurements, wheel slippage, controller
and actuator noise. Developing a navigation system to handle all the aforementioned uncertainties
and their variations is not simple but rather challenging.
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Table 7. Machine vision-based techniques for automated navigation of agricultural vehicles.

Ref. Reported Advantages Reported Disadvantages Main Technique

[90] Integrates information over a number of crop rows, making
the technique tolerant to missing plants and weeds. Confined to situations where plants are established in rows. Hough transform

[91]

Points in various directrix classes were determined by
unsupervised classification. The sensor fusion-based

navigation could provide satisfactory agricultural vehicle
guidance even while losing individual navigation signals

such as image of the path, or the GPS signal for short
periods of time.

When the steering input frequency was higher than 4 Hz, the
steering system could not respond to the steering command. A heuristic method and Hough transform

[88]

Good accuracy from two test data sets: a set of soybean
images and a set of corn images. The procedure is

considered acceptable for real-time vision guidance
applications in terms of its accuracy.

K-means algorithm in the procedure limits the processing speed,
which is acceptable for real-time applications if the controller

output rate is faster and is independent of the image update rate.
The performance of the image processing procedure degrades
significantly under adverse environmental conditions such as

weeds. The fusion of vision sensor with other navigation sensors,
such as GPS, is needed in order to provide a more robust guidance

directrix.

K-means clustering algorithm, a moment
algorithm, and a cost function

[92]
A considerable improvement of the speed of image

processing. The algorithm is able to find the row at various
growth stages.

Inaccuracies exist because of a limited number and size of crop
plants, overexposure of the camera, and the presence of green algae

due to the use of a greenhouse. Inaccuracies accounted for by
footprints indicate that linear structures in the soil surface might
create problems. High image acquisition speed, results to images
overlapped each other for a large part, thus, total amount of images

is too large.

Grey-scale Hough transform

[93]

In the pre-processing the binarization image was divided
into several row segments, which created less data points

while still reserved information of crop rows. Less complex
data facilitated Hough transform to meet the real-time

requirements.

Rows and inter-row spaces could not be segmented clearly. Within
the growth of wheat, the rows became overlapped. Narrow

inter-row spaces of the field made it difficult to discriminate all of
the rows in view. A great number of weeds between the crop rows

disturbed the row detection algorithm

Vertical projection method and Hough
transform

[94]

The system is not restricted to a specific crop and has been
tested on several green crops. After examination in a

laboratory and in-field, results show that the method can
attain navigation parameters in real time and guide the

mobile robot effectively.

Camera calibration has good results if the robot moves in a smooth
field. When the field is uneven, the calibration result is

unstabilized. Rows and inter-row spaces must be segmented
clearly so as the quasi navigation baseline to be detected easily. If
the field has narrow inter-row spaces, rows became overlapped,

which makes them difficult to separate from background.

Grey-level transformation, Otsu binarization,
and Hough transform
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Table 7. Cont.

Ref. Reported Advantages Reported Disadvantages Main Technique

[95] Achieves good classification accuracy. The desired path is
properly calculated in different lighting conditions.

Classification based on NN requires training, validation and
testing of a number of samples, which is time-consuming. NN

classification is a supervised technique.

A multilayer feedforward neural network
and Hough transform

[96]

The proposed technique is unsupervised. It can be used as
a complementary system to the other navigational systems
such as LiDAR to provide a robust and reliable navigation

system for mobile robots in orchards.

For not well-structured orchards, a filtering process is required to
extract the path. Not tested in different lighting conditions.

Mean-shift algorithm, graph partitioning
theory, and Hough transform

[97]

The method limits required a priori information regarding
the field. Paths are generated in real-time. The architecture

of the software is transparent, and the software is easily
extendible.

Very slow. Further improvements in the accuracy of path following
of a straight path are not to be expected due to technical reasons. Grey-scale Hough transform

[98]

A local small window of interest is determined as the
ladder structure to improve the real-time detection
algorithm, and to minimize the effect of the useless

information and noises on detection and identification.

Error of the camera position would result in errors of the provided
data. Therefore, the camera requires efficient calibration. The

plants in the field were selected artificially with the similar size and
height and planted in a perfect row. Easily affected in real field
conditions, e.g., uneven field, man-made measure error, wheels

sideslip due to soft/moist soil etc.

Edge detection, image binarization, and least
square methods

[99]

The robot has demonstrated capability to use artificial
vision for navigation without artificial visual markers. The

vision software has enough intelligence to perceive
obstacles.

When the vehicle is under the canopy, it relies on the cameras to
find the way, but when it is not under the kiwifruit canopy the
system relies on GPS and a compass to navigate. Because the

camera lenses are short, provision must be made to handle fisheye
in the stereopsis.

Hough transform

[84]

Inconsistent lighting, shadows, and color similarities in
features are eliminated by using a sky-based approach
where the image was reduced to canopy plus sky, thus
simplifying the segmentation process. This produces a

more sensitive control system. The cropped image contains
less data needing to be processed, resulting in faster

processing time and more rapid response of the ground
vehicle platform.

There are large deviations from the center of the row when there
are sections with a break in the canopy due to either a missing tree

or a tree with limited leaf growth. The proposed approach is
effective only when the trees have fully developed canopies.

Inadequate for canopies year-round such as citrus or fruit trees that
lose their leaves in the winter. It only tackles the straight-line
motion down the row but not the end of the row conditions.

Thresholding approach, filtering, and
determination of centroid of the path
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Table 7. Cont.

Ref. Reported Advantages Reported Disadvantages Main Technique

[100]

The proposed model does not extract features from the
image and thus does not suffer from errors related to
feature extraction process. Efficient for different row

patterns, varying plant sizes and diverse lighting
conditions. The robot navigates through the corridor

without touching the plant stems, detects the end of the
rows and traverses the headland

Lack of robustness to uncertainties of the environment. The
estimation of the state vector is less accurate during headland

compared to row following. When the robot is in the headland
only a small part of the rows is visible making the estimation of the
orientation of the robot heading less precise. Incorrect estimates of

row width and row distance result to inaccuracies.

Particle filter algorithm

[101]
Alternative navigation method where the tree canopy

frequently blocks the satellite signals to the GPS receiver.
The performance is better at lower speeds of the vehicle.

No obstacle detection capability. Low performance at high speed of
the vehicle. Segmentation algorithm

[102] Successfully tested on both straight and curved paths,
navigation is based only on stereoscopic vision.

Reduced accuracy of lateral offset estimation when the vehicle
navigates on curved paths. The algorithm is developed based on

the assumption of no camera rotations while travelling in the field.
Not implemented in real-time.

Stereo image processing algorithm

[103] Acceptable accuracy and stability, tested without damaging
the crop.

Uneven cornfield caused by residual roots and hard soil clods
results in a poorer performance.

Segmentation and Max–Min fuzzy inference
algorithm

[104]

High speed and remarkable precision. The navigation
parameters in the algorithm can control the robot

movement well. The algorithm displays better overall
robustness and global optimization for detecting the

navigation path compared to Hough transform, especially
in curved paths.

When using a straight line to detect navigation directrix, the
algorithm does not perform well.

Image segmentation, and least-squares curve
fitting method

[105]
Resolves the problem of illumination interference for image
segmentation, adapts to changes in natural light and has

good dynamic performance at all speeds.
No obstacle avoidance Threshold algorithm, linear scanning, and a

fuzzy controller
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7. Vision-Based AgroBots

Agricultural practices have introduced a new problem, namely the need to implement guidance
technology, e.g., a fertilizing machine or a row weeder along a crop row, with extreme accuracy.
Typically, this was performed manually by a person having a direct view of the rows. This is
getting impossible with the modern growing concept, which is demanding in terms of money and
time. The narrow row spacing compared to the wide implementations proposed for agricultural
practices, would require very careful handling and quick reactions by the human operator. Moreover,
industrialized application in vast fields would be overwhelming for a human operator. Automatically
guided agricultural vehicles will not fatigue, and can reduce an operator’s work intensity, resulting
in enhanced efficiency and increased operation safety. For this reason, the need for developing
systems for automatic guidance with respect to crop rows has become imperative. Agricultural robots,
namely AgroBots, were introduced to apply precision techniques for agricultural operations such as
harvesting, weeding, spraying, transportation, etc. Such techniques are also involved in the application
of chemicals that are placed in such a way as to have an optimal effect with the minimum quantity or
placement of fertilizer close to the crop so as to minimize the supply of nutrients to the weeds. The
latter also comprises the recent but increasing concern of farmers about the environmental impacts of
agriculture, not only regarding harsh chemicals, but also wasting water. The main goal of AgroBots is
to sense targets online and to work on a plant scale with extreme accuracy. AgroBots can save labor
costs, prevent workers from performing risky operations, and provide the farmer with up-to-date
and precise information to assist management decisions. Thus, developing AgroBots is one of the
challenges that agriculture is facing in industrialized countries, especially those derived from labor
shortage and ever-increasing production costs.

Even though robots are widely used for automation in industry, it is rather uncommon to meet
robots in agriculture. The industrial environment is, comparatively to agriculture fields, clean, dry,
predictable and well-lit while fields provide unpredictable conditions in terms of light, weather and
terrain. Moreover, industrial automation involves uniform, specific components robust for robotic
manipulation, while agricultural automation deals with crops which vary in many ways; color, size
shape, position, are frequently covered by foliage and are sensitive to handle. AgroBots have been
introduced in structured environments (i.e., simulated plantation in laboratories), as well as different
indoor (i.e., greenhouses) and outdoor agricultural environments. However, only a few vision-guided
systems have been successfully developed and tested in real field trials. Table 8 summarizes some of
the reported autonomous mobile ArgoBots from the literature.

The study on ArgoBots is mainly divided in two categories. The first category is based on tractors
and other agricultural machinery to develop intelligent systems with navigation functions as described
in the previous section. The other category is to independently develop intelligent mobile platforms
for agriculture, as described in the current section. However, the latter intelligent platforms are used
to solve specific problems on automation of agricultural production, and they are limited to specific
functions. In other words, they refer to specific application environments, thus, it is not easy to expand
and improve. Moreover, the commercialization of AgroBots is scarce due to their limited seasonal
usage, which indirectly increases the cost of agricultural production. The reliability of a machine to
fulfill precise farming work instead of human is another drawback that keeps AgroBots off the market.
The intelligence level of AgroBots needs to be improved further so as gain the farmer’s confidence.
Though high intelligence is required for an AgroBot to achieve higher production, it is very important
to be: (1) simple in its structure, (2) affordable, in terms of what it offers, (3) easy to manipulate, and
(4) adaptive to the needs of the agricultural production. A simple structure refers also to a small
size. A robot of a smaller size is more easily transferable and possibly less expensive. It should be
investigated if crop production may be performed quicker, better, and cheaper with a swarm of small
robots rather than a few large ones. Moreover, one of the advantages of smaller robots is that they may
become acceptable and popular to the non-agricultural community, for domestic personal use rather
than mass usage.
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Table 8. Vision-based autonomous mobile AgroBots.

Ref. Description Application (Year) Photo

[90]
Visual sensing for an autonomous crop protection

robot. Image analysis to derive guidance information
and to differentiate between plants, weed and soil.

Tested in cauliflowers, sugar
beet and widely spaced

double rows of wheat (1996)
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doses of liquid at the detected objects, while the
autonomous vehicle takes care of the navigation.

Experiments carried out
under controlled indoor

conditions (2007)

J. Imaging 2019, 5, 89 25 of 33 

 

Ref. Description Application (Year) Photo 

[90] 

Visual sensing for an autonomous 
crop protection robot. Image 
analysis to derive guidance 

information and to differentiate 
between plants, weed and soil. 

Tested in cauliflowers, 
sugar beet and widely 
spaced double rows of 

wheat (1996) 
 

Image from [90] 

[106] 

A commercial agricultural 
manipulation for fruit picking and 

handling without human 
intervention. Machine vision takes 
place with segmentation of a frame 

during the picking phase. 

Semi-autonomous 
orange picking robot 

(2005) 

 
Image from [106] 

[107] 

Use of a vision system that retrieves 
a map of the plantation rows, within 
which the robot must navigate. After 

obtaining the map of the rows, the 
robot traces the route to follow (the 
center line between the rows) and 

follows it using a navigation system 

Tested in a simulated 
plantation and in a 

real one at the “Field 
robot Event 2006” 
competition (2006)  

Image from [107] 

[108] 

Precise application of herbicides in a 
seed line. A machine vision system 

recognizes objects to be sprayed and 
a micro-dosing system targets very 
small doses of liquid at the detected 

objects, while the autonomous 
vehicle takes care of the navigation. 

Experiments carried 
out under controlled 

indoor conditions 
(2007) 

 
Image from [108] 

[99] 

The vision system identifies fruit 
hanging from the canopy, 

discriminating size and defects. 
Fruits are placed optimally in a bin 
and when it is full, the vehicle puts 
the bin down, takes an empty bin, 

picks it up and resumes from its last 
position 

Autonomous 
kiwifruit-picking robot 

(2009) 
 

Image from [99] 

[98] 

The offset and heading angle of the 
robot platform are detected in real 
time to guide the platform on the 
basis of recognition of a crop row 

using machine vision 

Robot platform that 
navigates 

independently. Tested 
in a small vegetable 

field (2010)  
Image from [98] 

Image from [108]

[99]

The vision system identifies fruit hanging from the
canopy, discriminating size and defects. Fruits are
placed optimally in a bin and when it is full, the
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Table 8 reports in chronological order some of the autonomous mobile ArgoBots from the literature.
The Agrobot presented in [90] uses threshold plant blobs as input features and Hough transform to
find the vehicle offset and heading angle with respect to the plant rows. Small errors in offset and angle
are reported. The effect of vision errors can be reduced when the data are fused with odometry in the
vehicle controller. The angular accuracy could also be improved by adjusting the optical configuration
to give more perspective. The vehicle of [106] is affected by the distribution of the fruits in the tree.
Moreover, it is reported for the robot a mean picking time of fruit greater than that of a human picker.
Modifications have been suggested in order to improve its performance, including new algorithms
for real-time fruit tracking, evaluation of the fruit’s 3D position, and mechanical modifications of the
structure so the arms are able to reach the fruit quickly and simultaneously. In [107], the proposed
vision system appears to be very robust. The robot can navigate with acceptable behavior. Reported
disadvantages are the oscillations when the vehicle comes out of the turns. Future work should
include a model predictive control navigation technique in order to diminish the oscillations and more
exhaustive tests on the developed system for different speed values and more difficult paths. The robot
implemented in [108] demonstrates good ability to target objects with subcentimetre accuracy. However,
under realistic outdoor conditions, the accuracy is reduced. Unpredictable conditions such as weed,
varying soil and wind effects are considered as potential problems. Future work suggests shielding in
order to minimize the potential wind effects. The agricultural robot of [99] has four picking arms, each
of which is programmed to pick one fruit per second. The system is characterized by adequate vision,
navigation, and the delicacy of fruit picking and handling. The system developed in [98] exhibits
good performance. Preliminary experimental results on the algorithms of row identification and
row guidance are effective according to the parameters measured and analyzed such as the heading
angle and the offset for row guidance and the difference between the motion trajectory of the robot
and the expected trajectory. Compared with the indoor experiment, the in-field experiment reveals
lower performance. The main reasons for this include some factors such as a rough field, man-made
measurement error, wheel sideslip due to soft and moist soil, etc. Additionally, it should be noted that
the plants in the field were selected artificially with a similar size and height and planted along rows.
The Agrobot of [97] can be guided along a defined path with centimeter precision. The architecture of
the robot makes it easily expandable by adding new behaviors with small changes. In order to be able
to navigate precisely under bumpier conditions, roll compensation is required. The vehicle of [109] is
reported to generate navigation path reliably. However, the implemented algorithms are suitable for
fields where the ground contains fewer weeds. and the main areas of trees are more visible.

8. Discussion

In this paper, recent research efforts in machine vision for agriculture applications were reviewed.
Machine vision can support agricultural activities by providing accurate and efficient solutions that
have been traditionally performed manually. Manual methods tend to be labor intensive and error
prone. In particular, this paper addresses three main issues concerning the machine vision systems in
agricultural task of crop farming, namely (1) plant/fruit detection (segmentation), (2) harvesting, and
(3) health monitoring. For each of these tasks, challenges, research gaps and potential future directions
are being discussed in the rest of the section.

In order for a machine vision approach to perform an agricultural activity like fruit grading first
image segmentation should be performed in order to separate the target (i.e., fruit) from the background.
Therefore, plant and fruit detection are very important and critical tasks. Illumination variations, fruits
overlapping, hidden fruit in foliage and branches, and similar color variations between the target and
its background are some of the main factors that affect the segmentation process. The appropriate
handling of these factors constitutes a great challenge towards developing more robust and accurate
machine vision based agrobots. Color-based plant and fruit detection approaches are described
in [15,16,19,40,41]. However, color approaches can be affected by the lighting variations. Changing
lighting conditions are addressed by the methods presented in [22,35] which deploy histogram selection
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with mean grey value and CLAHE [27], respectively, for enhancing the robustness against various
lighting conditions. Texture, color and size features are used in [21] for the detection of grains and
classification of their species, while [36] uses color and shape features for segmenting cucumber leaves.
The latter work [36] addressed the problem of overlapping by deploying edge detection with Sobel
operators and C-V model. Lastly, the problem of similar colors between the target and background is
addressed in [16], which uses super-pixels in order to generate a saliency map and Gaussian curve
fitting for segmenting green apples. Regarding the used machine learning algorithms, it is worth
noting that the SLIC clustering method is deployed in [17,22,29], neural networks are also applied in
several studies [15,20,21,35], while [17] uses SVM and PCA for reducing the features dimensions.

Harvesting is a main agricultural activity and refers to the collection of ripe fruit or crops. Machine
vision has been deployed for supporting harvest by providing solutions on automated fruit grading,
ripeness detection, fruit counting and yield prediction. Fruit grading refers to the sorting of fruits
based on inherent properties like size and shape. Thus, machine vision approaches for fruit grading
deploy besides color, geometrical and shape features [38,43]. Ripeness detection is mostly performed
based on color [41,43]. For fruit counting, color [45,47] and morphological features [37] are deployed.
Overlapping of fruit and occlusion are addressed in [45], which use circular fitting with Hough
transform. The variation in lighting conditions are addressed in [37], which use an adaptive global
threshold and morphological cues. As far as the use of machine learning algorithms is concerned,
neural networks (convolutional and back propagation) are also deployed [46,48].

Machine vision is also used for protecting the health of the plant and detecting deficiencies and
diseases. Weed detection is a main agricultural activity that is performed in order to protect the
plant’s growth. Weeds share the same resources with the plant (like moisture) and thus can affect
plant health. The main challenges in this task are the handling of the illumination variation and
the overlapping leaves. A color-based weed detection approach in carrot fields is presented in [49].
In the case of weed detection in crop fields where the color difference is not very high, a texture-based
approach can be deployed [50] to tackle the overlapping cases. Research conducted in [52] revealed
that the proposed weed detection approach based on SURF features and Gaussian mixture model
outperforms a geometry-based approach based on random forests [55] and a FCN, which took into
account vegetation indices as features. A region-based weed detection approach is suggested in [57].
However, it cannot accurately classify the pixels of regions that contain both value crop and weed
pixels. For those cases, a pixel-based classifier is proposed. Regarding the used machine learning
algorithms, neural networks [49,50,54,56] and SVM [57] are commonly applied. Insects can cause
damage to plants and fruits. For better protecting the plant health, vision-based approaches for insect
detection have been proposed. Clustering based on color features is deployed in [61] for L. botrana
recognition in grapevines, while SVM is deployed in approaches presented in [62,63], which consider
SIFT, color, and morphological features, respectively. Disease and deficiency detection refers to the
automatic detection of parts of the plant that are not healthy. Challenges related to this task include
the handling of illumination variations and of the color variance of the diseased part [3]. Automatic
identification of nutritional deficiencies in coffee leaves are addressed in [64]. Naïve Bayes and BSM
descriptor are reported outperforming k-NN and Neural Network classifiers. However, the reported
F-measure is not high (64.9%). A bagged tree ensemble classifier based on color features is proposed
in [65] for detecting diseases in citrus plants. The experimental results show that the proposed classifier
outperformed k-NN, SVM and boosted tree classifiers. A method for detecting lesions on wheat leaves
based on the C-V model is presented in [68], while PCA and K-means clustering are applied in [69].
Experimental results reveal that this approach outperforms Otsu segmentation. Illumination variation
is addressed in [72], which proposed a new color feature vector, which is invariant to illumination. The
experimental results showed that the proposed approach outperforms K-means clustering and Otsu
segmentation on images captured under real field conditions. Finally, SVM classifiers are deployed in
research efforts [66,67,71,75,76,78].
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9. Conclusions

Machine vision is integrated in agricultural settings for a number of different tasks. The appropriate
selection of a system is an additional guarantee for the accomplishment of most agricultural operations
with precision and relative speed. In this regard, this work has addressed the following main topics:
(1) plant and fruit detection approaches, (2) harvesting support approaches including fruit grading,
ripeness detection, fruit counting and yield prediction, (3) plant and fruit health protection, and disease
detection approaches including weed, insect detection, disease and deficiency detection, (4) camera
types used for machine vision in agriculture, (5) vision-based vehicle guidance systems (navigation)
for agricultural applications, and (6) vision-based autonomous mobile agricultural robots.

The design of adequate software is a key factor for the effective functioning of mobile robots.
The presentation of recent algorithms for basic agricultural tasks that took place in the previous sections
is in-line with this key factor; presenting the recent trends on machine vision algorithms for basic
agricultural tasks in order to be evaluated, selected and integrated to a mobile robot. Algorithms need
to be suitable for the automation of agricultural operations oriented for a semi-structured environment,
such as an agricultural environment. That is, some structures within the fields are known, e.g., the
columns in a grapevine or the exact position of the trees in an olive grove, so deterministic tasks related
to them can be optimized. However, a field is more of a non-stable environment. Reactive tasks that
take place in the fields need to be executed in real-time and have to consider dynamic local conditions,
impossible to be known a priori (weed, foliage, bad weather condition, lighting etc.). On top of that,
researchers need to develop appropriate robot architectures that could coordinate reactive behaviors,
like stopping on emergencies or reacting to specific inputs in a decision-making way, thus leading to
autonomous intelligent robotic behaviors in the field.

The aim of this work is to serve as a guide for the researcher and practitioner alike in the
agricultural field by providing the latest advancements in machine vision applications for agriculture
with a focus on crop farming. To this end, the current review does not only focus on a specific
agricultural challenge (e.g., disease detection) or fruit type or plant (e.g., citrus) but rather outlines
research conducted in different agricultural activities of crop farming, also covering more technical
subjects, such as vision-based vehicle guidance systems and autonomous mobile agricultural robots.
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