Long-Term Application of Organic Fertilizers in Relation to Soil Organic Matter Quality
Abstract
:1. Introduction
2. Materials and Methods
- The E4/E6 ratio measurement directly in the filtrate. For the E4/E6 ratio, a visible light spectrometer Lambda 25 (PerkinElmer, Waltham, MA, USA) was used to calculate the specific spectral absorbance ratio at 465 and 665 nm [28].
- Determination of carbon in humic substances. The filtrate was neutralized by sulphuric acid and then vaporized. Iodometric titration followed.
- Determination of carbon in fulvic acids. The filtrate was acidified by sulphuric acid to a pH of 1.0–1.5 and warmed up for 30 min. After storage for 24 h, the solution was filtrated and washed using the 0.05 mol/L sulphuric acid solution. The newly formed filtrate was vaporized. Iodometric titration followed.
3. Results
3.1. Organic Carbon Fractions
3.2. Degree of Humification
3.3. Carbon Sequestration
4. Discussion
4.1. Fractions of Organic Carbon in Soil
4.2. Degree of Humification
4.3. Carbon Sequestration
4.4. Treatment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycling Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Jin, Z.Q.; Shah, T.R.; Zhang, L.; Liu, H.Y.; Peng, S.B.; Nie, L.X. Effect of straw returning on soil organic carbon in rice-wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation—A review. Plant Soil Environ. 2006, 52, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Pollakova, N.; Simansky, V.; Kravka, M. The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. J. Soils Sediments 2018, 18, 2790–2800. [Google Scholar] [CrossRef]
- Gerke, J. Carbon accumulation in arable soils: Mechanisms and the effect of cultivation practices and organic fertilizers. Agronomy 2021, 11, 1079. [Google Scholar] [CrossRef]
- Tavares, R.L.M.; Nahas, E. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity. Braz. J. Microbiol. 2014, 45, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.L.; Liu, C.; Zhang, Y.D.; Liu, S.; Zhang, Y. Effects of C/N ratio variation in swine biogas slurry on soil dissolved organic matter: Content and fluorescence characteristics. Ecotox. Environ. Safe. 2021, 209, 111804. [Google Scholar] [CrossRef]
- Kawasaki, S.; Maie, N.; Kitamura, S.; Watanabe, A. Effect of organic amendment on amount and chemical characteristics of humic acids in upland field soils. Eur. J. Soil Sci. 2008, 59, 1027–1037. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Qualitative and quantitative soil organic matter estimation for sustainable soil management. J. Soils Sediments 2018, 18, 2801–2812. [Google Scholar] [CrossRef] [Green Version]
- Sotakova, S. The rate and the direction parameters of humus transformation in intensively cultivated orthic Luvisols. Zentralbl. Mikrobiol. 1991, 146, 131–135. [Google Scholar] [CrossRef]
- Murray, H.; Pinchin, T.A.; Macfie, S.M. Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. J. Soils Sediments 2011, 1, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Heclik, K.I.; Heclik, K.; Zarzyka, I. Metal-humus acid nanoparticles-synthesis, characterization and molecular modeling. Pol. J. Environ. Stud. 2021, 30, 3587–3599. [Google Scholar] [CrossRef]
- Quatmane, A.; Orazio, V.D.; Hafidi, H.; Senesi, N. Chemical and physico chemical characterization of humic acid like materials from compost. Compost Sci. Util. 2002, 10, 39–46. [Google Scholar] [CrossRef]
- Fasurova, N.; Pospisilova, L. Characterization of soil humic substances by ultraviolet-visible and synchronous fluorescence spectroscopy. J. Cent. Eur. Agric. 2010, 1, 351–357. [Google Scholar] [CrossRef]
- Van Den Bossche, A.; De Bolle, S.; De Neve, S.; Hofman, G. Effect of tillage intensity on N mineralization of different crop residues in a temperate climate. Soil Tillage Res. 2009, 103, 316–324. [Google Scholar] [CrossRef]
- Butterly, C.R.; Baldock, J.A.; Tang, C. The contribution of crop residues to changes in soil pH under field conditions. Plant Soil 2013, 366, 185–198. [Google Scholar] [CrossRef]
- Sotnikov, B.A.; Kravchenko, V.A.; Shchuchka, R.V. The rate of crop residue decomposition as a function of the chemical composition of field crops. Entomol. Appl. Sci. Lett. 2021, 8, 16–19. [Google Scholar] [CrossRef]
- Mould, F.L.; Hervas, G.; Owen, E.; Wheeler, T.R.; Smith, N.O.; Summerfield, R.J. The effect of cultivar on the rate and extent of combining pea straw degradability examined in vitro using the Reading Pressure Technique. Grass Forage Sci. 2001, 56, 374–382. [Google Scholar] [CrossRef]
- Oliveira, M.; Rebac, D.; Coutinho, J.; Ferreira, L.; Trindade, H. Nitrogen mineralization of legume residues: Interactions between species, temperature and placement in soil. Span. J. Agric. 2020, 18, e1101. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.M.; Totua, S.S. Effects of organic and plant residue quality and orchard management practices on decomposition rates of residues. Commun. Soil Sci. Plant Anal. 2004, 35, 441–460. [Google Scholar] [CrossRef]
- Essich, L.; Nkebiwe, P.M.; Schneider, M.; Ruser, R. Is crop residue removal to reduce N2O emissions driven by quality or quantity? A field study and meta-analysis. Agriculture 2020, 10, 546. [Google Scholar] [CrossRef]
- Rahn, C.R.; Bending, G.D.; Turner, M.K.; Lillywhite, R.D. Management of N mineralization from crop residues of high N content using amendment materials of varying quality. Soil Use Manag. 2003, 19, 193–200. [Google Scholar] [CrossRef]
- de Ruijter, F.J.; Huijsmans, J.F.M.; Rutgers, B. Ammonia volatilization from crop residues and frozen green manure crops. Atmos. Environ. 2010, 44, 3362–3368. [Google Scholar] [CrossRef]
- Larney, F.J.; Ellert, B.H.; Olson, A.F. Carbon, ash and organic matter relationships for feedlot manures and composts. Can. J. Soil Sci. 2005, 85, 261–264. [Google Scholar] [CrossRef]
- Kimura, S.D.; Mishima, S.I.; Yagi, K. Carbon resources of residue and manure in Japanese farmland soils. Nutr. Cycl. Agroecosystems 2011, 89, 291–302. [Google Scholar] [CrossRef]
- Lopez Fernandez, S.; Serrato Cuevas, R.; Castelan Ortega, O.A.; Aviles Nova, F. Comparison between two methods of ventilation in the chemical composition of compost of livestocks. Rev. Int. Contam. Ambient. 2018, 34, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Srivastava, P.C.; Pachauri, S.P.; Shukla, A.K. Time-dependent release of some plant nutrients from different organic amendments in a laboratory study. Int. J. Recycl. Org. Waste Agric. 2019, 8, S173–S188. [Google Scholar] [CrossRef] [Green Version]
- Song, X.Y.; Liu, S.T.; Liu, Q.H.; Zhang, W.J.; Hu, C.G. Carbon sequestration in soil humic substances under long-term fertilization in a wheat-maize system from North China. J. Integr. Agric. 2014, 13, 562–569. [Google Scholar] [CrossRef]
- Raiesi, F. The quantity and quality of soil organic matter and humic substances following dry-farming and subsequent restoration in an upland pasture. Catena 2021, 202, 105249. [Google Scholar] [CrossRef]
- Iqbal, M.K.; Shafiq, T.; Hussain, A.; Ahmed, K. Effect of enrichment on chemical properties of MSW compost. Bioresour. Technol. 2010, 101, 5969–5977. [Google Scholar] [CrossRef]
- Wang, S.C.; Zhao, Y.W.; Wang, J.Z.; Zhu, P.; Cui, X.; Han, X.Z.; Xu, M.G.; Lu, C.A. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland. J. Integr. Agric. 2018, 17, 436–448. [Google Scholar] [CrossRef]
- Kutova, A.; Hetmanenko, V.; Skrylnik, I.; Paramonova, T.; Kuts, A. Effect of irrigation and fertilization on the content and composition of humus of Chernozem in the vegetable-fodder crop rotation. Sci. Papers Ser. A Agron. 2020, 63, 86–91. [Google Scholar]
- Hao, X.X.; Han, X.Z.; Zou, W.X.; Wang, S.Y.; Kwaw-Mensah, D. Changes in soil organic carbon and its fractions after 13 years of continuous straw return in a soybean-maize cropping system. Appl. Ecol. Environ. Res. 2020, 18, 8267–8284. [Google Scholar] [CrossRef]
- Zheng, S.; Dou, S.; Duan, H.M. Effects of straw enrichment and deep incorporation on humus composition and humic acid structure of black soil profile in Northeast China. Appl. Ecol. Environ. Res. 2022, 20, 1051–1063. [Google Scholar] [CrossRef]
- Watanabe, A.; Kawasaki, S.; Kitamura, S.; Yoshida, S. Temporal changes in humic acids in cultivated soils with continuous manure application. Soil Sci. Plant Nutr. 2007, 53, 535–544. [Google Scholar] [CrossRef]
- Sarma, B.; Gogoi, N. Nitrogen management for sustainable soil organic carbon increase in Inceptisols under wheat cultivation. Commun. Soil Sci. Plant Anal. 2017, 48, 1428–1437. [Google Scholar] [CrossRef]
- Gerzabek, M.H.; Pichlmayer, F.; Kirchmann, H.; Haberhauer, G. The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. Eur. J. Soil Sci. 1997, 48, 273–282. [Google Scholar] [CrossRef]
- Oktaba, L.; Odrobinska, D.; Uzarowicz, L. The impact of different land uses in urban area on humus quality. J. Soils Sediments 2018, 18, 2823–2832. [Google Scholar] [CrossRef] [Green Version]
- Balik, J.; Kulhanek, M.; Cerny, J.; Sedlar, O.; Suran, P.; Asrade, D.A. The influence of organic and mineral fertilizers on the quality of soil organic matter and glomalin content. Agronomy 2022, 12, 1375. [Google Scholar] [CrossRef]
- Guo, Z.B.; Hua, K.K.; Wang, J.; Guo, X.S.; He, C.L.; Wang, D.Z. Effects of different regimes of fertilization on soil organic matter under conventional tillage. Span. J. Agric. Res. 2014, 12, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.C.S.; Alvarenga, M.A.R.; Marchi, G.; Silva, C.A.; de Souza, J.L. Organic fertilizer effects upon carbon fractions from soils cultivated with iceberg lettuce. Cienc. Agrotecnologia 2008, 32, 1760–1766. [Google Scholar] [CrossRef]
- Larionova, A.A.; Maltseva, A.N.; de Gerenyu, V.O.L.; Kvitkina, A.K.; Bykhovets, S.S.; Zolotareva, B.N.; Kudeyarov, V.N. Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment. Eurasian Soil Sci. 2017, 50, 422–431. [Google Scholar] [CrossRef]
- Radmanovic, S.; Dordevic, A.; Nikolic, N. Humus composition of Rendzina soils in different environmental conditions of Serbia. Arch. Tech. Sci. 2018, 19, 57–64. [Google Scholar] [CrossRef]
- Koishi, A.; Bragazza, L.; Maltas, A.; Guillaume, T.; Sinaj, S. Long-term effects of organic amendments on soil organic matter quantity and quality in conventional cropping systems in Switzerland. Agronomy 2020, 10, 1977. [Google Scholar] [CrossRef]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Evolution of soil organic matter changes using pyrolysis and metabolic indices: A comparison between organic and mineral fertilization. Bioresour. Technol. 2007, 98, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Li, Y.; Cai, S.S.; Jin, L.; Li, Y.M.; Wang, W.; Bai, Y.; Hu, Y.; Clarke, N. Fluorescence characteristics of humic acid in Chinese black soil under long-term fertilization. Adv. Polym. Technol. 2019, 2019, 5627575. [Google Scholar] [CrossRef] [Green Version]
- Ghafoor, A.; Poeplau, C.; Katterer, T. Fate of straw- and root-derived carbon in a Swedish agricultural soil. Biol. Fertil. Soils 2017, 53, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Klik, B.; Kulikowska, D.; Gusiatin, Z.M.; Pasieczna-Patkowska, S. Washing agents from sewage sludge: Efficiency of Cd removal from highly contaminated soils and effect on soil organic balance. J. Soils Sediments 2020, 20, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Dannehl, T.; Leithold, G.; Brock, C. The effect of C:N The relation between CUE and ratios on the fate of carbon from straw and green manure in soil. Eur. J. Soil Sci. 2017, 68, 988–998. [Google Scholar] [CrossRef]
- Mockeviciene, I.; Repsiene, R.; Amaleviciute-Volunge, K.; Karcauskiene, D.; Slepetiene, A.; Lepane, V. Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Arch. Agron. Soil Sci. 2022, 68, 1192–1204. [Google Scholar] [CrossRef]
- Balik, J.; Kulhanek, M.; Cerny, J.; Sedlar, O.; Suran, P. Soil organic matter degradation in long-term maize cultivation and insufficient organic fertilization. Plants 2020, 9, 1217. [Google Scholar] [CrossRef] [PubMed]
- Balik, J.; Sedlar, O.; Kulhanek, M.; Cerny, J.; Smatanova, M.; Suran, P. Effect of organic fertilisers on glomalin content and soil organic matter quality. Plant Soil Environ. 2020, 66, 590–597. [Google Scholar] [CrossRef]
- Xie, Y.Q.; Zhou, L.Y.; Dai, J.P.; Chen, J.; Yang, X.P.; Wang, X.W.; Wang, Z.F.; Feng, L. Effects of the C/N ratio on the microbial community and lignocellulose degradation, during branch waste composting. Bioprocess Biosyst. Eng. 2022, 45, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.X.; Liu, H.T.; Wu, S.B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Hao, X.X.; Han, X.Z.; Wang, S.Y.; Li, L.J. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil Tillage Res. 2022, 215, 105221. [Google Scholar] [CrossRef]
- Arlauskiene, A.; Maiksteniene, S.; Slepetiene, A. Application of environmental protection measures for clay loam Cambisol used for agricultural purposes. J. Environ. Eng. Landsc. 2011, 19, 71–80. [Google Scholar] [CrossRef]
- Aparna, C.; Saritha, P.; Himabindu, V.; Anjaneyulu, Y. Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments. Waste Manag. 2008, 28, 1773–1784. [Google Scholar] [CrossRef]
Location | Root Crop | Since | Altitude (m) | Precip. 1 (mm/year) | Air Temp. 1 (°C) | Soil Group | CHS (%) | TOC (%) |
---|---|---|---|---|---|---|---|---|
1. Horažďovice | potato | 1994 | 472 | 585 | 7.8 | Cambisol | 0.405 ± 0.061 | 1.34 ± 0.02 |
2. Hradec n. S. | potato | 1993 | 460 | 616 | 7.4 | Haplic Luvisol | 0.286 ± 0.042 | 1.19 ± 0.05 |
3. Chrastava | potato | 2000 | 345 | 738 | 8 | Haplic Luvisol | 0.421 ± 0.085 | 1.08 ± 0.04 |
4. Jaroměřice | potato | 1994 | 425 | 488 | 8.2 | Haplic Luvisol | 0.552 ± 0.102 | 1.26 ± 0.06 |
5. Lípa | potato | 1993 | 505 | 594 | 7.5 | Cambisol | 0.545 ± 0.095 | 1.35 ± 0.06 |
6. Lednice | beet | 1994 | 172 | 461 | 9.6 | Chernozem | 0.368 ± 0.102 | 1.57 ± 0.03 |
7. Pusté Jakartice | beet | 1994 | 290 | 584 | 8.3 | Retisol | 0.445 ± 0.114 | 0.88 ± 0.01 |
8. Staňkov | potato | 1994 | 370 | 549 | 8.3 | Haplic Luvisol | 0.470 ± 0.070 | 1.05 ± 0.04 |
9. Věrovany | beet | 1993 | 207 | 502 | 8.7 | Chernozem | 0.502 ± 0.038 | 1.29 ± 0.04 |
10.Vysoká | potato | 2000 | 595 | 611 | 7.1 | Cambisol | 0.484 ± 0.066 | 1.48 ± 0.08 |
Crop | Org. Fert. | Treatment | |||||
---|---|---|---|---|---|---|---|
Unfert. | NPK | FYM | FYM + NPK | STRAW/BT | STRAW/BT + NPK | ||
pea | barley straw | 1.58 | 1.58 | ||||
C/N 82 | C/N 82 | ||||||
canola | pea straw | 0.43 | 0.43 | ||||
C/N 25 | C/N 25 | ||||||
FYM | 2.10 | 2.10 | |||||
C/N 30 | C/N 30 | ||||||
winter wheat | canola straw | 1.55 | 1.55 | 1.55 | 1.55 | 1.55 | 1.55 |
C/N 70 | C/N 70 | C/N 70 | C/N 70 | C/N 70 | C/N 70 | ||
spring barley | wheat straw | 1.58 | 1.58 | ||||
C/N 82 | C/N 82 | ||||||
potato/ beet | barley straw | 1.58 | 1.58 | ||||
C/N 82 | C/N 82 | ||||||
FYM | 2.80 | 2.80 | |||||
C/N 30 | C/N 30 | ||||||
spring barley | beet tops * | 1.89 | 1.89 | ||||
C/N 16 | C/N 16 | ||||||
∑ C input per rotation | 1.55 | 1.55 | 6.45 | 6.45 | 6.73 (8.61 *) | 6.73 (8.61 *) | |
A weighted average of C/N in input per rotation | 70.0 | 70.0 | 38.0 | 38.0 | 75.7 (60.7 *) | 75.7 (60.7 *) |
Var. | CFA | CHA | CHA/CFA | E4/E6 | HR | HI | C input | C/N input | RC | CSE |
---|---|---|---|---|---|---|---|---|---|---|
CHA | 0.42 ** | |||||||||
CHA/CFA | −0.32 * | 0.51 *** | ||||||||
E4/E6 | 0.03 | −0.15 | −0.38 * | |||||||
HR | 0.73 *** | 0.61 *** | −0.09 | 0.03 | ||||||
HI | 0.52 *** | 0.85 *** | 0.33 * | −0.11 | 0.87 *** | |||||
C input | −0.15 | −0.14 | 0.24 | −0.48 ** | −0.04 | −0.04 | ||||
C/N input | 0.02 | −0.43 ** | −0.37 * | −0.03 | −0.23 | −0.45 ** | 0.32 * | |||
RC | 0.22 | 0.41 ** | 0.05 | 0.31 * | 0.19 | 0.32 * | −0.59 *** | −0.54 *** | ||
CSE | 0.25 | 0.50 *** | 0.16 | 0.25 | 0.23 | 0.38 * | −0.47 ** | −0.50 ** | 0.96 *** | |
precip. | −0.00 | −0.24 | −0.43 ** | 0.49 ** | 0.03 | −0.11 | −0.29 | 0.10 | 0.07 | 0.03 |
temp. | −0.25 | 0.07 | 0.53 *** | −0.47 ** | −0.05 | 0.11 | 0.43 ** | −0.15 | −0.40 * | −0.37 * |
Site/TRT | Unfert. | NPK | FYM | FYM + NPK | STRAW/BT | STRAW/BT + NPK |
---|---|---|---|---|---|---|
CFA (%) | ||||||
1 | 0.186 b | 0.270 c | 0.225 a | 0.231 a | 0.180 b | 0.240 a |
2 | 0.229 b | 0.156 a | 0.159 a | 0.157 a | 0.127 a | 0.166 a |
3 | 0.284 c | 0.197 ab | 0.213 abc | 0.242 bc | 0.151 a | 0.199 ab |
4 | 0.287 a | 0.240 a | 0.219 a | 0.256 a | 0.271 a | 0.242 a |
5 | 0.239 a | 0.244 a | 0.242 a | 0.381 c | 0.229 a | 0.308 b |
6 | 0.178 b | 0.153 ab | 0.136 a | 0.270 c | 0.135 a | 0.137 a |
7 | 0.198 a | 0.155 c | 0.224 ab | 0.199 a | 0.238 b | 0.203 ab |
8 | 0.248 a | 0.269 a | 0.229 a | 0.269 a | 0.295 a | 0.241 a |
9 | 0.197 bc | 0.119 e | 0.155 a | 0.170 ab | 0.251 d | 0.232 cd |
10 | 0.254 ab | 0.235 ab | 0.211 a | 0.237 ab | 0.267 b | 0.252 ab |
relative CFA 1 | 1.065 ab | 0.924 a | 0.921 a | 1.103 b | 0.975 ab | 1.012 ab |
CHA (%) | ||||||
1 | 0.146 ab | 0.177 a | 0.181 a | 0.191 a | 0.113 b | 0.147 ab |
2 | 0.124 a | 0.165 b | 0.116 a | 0.104 a | 0.227 c | 0.105 a |
3 | 0.141 ab | 0.122 ab | 0.173 bc | 0.207 c | 0.106 a | 0.109 a |
4 | 0.157 a | 0.162 a | 0.143 a | 0.272 b | 0.153 a | 0.118 a |
5 | 0.176 ab | 0.215 a | 0.212 a | 0.316 c | 0.134 b | 0.178 ab |
6 | 0.247 a | 0.246 a | 0.257 a | 0.331 d | 0.182 c | 0.089 b |
7 | 0.127 a | 0.156 c | 0.107 ab | 0.129 a | 0.234 d | 0.097 b |
8 | 0.170 a | 0.187 a | 0.309 b | 0.275 b | 0.197 a | 0.156 a |
9 | 0.207 a | 0.207 a | 0.212 a | 0.234 ab | 0.225 ab | 0.241 b |
10 | 0.204 a | 0.226 ab | 0.283 bc | 0.304 c | 0.236 abc | 0.181 a |
relative CHA 1 | 0.915 ab | 1.010 a | 1.053 ac | 1.254 c | 1.002 a | 0.766 b |
Site/TRT | Unfert. | NPK | FYM | FYM + NPK | STRAW/BT | STRAW/BT + NPK |
---|---|---|---|---|---|---|
CHA/CFA | ||||||
1 | 0.783 a | 0.655 a | 0.804 a | 0.828 a | 0.628 a | 0.613 a |
2 | 0.545 a | 0.924 b | 0.732 ab | 0.664 a | 0.941 b | 0.634 a |
3 | 0.495 a | 0.616 ab | 0.814 ab | 0.882 b | 0.737 ab | 0.546 ab |
4 | 0.552 a | 0.694 ab | 0.655 ab | 0.900 b | 0.566 a | 0.480 a |
5 | 0.743 ab | 0.880 b | 0.879 b | 0.833 ab | 0.584 a | 0.578 a |
6 | 0.648 d | 1.223 a | 1.351 ab | 1.390 ab | 1.666 bc | 1.908 c |
7 | 0.640 b | 1.007 c | 0.489 a | 0.648 b | 0.976 c | 0.479 a |
8 | 0.724 a | 0.706 a | 1.381 b | 1.026 ab | 0.708 a | 0.672 a |
9 | 1.062 ab | 1.820 c | 1.375 ac | 1.374 ac | 0.900 b | 1.008 ab |
10 | 0.801 a | 0.993 ab | 1.340 b | 1.278 b | 0.882 a | 0.719 a |
relative CHA/CFA 1 | 0.826 b | 1.089 a | 1.120 a | 1.134 a | 0.990 ab | 0.840 b |
E4/E6 | ||||||
1 | 6.26 a | 6.12 a | 5.86 a | 6.05 a | 6.14 a | 6.24 a |
2 | 5.52 c | 5.87 a | 5.97 a | 6.18 a | 6.77 b | 6.97 b |
3 | 5.58 c | 5.66 c | 6.31 a | 6.56 ab | 6.62 ab | 7.00 b |
4 | 6.12 bc | 5.88 ab | 6.68 d | 5.72 a | 6.02 abc | 6.31 cd |
5 | 6.91 ab | 6.95 ab | 7.08 b | 6.51 a | 3.57 c | 3.91 c |
6 | 4.08 a | 5.08 b | 4.78 b | 4.28 a | 4.10 a | 4.22 a |
7 | 5.04 a | 5.07 a | 5.08 a | 5.36 a | 5.12 a | 5.35 a |
8 | 5.39 ac | 4.41 c | 5.80 ab | 6.30 ab | 6.07 ab | 6.83 b |
9 | 4.98 d | 4.35 c | 4.19 bc | 3.94 b | 3.50 a | 3.24 a |
10 | 6.60 c | 5.58 e | 6.52 bc | 6.28 ab | 3.72 d | 6.06 a |
relative E4/E6 1 | 1.019 ab | 0.993 ab | 1.046 b | 1.023 ab | 0.922 a | 0.998 ab |
Site/TRT | Unfert. | NPK | FYM | FYM + NPK | STRAW/BT | STRAW/BT + NPK |
---|---|---|---|---|---|---|
HR | ||||||
1 | 0.246 b | 0.339 a | 0.297 a | 0.313 a | 0.222 b | 0.298 a |
2 | 0.304 b | 0.255 ab | 0.243 ab | 0.218 a | 0.201 a | 0.213 a |
3 | 0.394 ab | 0.322 abc | 0.344 ab | 0.412 b | 0.233 c | 0.285 ac |
4 | 0.380 c | 0.338 abc | 0.281 ab | 0.364 bc | 0.331 abc | 0.277 a |
5 | 0.288 a | 0.327 ab | 0.339 ab | 0.513 c | 0.288 a | 0.371 b |
6 | 0.278 a | 0.261 a | 0.247 a | 0.383 d | 0.203 c | 0.139 b |
7 | 0.365 a | 0.361 a | 0.371 a | 0.368 a | 0.527 b | 0.349 a |
8 | 0.426 ab | 0.430 ab | 0.475 ab | 0.494 b | 0.478 ab | 0.378 a |
9 | 0.310 a | 0.243 c | 0.278 d | 0.314 a | 0.378 b | 0.378 b |
10 | 0.331 ab | 0.336 ab | 0.337 ab | 0.345 b | 0.331 ab | 0.280 a |
relative HR 1 | 1.027 ab | 0.990 a | 0.981 a | 1.142 b | 0.957 a | 0.903 a |
HI | ||||||
1 | 0.108 ab | 0.134 a | 0.132 a | 0.142 a | 0.086 b | 0.113 ab |
2 | 0.107 bc | 0.121 c | 0.103 abc | 0.087 ab | 0.097 ab | 0.082 a |
3 | 0.130 ab | 0.123 ab | 0.154 bc | 0.190 c | 0.096 a | 0.100 a |
4 | 0.134 ac | 0.136 ac | 0.111 ab | 0.170 c | 0.120 ab | 0.090 b |
5 | 0.122 ab | 0.153 a | 0.158 a | 0.233 c | 0.106 b | 0.136 ab |
6 | 0.161 a | 0.161 a | 0.162 a | 0.211 d | 0.116 c | 0.055 b |
7 | 0.142 a | 0.181 c | 0.120 ab | 0.145 a | 0.260 d | 0.113 b |
8 | 0.174 a | 0.177 a | 0.263 c | 0.250 bc | 0.192 ab | 0.148 a |
9 | 0.159 ab | 0.155 b | 0.161 ab | 0.181 ac | 0.179 ac | 0.190 c |
10 | 0.148 ab | 0.165 a | 0.193 a | 0.194 a | 0.155 ab | 0.117 b |
relative HI 1 | 0.954 a | 1.041 a | 1.054 a | 1.225 c | 0.946 ab | 0.780 b |
Site/TRT | FYM | FYM + NPK | STRAW/BT | STRAW/BT + NPK |
---|---|---|---|---|
RC (%) | ||||
1 | 6.27 a | 8.28 a | 14.96 a | 8.90 a |
2 | 11.89 b | 15.42 b | −3.25 a | 3.25 a |
3 | −1.88 ab | 15.16 b | −19.85 a | −3.77 ab |
4 | 16.95 b | 10.36 b | −4.46 a | −7.90 a |
5 | 10.09 a | 7.54 a | −2.26 a | 8.57 a |
6 | 8.70 b | 8.61 b | −12.34 a | −11.90 a |
7 | 8.19 b | 4.03 ab | −7.45 a | −9.45 a |
8 | 20.68 b | 20.82 b | −4.93 a | −3.16 a |
9 | 1.04 b | −0.62 b | −7.62 a | −9.16 a |
10 | 18.83 ab | 36.72 b | 2.00 a | 11.55 a |
CSE (%) | ||||
1 | 16.0 a | 22.5 a | 36.4 a | 21.9 a |
2 | 21.6 b | 28.7 b | −5.7 a | 5.9 a |
3 | 44.5 b | 29.7 b | −11.3 a | −21.9 a |
4 | −12.1 ab | 55.1 b | −85.9 a | −16.3 ab |
5 | 32.6 a | 25.2 a | −9.1 a | 27.5 a |
6 | 31.3 b | 32.2 b | −31.5 a | −31.1 a |
7 | 21.0 b | 9.4 ab | −18.4 a | −24.9 a |
8 | 63.2 b | 67.6 b | −14.8 a | −9.5 a |
9 | 3.3 c | −2.1 bc | −18.1 ab | −22.4 a |
10 | 86.1 ab | 163.6 b | 8.1 a | 47.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedlář, O.; Balík, J.; Černý, J.; Kulhánek, M.; Smatanová, M. Long-Term Application of Organic Fertilizers in Relation to Soil Organic Matter Quality. Agronomy 2023, 13, 175. https://doi.org/10.3390/agronomy13010175
Sedlář O, Balík J, Černý J, Kulhánek M, Smatanová M. Long-Term Application of Organic Fertilizers in Relation to Soil Organic Matter Quality. Agronomy. 2023; 13(1):175. https://doi.org/10.3390/agronomy13010175
Chicago/Turabian StyleSedlář, Ondřej, Jiří Balík, Jindřich Černý, Martin Kulhánek, and Michaela Smatanová. 2023. "Long-Term Application of Organic Fertilizers in Relation to Soil Organic Matter Quality" Agronomy 13, no. 1: 175. https://doi.org/10.3390/agronomy13010175
APA StyleSedlář, O., Balík, J., Černý, J., Kulhánek, M., & Smatanová, M. (2023). Long-Term Application of Organic Fertilizers in Relation to Soil Organic Matter Quality. Agronomy, 13(1), 175. https://doi.org/10.3390/agronomy13010175