How Does Cultivar Affect Sugar Profile, Crude Fiber, Macro- and Micronutrients, Total Phenolic Content, and Antioxidant Activity on Ficus carica Leaves?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Leaf Characterization
2.3. Sugar Profile
2.4. Crude Fiber, Macro- and MicroNutrient Content
2.5. Antioxidant Activity (AA) and Total Polyphenols Content (TPC)
2.6. Statistical Analyses
3. Results and Discussion
3.1. Leaf Characterization
3.2. Sugar Profile and Crude Fiber Content
3.3. Mineral Content
3.4. Antioxidant Capacity and Total Phenolic Content
3.5. PCA Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asmaa, N.; Abdelaziz, G.; Boulanouar, B.; Carbonell-Barrachina, Á.A.; Cano-Lamadrid, M.; Noguera-Artiaga, L. Chemical composition, antioxidant activity and mineral content of Arbutus unedo (Leaves And Fruits). J. Microbiol. Biotechnol. Food Sci. 2019, 8, 1335–1339. [Google Scholar] [CrossRef]
- Alba, T.M.; Tessaro, E.; Sobottka, A.M. Seasonal effect on phenolic content and antioxidant activity of young, mature and senescent leaves from Anredera cordifolia (Ten.) Steenis (Basellaceae). Braz. J. Biol. 2024, 84. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Azlan, A. Fruit Pod Extracts as a Source of Nutraceuticals and Pharmaceuticals. Molecules 2012, 17, 11931–11946. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Sajid, A.R.; Javeed, A.; Aslam, M.; Ahsan, T.; Hussain, D.; Mateen, A.; Li, X.; Qin, P.; Ji, M. Antioxidant, antifungal, and aphicidal activity of the triterpenoids spinasterol and 22,23-dihydrospinasterol from leaves of Citrullus colocynthis L. Sci. Rep. 2022, 12, 4910. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.G.; Wu, H.; Yu, Y.S.; Xu, Y.J.; Li, E.N.; Liao, S.T.; Wen, P.; Zou, Y.X. Preparation, structural characterization and prebiotic potential of mulberry leaf oligosaccharides. Food Funct. 2022, 13, 5287–5298. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Salcedo, E.M.; Amoros, A.; Hernández, F.; Martínez, J.J. Physicochemical Properties of White (Morus alba) and Black (Morus nigra) Mulberry Leaves, a New Food Supplement. J. Food Nutr. Res. 2017, 5, 253–261. [Google Scholar] [CrossRef]
- Kumari, C.; Chauhan, P.; Kulshrestha, S. Nutritional characterization of Moringa oleifera leaves collected from North Indian habitat. In Proceedings of the AIP Conference Proceedings, Rajpura, India, 24–25 September 2020; AIP Conference Proceeding: College Park, MA, USA, 2022. [Google Scholar]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. UPLC/ESI-Q-TOF-MS analysis of (poly)phenols, tocols and amino acids in Chaenomeles leaves versus in vitro anti-enzyme activities. Ind. Crop. Prod. 2022, 181, 114829. [Google Scholar] [CrossRef]
- Morovati, M.R.; Ghanbari-Movahed, M.; Barton, E.M.; Farzaei, M.H.; Bishayee, A. A systematic review on potential anticancer activities of Ficus carica L. with focus on cellular and molecular mechanisms. Phytomedicine 2022, 105, 154333. [Google Scholar] [CrossRef]
- Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities. Evid.-Based Complementary Altern. Med. 2013, 2013, 974256. [Google Scholar] [CrossRef] [Green Version]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef]
- Alalwani, A.D.; Hummdi, L.A.; Qahl, S.H. Effect of nano extracts of olea europaea leaves, Ficus carica and liraglutide in lipidemic liver of type 2 diabetic rat model. Saudi J. Biol. Sci. 2022, 29, 103333. [Google Scholar] [CrossRef] [PubMed]
- Barolo, M.I.; Ruiz Mostacero, N.; López, S.N. Ficus carica L. (Moraceae): An ancient source of food and health. Food Chem. 2014, 164, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, R.; Ghoneimy, E.; Abdel-Wahab, A.; Eldeeb, N.; Salem, M.; Salama, E.; Ahmed, T. The therapeutic effects of Ficus carica extract as antioxidant and anticancer agent. S. Afr. J. Bot. 2021, 141, 273–277. [Google Scholar] [CrossRef]
- Aziz, B.; Khurshid, A.; Mahmood, R.; Khan, J.A.; Javaid, S.; Alam, M.; Mujtaba ul Hassan, S.; Ikram, M. Study of synergistic effects of Ficus carica leaves extract mediated chemo-photodynamic therapy on rhabdomyosarcoma cells. Photodiagnosis Photodyn. Ther. 2021, 36, 102565. [Google Scholar] [CrossRef]
- Kurniawan, M.F.; Audita, M. Formulation, Evaluation of Physical Properties, Anti-Cholesterol Activity from Ficus carica L. Leaves Extract Tablet. Sci. Technol. Indones. 2021, 6, 285–295. [Google Scholar] [CrossRef]
- Teruel-Andreu, C.; Andreu-Coll, L.; López-Lluch, D.; Sendra, E.; Hernández, F.; Cano-Lamadrid, M. Ficus carica fruits, by-products and based products as potential sources of bioactive compounds: A review. Agronomy 2021, 11, 1834. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Liu, M.; Zhang, C.; Shao, J.; Hou, X.; Tian, J.; Cui, Q. A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica Linn. leaves. Biomed. Pharmacother. 2021, 137, 111393. [Google Scholar] [CrossRef]
- Ayuso, M.; Carpena, M.; Taofiq, O.; Albuquerque, T.G.; Simal-Gandara, J.; Oliveira, M.B.P.P.; Prieto, M.A.; Ferreira, I.C.F.R.; Barros, L. Fig “Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations. Trends Food Sci. Technol. 2022, 127, 1–13. [Google Scholar] [CrossRef]
- IPGRI and CIHEAM, Descriptors for Fig; International Plant Genetic Resources Institute: Rome, Italy; International Centre for Advanced Mediterranean Agronomic Studies: Paris, France, 2003.
- Cano-Lamadrid, M.; Galindo, A.; Collado-González, J.; Rodríguez, P.; Cruz, Z.N.; Legua, P.; Burló, F.; Morales, D.; Carbonell-Barrachina, Á.A.; Hernández, F. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates. J. Sci. Food Agric. 2018, 98, 3098–3108. [Google Scholar] [CrossRef]
- Sánchez, E.M.; Calín-Sánchez, A.; Carbonell-Barrachina, A.A.; Melgarejo, P.; Hernández, F.; Martínez-Nicolás, J.J. Physicochemical characterisation of eight Spanish mulberry clones: Processing and fresh market aptitudes. Int. J. Food Sci. Technol. 2014, 49, 477–483. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Abdelsalam, N.R.; Awad, R.M.; Ali, H.M.; Salem, M.Z.M.; Abdel Latif, K.F.; Elshikh, M.S. Morphological, pomological, and specific molecular marker resources for genetic diversity analyses in fig (Ficus carica L.). HortScience 2019, 54, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- Almajali, D.; Abdel-Ghani, A.H.; Migdadi, H. Evaluation of genetic diversity among Jordanian fig germplasm accessions by morphological traits and ISSR markers. Sci. Hortic-Amst. 2012, 147, 8–19. [Google Scholar] [CrossRef]
- Khadivi, A.; Anjam, R.; Anjam, K. Morphological and pomological characterization of edible fig (Ficus carica L.) to select the superior trees. Sci Hortic-Amst. 2018, 238, 66–74. [Google Scholar] [CrossRef]
- Vemmos, S.N.; Petri, E.; Stournaras, V. Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.). Sci. Hortic. 2013, 160, 198–207. [Google Scholar] [CrossRef]
- El Dessouky Abdel-Aziz, M.; Samir Darwish, M.; Mohamed, A.H.; El-Khateeb, A.Y.; Hamed, S.E. Potential Activity of Aqueous Fig Leaves Extract, Olive Leaves Extract and Their Mixture as Natural Preservatives to Extend the Shelf Life of Pasteurized Buffalo Milk. Foods 2020, 9, 615. [Google Scholar] [CrossRef]
- Ramulu, P.; Udayasekhara Rao, P. Total, insoluble and soluble dietary fiber contents of Indian fruits. J. Food Compos. Anal. 2003, 16, 677–685. [Google Scholar] [CrossRef]
- Nazua, N.; Shahari, R.; Amri, C.N.A.C.; Tajudin, N.S.; Mispan, M.R. Nutritional value of selected edible ficus fruit in Kuantan. J. Trop. Life Sci. 2020, 10, 11–14. [Google Scholar] [CrossRef]
- Sadia, H.; Ahmad, M.; Sultana, S.; Abdullah, A.Z.; Teong, L.K.; Zafar, M.; Bano, A. Nutrient and mineral assessment of edible wild fig and mulberry fruits. Fruits 2014, 69, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council on Nutrition and Health Claims Made on Foods. 20 December 2006, 404/9-404/25. Available online: https://www.boe.es/doue/2006/404/L00009-00025.pdf (accessed on 21 September 2022).
- Ghazi, F.; Rahmat, A.; Yassin, Z.; Shazini Ramli, N.; Amira Buslima, N. Determination of total Polyphenols and nutritional composition of two different types of Ficus carica leaves cultivated in Saudi Arabia. Pak. J. Nutr. 2012, 11, 1061–1065. [Google Scholar] [CrossRef] [Green Version]
- Habib, G.; Khan, N.A.; Sultan, A.; Ali, M. Nutritive value of common tree leaves for livestock in the semi-arid and arid rangelands of Northern Pakistan. Livest. Sci. 2016, 184, 64–70. [Google Scholar] [CrossRef]
- Tafu, N.N.; Jideani, V.A. Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder. Molecules 2022, 27, 4935. [Google Scholar] [CrossRef]
- FAO/WHO Joint Food Standards Programme, Codex Alimentarius Commission, 2001. Codex Alimentarius, Food Labeling Complete. Available online: https://www.fao.org/3/Y2770E/y2770e06.htm (accessed on 19 September 2022).
- Garza-Alonso, C.A.; Olivares-Sáenz, E.; Gutiérrez-Díez, A.; Vázquez-Alvarado, R.E.; López-Jiménez, A. Visual Symptoms, Vegetative Growth, and Mineral Concentration in Fig Tree (Ficus carica L.) Under Macronutrient Deficiencies. Agronomy 2019, 9, 787. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Biomed. 2016, 6, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Gillani, M.; Iftikhar, H.; Pasha, I.; Lodhi, A. Development and Characterisation of Fig (Ficus carica) Leaves Tea with Special Reference to Hypoglycemic Effect. Pak. J. Sci. Ind. Res. Ser. B Biol. Sci. 2018, 61, 78–83. [Google Scholar] [CrossRef]
- Wojdyło, A.; Turkiewicz, I.P.; Tkacz, K.; Hernandez, F. Fruit tree leaves as valuable new source of tocopherol and tocotrienol compounds. J. Sci. Food Agric. 2022, 102, 1466–1474. [Google Scholar] [CrossRef]
Variety a | Size (cm) | |||
---|---|---|---|---|
Leaf Length | Leaf Width | Length of Central Lobe | Petiole Length | |
ANOVA Test b | ||||
*** | *** | *** | *** | |
Tukey’s Multiple Range Test c | ||||
SA | 21.70 ± 0.35bc | 21.04 ± 0.71ab | 10.94 ± 0.30c | 8.16 ± 0.29b |
CA | 27.46 ± 0.56aA | 21.78 ± 0.39aA | 14.55 ± 0.35aA | 10.54 ± 0.39aA |
CUMH | 19.65 ± 0.52dB | 17.38 ± 0.67cB | 10.16 ± 0.26cB | 8.64 ± 0.35bB |
CDN | 22.71 ± 0.42b | 19.09 ± 0.27bc | 12.64 ± 0.27b | 8.98 ± 0.32b |
SF | 20.77 ± 0.36cd | 18.60 ± 0.30c | 10.52 ± 0.28c | 8.71 ± 0.23b |
Variety a | Sucrose | Glucose | Fructose | Crude Fiber |
---|---|---|---|---|
ANOVA Test b | ||||
*** | *** | ** | ** | |
Tukey´s Multiple Range Test c | ||||
SA | 0.47 ± 0.01b | 4.47 ± 0.09b | 12.43 ± 0.29b | 16.75 ± 0.37a |
CA | 48.94 ± 5.74aA | 66.74 ± 9.24aA | 43.70 ± 10.02aA | 22.67 ± 3.35aA |
CUMH | 0.51 ± 0.01bB | 4.52 ± 0.03bB | 12.32 ± 0.10bB | 6.53 ± 0.35bB |
CDN | 0.52 ± 0.00b | 4.61 ± 0.03b | 12.53 ± 0.08b | 19.3 ± 0.62a |
SF | 0.51 ± 0.01b | 4.61 ± 0.04b | 12.62 ± 0.11b | 20.67 ± 0.1a |
Macroelements | Microelements | |||||||
---|---|---|---|---|---|---|---|---|
Variety a | Ca | K | Mg | Na | Cu | Fe | Mn | Zn |
ANOVA Test b | ||||||||
*** | * | *** | *** | *** | ** | *** | *** | |
Tukey´s Multiple Range Test c | ||||||||
SA | 68.04 ± 1.37a | 18.63 ± 1.10a | 8.46 ± 0.51a | 1.64 ± 0.08a | 13.11 ± 0.77a | 342.21 ± 26.16a | 60.13 ± 3.83a | 55.90 ± 5.33a |
CA | 28.32 ± 0.30bA | 17.24 ± 0.72abA | 3.17 ± 0.07cA | 0.32 ± 0.01bA | 4.18 ± 0.29bA | 226.35 ± 15.10bA | 66.56 ± 3.76aA | 15.23 ± 1.22bA |
CUMH | 19.97 ± 1.06cB | 15.03 ± 0.72bA | 2.57 ± 0.09dB | 0.27 ± 0.00cB | 4.73 ± 0.04bA | 201.07 ± 11.25bA | 33.07 ± 1.36bB | 18.73 ± 1.63bA |
CDN | 23.87 ± 0.46bc | 13.87 ± 0.18c | 4.58 ± 0.08b | 0.40 ± 0.03b | 4.44 ± 0.68b | 225.37 ± 3.13b | 37.91 ± 0.37b | 15.03 ± 2.58b |
SF | 26.72 ± 0.12b | 18.41 ± 3.12a | 3.03 ± 0.16c | 0.43 ± 0.02b | 5.80 ± 0.07b | 275.21 ± 9.21ab | 58.56 ± 1.68a | 22.29 ± 0.42b |
Variety a | ABTS | DPPH | FRAP | TPC |
---|---|---|---|---|
ANOVA Test b | ||||
*** | *** | *** | * | |
Tukey´s Multiple Range Test c | ||||
SA | 44.91 ± 0.26b | 52.54 ± 1.48b | 56.09 ± 2.58c | 18.62 ± 0.64a |
CA | 33.81 ± 1.08cB | 68.84 ± 0.41aA | 60.70 ± 1.70bcA | 16.64 ± 0.57bA |
CUMH | 42.46 ± 1.03bA | 70.14 ± 2.33aA | 67.15 ± 1.98bA | 18.86 ± 1.05aA |
CDN | 52.07 ± 0.11a | 59.27 ± 1.67b | 124.79 ± 1.14a | 18.06 ± 0.22a |
SF | 52.43 ± 0.53a | 72.45 ± 1.05a | 115.66 ± 1.44a | 17.83 ± 0.15ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teruel-Andreu, C.; Sendra, E.; Hernández, F.; Cano-Lamadrid, M. How Does Cultivar Affect Sugar Profile, Crude Fiber, Macro- and Micronutrients, Total Phenolic Content, and Antioxidant Activity on Ficus carica Leaves? Agronomy 2023, 13, 30. https://doi.org/10.3390/agronomy13010030
Teruel-Andreu C, Sendra E, Hernández F, Cano-Lamadrid M. How Does Cultivar Affect Sugar Profile, Crude Fiber, Macro- and Micronutrients, Total Phenolic Content, and Antioxidant Activity on Ficus carica Leaves? Agronomy. 2023; 13(1):30. https://doi.org/10.3390/agronomy13010030
Chicago/Turabian StyleTeruel-Andreu, Candela, Esther Sendra, Francisca Hernández, and Marina Cano-Lamadrid. 2023. "How Does Cultivar Affect Sugar Profile, Crude Fiber, Macro- and Micronutrients, Total Phenolic Content, and Antioxidant Activity on Ficus carica Leaves?" Agronomy 13, no. 1: 30. https://doi.org/10.3390/agronomy13010030
APA StyleTeruel-Andreu, C., Sendra, E., Hernández, F., & Cano-Lamadrid, M. (2023). How Does Cultivar Affect Sugar Profile, Crude Fiber, Macro- and Micronutrients, Total Phenolic Content, and Antioxidant Activity on Ficus carica Leaves? Agronomy, 13(1), 30. https://doi.org/10.3390/agronomy13010030