Bermudagrass Responses and Tolerance to Salt Stress by the Physiological, Molecular Mechanisms and Proteomic Perspectives of Salinity Adaptation
Abstract
:1. Introduction
2. Effects of Salt Stress on Bermudagrass
3. Salt-Stress Responses in Bermudagrass
4. Morphological Responses
5. Anatomical Responses
6. Physiological and Metabolic Responses
7. Biochemical Responses
7.1. Antioxidant Enzyme System
7.2. Osmolytes
8. Molecular and Proteomic Responses
Serial No | Gene Involved | Functions | References |
---|---|---|---|
1 | CdWRKY50 | Antioxidant activation, Cell membrane damage | [67] |
2 | COR, LEA, POD-1 | Protect plant from damage under salt stress | [78] |
3 | CdSOD1, CdPOD1, CdPOD2, CdCAT2 | Antioxidant activation, Oxidative stress | [79] |
4 | psbA1, psbB1, psbP, psbY, ECA4, RAN1, MHX1 | Ion-homeostasis, photosynthesis-related | [80] |
5 | BeDREB1, BeDREB2 | Role in signal transduction against salt stress | [81] |
6 | Cdt-NY-YC1 | Osmotic stress, ion leakage | [82] |
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SOD | Superoxide dismutase |
POD | Peroxide dismutase |
APX | Ascorbate peroxidase |
CAT | Catalase |
DHAR | Dehydroascorbate reductase |
PPO | Polyphenol oxidase |
GPOX | Glutathione peroxidase |
ROS | Reactive oxygen species |
MDA | Malondialdehyde |
SOS | Salt overly sensitive |
NDPK | Nucleoside diphosphate kinase |
LEA | Late embryogenesis abundant |
MAPK | Mitogen-activated protein kinase |
Put | Putrescine |
Spd | Spermidine |
Spm | Spermine |
CBF | C-repeat binding factors |
TF | Transcription factors |
COR | Cold-regulated |
References
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. Clim. Change Agric. 2019, 13, 197–222. [Google Scholar]
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010. [Google Scholar] [CrossRef]
- Carillo, P.; Grazia, M.; Pontecorvo, G.; Fuggi, A.; Woodrow, P. Salinity Stress and Salt Tolerance. Abiotic Stress Plants Mech. Adapt. 2011, 1, 21–38. [Google Scholar]
- Li, Z.; Liang, Y.; Zhou, J.; Sun, X. Impacts of de-icing salt pollution on urban road greenspace: A case study of Beijing. Front. Environ. Sci. Eng. 2014, 8, 747–756. [Google Scholar] [CrossRef]
- Huang, B.; DaCosta, M.; Jiang, Y. Research Advances in Mechanisms of Turfgrass Tolerance to Abiotic Stresses: From Physiology to Molecular Biology. CRC. Crit. Rev. Plant Sci. 2014, 33, 141–189. [Google Scholar] [CrossRef]
- Marcum, K.B.; Pessarakli, M. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars. Crop Sci. 2006, 46, 2571–2574. [Google Scholar] [CrossRef]
- Kamal Uddin, M.; Juraimi, A.S.; Ismail, M.R.; Othman, R.; Rahim, A.A. Relative salinity tolerance of warm season turfgrass species. J. Environ. Biol. 2011, 32, 309. [Google Scholar]
- Li, D.; Zong, J.; Chen, J.; Guo, H.; Wang, Y.; Li, J.; Liu, J. Effects of low nitrogen nutrition on plant growth characteristics and nitrogen accumulation in Chinese natural bermudagrass (Cynodon dactylon (L.) Pers.) germplasm resources. Soil Sci. Plant Nutr. 2018, 64, 736–745. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Singh, K.; Pandey, V.C.; Singh, R.P. Cynodon dactylon: An efficient perennial grass to revegetate sodic lands. Ecol. Eng. 2013, 54, 32–38. [Google Scholar] [CrossRef]
- Xiang, M.; Moss, J.Q.; Martin, D.L.; Su, K.; Dunn, B.L.; Wu, Y. Evaluating the salinity tolerance of clonal-type bermudagrass cultivars and an experimental selection. HortScience 2017, 52, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Xiang, M.; Moss, J.Q.; Martin, D.L.; Wu, Y. The salinity tolerance of seeded-type common bermudagrass cultivars and experimental selections. Horttechnology 2018, 28, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Huang, Z.; Liu, S.; Fu, J. Growth response and gene expression in antioxidant-related enzymes in two bermudagrass genotypes differing in salt tolerance. J. Am. Soc. Hortic. Sci. 2012, 137, 134–143. [Google Scholar] [CrossRef]
- Chen, J.; Yan, J.; Qian, Y.; Jiang, Y.; Zhang, T.; Guo, H.; Guo, A.; Liu, J. Growth responses and ion regulation of four warm season turfgrasses to long-term salinity stress. Sci. Hortic. 2009, 122, 620–625. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.; Zong, J.; Chen, Y.; Chu, X.; Liu, J. Variation in the salt-tolerance of 13 genotypes of hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] and its relationship with shoot Na+, K+, and Cl− ion concentrations. J. Hortic. Sci. Biotechnol. 2014, 89, 35–40. [Google Scholar] [CrossRef]
- Dudeck, A.E.; Singh, S.; Giordano, C.E.; Nell, T.A.; McConnell, D.B. Effects of Sodium Chloride on Cynodon Turfgrasses 1. Agron. J. 1983, 75, 927–930. [Google Scholar] [CrossRef]
- Lunt, O.R.; Youngner, V.B.; Oertli, J.J. Salinity Tolerance of Five Turfgrass Varieties. Agron. J. 1961, 53, 247–249. [Google Scholar] [CrossRef]
- Oertli, J.J.; Kohl, H.C. Some considerations about the tolerance of various plant species to excessive supplies of boron. Soil Sci. 1961, 92, 243–247. [Google Scholar] [CrossRef]
- Youngner, V.B.; Lunt, O.R. Salinity Effects on Roots and Tops of Bermudagrass. Grass Forage Sci. 1967, 22, 257–259. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Tari, I.; Laskay, G.; Takács, Z.; Poór, P. Response of sorghum to abiotic stresses: A review. J. Agron. Crop Sci. 2013, 199, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zong, J.; Li, D.; Chen, Y.; Wang, Y.; Guo, H.; Li, J.; Li, L.; Guo, A.; Liu, J. Growth response and ion homeostasis in two bermudagrass (Cynodon dactylon) cultivars differing in salinity tolerance under salinity stress. Soil Sci. Plant Nutr. 2019, 65, 419–429. [Google Scholar] [CrossRef]
- Ackerson, R.C.; Youngner, V.B. Responses of Bermudagrass (Cynodon dactylon) to Salinity. Agron. J. 1975, 67, 678–681. [Google Scholar] [CrossRef]
- Netondo, G.W.; Onyango, J.C.; Beck, E. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci. 2004, 44, 797–805. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Chakraborty, U. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: A parallel investigation with rice. Protoplasma 2018, 255, 175–191. [Google Scholar] [CrossRef]
- Puyang, X.; An, M.; Xu, L.; Han, L.; Zhang, X. Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress. Hortic. Environ. Biotechnol. 2016, 57, 11–19. [Google Scholar] [CrossRef]
- Marcum, K.B.; Murdoch, C.L. Growth Responses, Ion Relations, and Osmotic Adaptations of Eleven C 4 Turfgrasses to Salinity. Agron. J. 1990, 85, 892–896. [Google Scholar] [CrossRef]
- Chakraborty, K.; Bhaduri, D.; Meena, H.N.; Kalariya, K. External potassium (K+) application improves salinity tolerance by promoting Na+ exclusion, K+ accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 2016, 103, 143–153. [Google Scholar] [CrossRef]
- Keisham, M.; Mukherjee, S.; Bhatla, S.C. Mechanisms of sodium transport in plants—Progresses and challenges. Int. J. Mol. Sci. 2018, 19, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naz, N.; Hameed, M.; Wahid, A.; Arshad, M.; Aqeel Ahmad, M.S. Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol. Plant. 2009, 135, 185–195. [Google Scholar] [CrossRef]
- Raza, A.; Tabassum, J.; Fakhar, A.Z.; Sharif, R.; Chen, H.; Zhang, C.; Ju, L.; Fotopoulos, V.; Siddique, K.H.; Singh, R.K.; et al. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit. Rev. Biotechnol. 2022, 12, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Pessarakli, M.; Touchane, H. Growth responses of bermudagrass and seashore paspalum under various levels of sodium chloride stress. J. Food Agric. Environ. 2006, 4, 240–243. [Google Scholar]
- Shahba, M.A. Erratum to Comparative Responses of Bermudagrass and Seashore Paspalum Cultivars Commonly Used in Egypt to Combat Salinity Stress. Hortic. Environ. Biotechnol. 2013, 51, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Bizhani, S.; Salehi, H. Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiol. Plant. 2014, 36, 777–786. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef]
- Hameed, M.; Ashraf, M.; Naz, N.; Nawaz, T.; Batool, R.; Sajid Aqeel Ahmad, M.; Ahmad, F.; Hussain, M. Anatomical adaptations of Cynodon dactylon (L.) Pers. from the salt range (Pakistan) to salinity stress. II. leaf anatomy. Pak. J. Bot. 2013, 45, 133–142. [Google Scholar]
- Nadeem, M.; Younis, A.; Riaz, A.; Hameed, M.; Nawaz, T.; Qasim, M. Growth response of some cultivars of bermuda grass (Cyanodon dactylon L.) to salt stress. Pak. J. Bot. 2012, 44, 1347–1350. [Google Scholar]
- Singhal, R.K.; Sodani, R.; Chauhan, J.; Sharma, M.K.; Yashu, B.R. Physiological Adaptation and Tolerance Mechanism of Rice (Oryza sativa L.) in Multiple Abiotic Stresses. Int. J. Pure App. Biosci. 2017, 5, 459–466. [Google Scholar] [CrossRef]
- Ashraf, M.Y.; Akhtar, K.; Sarwar, G.; Ashraf, M. Evaluation of arid and semi-arid ecotypes of guar (Cyamopsis tetragonoloba L.) for salinity (NaCl) tolerance. J. Arid Environ. 2002, 52, 473–482. [Google Scholar] [CrossRef]
- Jaradat, A.A.; Shahid, M.; Al-Maskri, A. Genetic diversity in the Batini barley landrace from Oman: II. Response to salinity stress. Crop Sci. 2004, 44, 304–315. [Google Scholar] [CrossRef]
- Hao, S.; Wang, Y.; Yan, Y.; Liu, Y.; Wang, J.; Chen, S. A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 2021, 7, 132. [Google Scholar] [CrossRef]
- Hanin, M.; Ebel, C.; Ngom, M.; Laplaze, L.; Masmoudi, K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 2016, 7, 1787. [Google Scholar] [CrossRef] [Green Version]
- Ye, T.; Wang, Y.; Feng, Y.Q.; Chan, Z. Physiological and metabolomic responses of bermudagrass (Cynodon dactylon) to alkali stress. Physiol. Plant. 2021, 171, 22–33. [Google Scholar] [CrossRef]
- Nawazish, S.; Hameed, M.; Naurin, S. Leaf anatomical adaptations of Cenchrus ciliaris L. from the salt range, Pakistan against drought stress. Pak. J. Bot. 2006, 38, 1723–1730. [Google Scholar]
- Ye, T.; Shi, H.; Wang, Y.; Chan, Z. Contrasting changes caused by drought and submergence stresses in bermudagrass (Cynodon dactylon). Front. Plant Sci. 2015, 6, 951. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Ye, T.; Shi, H.; Wang, Y.; Yang, F.; Chan, Z. Contrasting proteomic and metabolomic responses of bermudagrass to drought and salt stresses. Front. Plant Sci. 2016, 7, 1694. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Xu, J.; Zhang, W.; Amee, M.; Liu, D.; Chen, L. Salt-induced damage is alleviated by short-term pre-cold treatment in bermudagrass (Cynodon dactylon). Plants 2019, 8, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Li, M.; Zhang, X.; Yang, Q.; Huang, B. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum. Plant Cell Environ. 2020, 43, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Hu, T.; Zhang, X.; Pang, H.; Fu, J. Exogenous glycine betaine Ameliorates the adverse effect of salt stress on perennial ryegrass. J. Am. Soc. Hortic. Sci. 2012, 137, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Li, H.Y.; Zhang, X.Z.; Luo, H.J.; Fu, J.M. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. Ecotoxicol. Environ. Saf. 2011, 74, 2050–2056. [Google Scholar] [CrossRef] [PubMed]
- Kusvuran, S.; Kiran, S.; Ellialtioglu, S.S. Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Abiotic Biot. Stress Plants-Recent Adv. Future Perspect. 2016, 21, 481–506. [Google Scholar]
- Iwaniuk, P.; Lozowicka, B. Biochemical compounds and stress markers in lettuce upon exposure to pathogenic Botrytis cinerea and fungicides inhibiting oxidative phosphorylation. Planta 2022, 255, 61. [Google Scholar] [CrossRef]
- Hou, P.; Wang, F.; Luo, B.; Li, A.; Wang, C.; Shabala, L.; Ahmed, H.A.I.; Deng, S.; Zhang, H.; Song, P.; et al. Antioxidant enzymatic activity and osmotic adjustment as components of the drought tolerance mechanism in Carex duriuscula. Plants 2021, 10, 436. [Google Scholar] [CrossRef]
- Abogadallah, G.M. Insights into the significance of antioxidative defense under salt stress. Plant Signal. behavior. 2010, 5, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Chen, L.; Liu, L.; Lou, Y.; Amombo, E.; Fu, J. Metabolic acclimation of source and sink tissues to salinity stress in bermudagrass (Cynodon dactylon). Physiol. Plant. 2015, 155, 166–179. [Google Scholar] [CrossRef]
- Conde, A.; Regalado, A.; Rodrigues, D.; Costa, J.M.; Blumwald, E.; Chaves, M.M.; Gerós, H. Polyols in grape berry: Transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J. Exp. Bot. 2014, 66, 889–906. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Liu, A.; Gitau, M.M.; Huang, X.; Chen, L.; Fu, J. Insights into the MicroRNA-regulated response of bermudagrass to cold and salt stress. Environ. Exp. Bot. 2018, 145, 64–74. [Google Scholar] [CrossRef]
- Chen, J.; Zong, J.; Gao, Y.; Chen, Y.; Jiang, Q.; Zheng, Y.; Liu, J. Genetic variation of salinity tolerance in Chinese natural bermudagrass (Cynodon dactylon (L.) Pers.) germplasm resources. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 416–424. [Google Scholar] [CrossRef]
- Lu, S.; Peng, X.; Guo, Z.; Zhang, G.; Wang, Z.; Wang, C.; Pang, C.; Fan, Z.; Wang, J. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis x C. dactylon) and their physiological responses to salt and drought stress. Plant Cell Rep. 2007, 26, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Shahba, M.A. Interaction effects of salinity and mowing on performance and physiology of bermudagrass cultivars. Crop Sci. 2010, 50, 2620–2631. [Google Scholar] [CrossRef]
- Shi, H.; Ye, T.; Chan, Z. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. J. Proteome Res. 2013, 12, 4951–4964. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ma, S.; Ye, N.; Jiang, M.; Cao, J.; Zhang, J. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 2017, 59, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Amee, M.; Chen, L. Bermudagrass CdWRKY50 gene negatively regulates plants’ response to salt stress. Environ. Exp. Bot. 2021, 188, 104513. [Google Scholar] [CrossRef]
- Li, S.; Fu, Q.; Chen, L.; Huang, W.; Yu, D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 2011, 233, 1252. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Yu, D. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol. 2018, 176, 790–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell. 2016. [CrossRef] [Green Version]
- Horvath, E.; Bela, K.; Holinka, B.; Riyazuddin, R.; Galle, A.; Hajnal, A.; Hurton, A.; Feher, A.; Csiszar, J. The Arabidopsis Glutathione Transferases, Atgstf8 and Atgstu19 Are Involved in the Maintenance of Root Redox Homeostasis Affecting Meristem Size and Salt Stress Sensitivity. Plant Sci. 2019, 283, 366–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.; Lee, B.; Choi, G.; Shin, D.; Theertha Prasad, D.; Lee, O.; Kwak, S.S.; Hoon Kim, D.; Nam, J.; Bahk, J.; et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 2003, 100, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verslues, P.E.; Batelli, G.; Grillo, S.; Agius, F.; Kim, Y.-S.; Zhu, J.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.-K. Interaction of SOS2 with Nucleoside Diphosphate Kinase 2 and Catalases Reveals a Point of Connection between Salt Stress and H2O2 Signaling in Arabidopsis thaliana. Mol. Cell. Biol. 2007, 27, 7771–7780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Kim, M.D.; Choi, Y.I.; Park, S.C.; Yun, D.J.; Noh, E.W.; Lee, H.S.; Kwak, S.S. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol. J. 2011, 9, 334–347. [Google Scholar] [CrossRef]
- Shi, H.; Ye, T.; Chen, F.; Cheng, Z.; Wang, Y.; Yang, P.; Zhang, Y.; Chan, Z. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: Effect on arginine metabolism and ROS accumulation. J. Exp. Bot. 2013, 64, 1367–1379. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.T.; Chan, Z.L. In vivo role of Arabidopsis arginase in arginine metabolism and abiotic stress response. Plant Signal. Behav. 2013, 8, e24138. [Google Scholar] [CrossRef] [Green Version]
- Tavladoraki, P.; Cona, A.; Federico, R.; Tempera, G.; Viceconte, N.; Saccoccio, S.; Battaglia, V.; Toninello, A.; Agostinelli, E. Polyamine catabolism: Target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids. 2012, 42, 411–426. [Google Scholar] [CrossRef]
- Shao, A.; Wang, W.; Fan, S.; Xu, X.; Yin, Y.; Erick, A.; Li, X.; Wang, G.; Wang, H.; Fu, J. Comprehensive transcriptional analysis reveals salt stress-regulated key pathways, hub genes and time-specific responsive gene categories in common bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC Plant Biol. 2021, 21, 175. [Google Scholar] [CrossRef]
- Liu, A.; Hu, Z.; Bi, A.; Fan, J.; Gitau, M.M.; Amombo, E.; Chen, L.; Fu, J. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology 2016, 25, 1445–1457. [Google Scholar] [CrossRef]
- Fan, J.; Ren, J.; Zhu, W.; Amombo, E.; Fu, J.; Chen, L. Antioxidant responses and gene expression in bermudagrass under cold stress. J. Am. Soc. Hortic. Sci. 2014, 139, 699–705. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.; Liu, Q.; Zhang, S. Cloning and functional identification of stress-resistant BeDREB genes from Bermuda grass. Front. Biol. China 2006, 1, 367–374. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Zhuo, C.; Lu, S.; Guo, Z. Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol. J. 2015, 13, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wu, J.; Jiang, M.; Wang, Y. Plant mitogen-activated protein kinase cascades in environmental stresses. Int. J. Mol. Sci. 2021, 22, 1543. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, M.; Fan, J.-B.; Zhang, J.-X.; Zhang, C.-J.; Sun, S.-N.; Gan, L.; Yan, X.-B. Bermudagrass Responses and Tolerance to Salt Stress by the Physiological, Molecular Mechanisms and Proteomic Perspectives of Salinity Adaptation. Agronomy 2023, 13, 174. https://doi.org/10.3390/agronomy13010174
Noor M, Fan J-B, Zhang J-X, Zhang C-J, Sun S-N, Gan L, Yan X-B. Bermudagrass Responses and Tolerance to Salt Stress by the Physiological, Molecular Mechanisms and Proteomic Perspectives of Salinity Adaptation. Agronomy. 2023; 13(1):174. https://doi.org/10.3390/agronomy13010174
Chicago/Turabian StyleNoor, Maryam, Ji-Biao Fan, Jing-Xue Zhang, Chuan-Jie Zhang, Sheng-Nan Sun, Lu Gan, and Xue-Bing Yan. 2023. "Bermudagrass Responses and Tolerance to Salt Stress by the Physiological, Molecular Mechanisms and Proteomic Perspectives of Salinity Adaptation" Agronomy 13, no. 1: 174. https://doi.org/10.3390/agronomy13010174
APA StyleNoor, M., Fan, J.-B., Zhang, J.-X., Zhang, C.-J., Sun, S.-N., Gan, L., & Yan, X.-B. (2023). Bermudagrass Responses and Tolerance to Salt Stress by the Physiological, Molecular Mechanisms and Proteomic Perspectives of Salinity Adaptation. Agronomy, 13(1), 174. https://doi.org/10.3390/agronomy13010174