Plant Water Use Efficiency for a Sustainable Agricultural Development
Abstract
:1. Introduction
2. Overview of This SI
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- García-Tejero, I.F.; Durán, Z.V.H. Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2018; p. 624. [Google Scholar]
- García-Tejero, I.F.; Durán, Z.V.H.; Muriel, F.J.L.; Rodríguez, P.C.R. Water and Sustainable Agriculture. In Springerbriefs in Agriculture; Springer: Dordrecht, The Netherlands, 2011; p. 94. [Google Scholar] [CrossRef]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. Ser. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef] [PubMed]
- Souissi, I.; Temani, N.; Belhouchette, H. Vulnerability of Mediterranean agricultural systems to climate: From regional to field scale analysis. In Climate Vulnerability: Understanding and Addressing Threats to Essential Resources; Pielke, R., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2013; pp. 89–103. [Google Scholar] [CrossRef]
- Lamboll, R.; Stathers, T.; Morton, J. Climate Change and Agricultural Systems. In Agricultural Systems: Agroecology and Rural Innovation for Development, 2nd ed.; Snapp, S., Pound, B., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2017; pp. 441–490. [Google Scholar] [CrossRef]
- Trout, T.J. Environmental effects of irrigated agriculture. Acta Hortic. 2000, 537, 605–610. [Google Scholar] [CrossRef]
- Siderius, C.; Van Walsum, P.E.V.; Roest, C.W.J.; Smit, A.A.M.F.R.; Hellegers, P.J.G.J.; Kabat, P.; Van Ierland, E.C. The role of rainfed agriculture in securing food production in the Nile Basin. Environ. Sci. Policy 2016, 61, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Durán, Z.V.H.; Cárceles, R.B.; Gutiérrez, G.S.; Bilbao, B.M.; Cermeño, S.P.; Pérez, P.J.; García-Tejero, I.F. Rethinking irrigated almond and pistachio intensification: A shift towards a more sustainable water management paradigm. Rev. Ciênc. Agrár. 2021, 43, 24–49. [Google Scholar] [CrossRef]
- Ünlü, M.; Kanber, R.; Levent Koç, D.; Tekin, S.; Kapur, B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a Mediterranean environment. Agric. Water Manag. 2011, 98, 597–605. [Google Scholar] [CrossRef]
- Bogucka, B.; Pszczółkowska, A.; Okorski, A.; Jankowski, K. The Effects of Potassium Fertilization and Irrigation on the Yield and Health Status of Jerusalem Artichoke (Helianthus tuberosus L.). Agronomy 2021, 11, 234. [Google Scholar] [CrossRef]
- Ullah, I.; Mao, H.; Rasool, G.; Gao, H.; Javed, Q.; Sarwar, A.; Khan, M.I. Effect of Deficit Irrigation and Reduced N Fertilization on Plant Growth, Root Morphology and Water Use Efficiency of Tomato Grown in Soilless Culture. Agronomy 2021, 11, 228. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Solangi, K.A. Improving Water Use Efficiency by Optimizing the Root Distribution Patterns under Varying Drip Emitter Density and Drought Stress for Cherry Tomato. Agronomy 2021, 11, 3. [Google Scholar] [CrossRef]
- Kiani, R.; Nazeri, V.; Shokrpour, M.; Hano, C. Morphological, Physiological, and Biochemical Impacts of Different Levels of Long-Term Water Deficit Stress on Linum album Ky. ex Boiss. Accessions. Agronomy 2020, 10, 1966. [Google Scholar] [CrossRef]
- Millán, S.; Campillo, C.; Vivas, A.; Moñino, M.J.; Prieto, M.H. Evaluation of Soil Water Content Measurements with Capacitance Probes to Support Irrigation Scheduling in a “Red Beaut” Japanese Plum Orchard. Agronomy 2020, 10, 1757. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of Drip Irrigation Emitter Density with Various Irrigation Levels on Physiological Parameters, Root, Yield, and Quality of Cherry Tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Lipan, L.; Gutiérrez-Gordillo, S.; Durán Zuazo, V.H.; Jančo, I.; Hernández, F.; Cárceles Rodríguez, B.; Carbonell-Barrachina, A.A. Deficit Irrigation and Its Implications for HydroSOStainable Almond Production. Agronomy 2020, 10, 1632. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; Gonçalves, G.M.B.; do Amaral Júnior, A.T.; de Lima, V.J.; Leite, J.T.; Schmitt, K.F.M.; dos Santos Junior, D.R.; Santos, J.S.; de Oliveira, F.T.; Corrêa, C.C.G.; et al. Screening of Popcorn Genotypes for Drought Tolerance Using Canonical Correlations. Agronomy 2020, 10, 1519. [Google Scholar] [CrossRef]
- Lipan, L.; Cano-Lamadrid, M.; Hernández, F.; Sendra, E.; Corell, M.; Vázquez-Araújo, L.; Moriana, A.; Carbonell-Barrachina, A.A. Long-Term Correlation between Water Deficit and Quality Markers in HydroSOStainable Almonds. Agronomy 2020, 10, 1470. [Google Scholar] [CrossRef]
- Ao, S.; Russelle, M.P.; Feyereisen, G.W.; Varga, T.; Coulter, J.A. Maize Hybrid Response to Sustained Moderate Drought Stress Reveals Clues for Improved Management. Agronomy 2020, 10, 1374. [Google Scholar] [CrossRef]
- Ibrahim, M.F.M.; Abd El-Samad, G.; Ashour, H.; El-Sawy, A.M.; Hikal, M.; Elkelish, A.; El-Gawad, H.A.; El-Yazied, A.A.; Hozzein, W.N.; Farag, R. Regulation of Agronomic Traits, Nutrient Uptake, Osmolytes and Antioxidants of Maize as Influenced by Exogenous Potassium Silicate under Deficit Irrigation and Semiarid Conditions. Agronomy 2020, 10, 1212. [Google Scholar] [CrossRef]
- Gutiérrez-Gordillo, S.; Durán Zuazo, V.H.; Hernández-Santana, V.; Ferrera Gil, F.; García Escalera, A.; Amores-Agüera, J.J.; García-Tejero, I.F. Cultivar Dependent Impact on Yield and Its Components of Young Almond Trees under Sustained-Deficit Irrigation in Semi-Arid Environments. Agronomy 2020, 10, 733. [Google Scholar] [CrossRef]
- Braunack, M.V.; Adhikari, R.; Freischmidt, G.; Johnston, P.; Casey, P.S.; Wang, Y.; Bristow, K.L.; Filipović, L.; Filipović, V. Initial Experimental Experience with a Sprayable Biodegradable Polymer Membrane (SBPM) Technology in Cotton. Agronomy 2020, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Kim, J.; Oh, M.-M. Determination of Adequate Substrate Water Content for Mass Production of a High Value-Added Medicinal Plant, Crepidiastrum denticulatum (Houtt.) Pak & Kawano. Agronomy 2020, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Martín-Palomo, M.J.; Corell, M.; Girón, I.; Andreu, L.; Galindo, A.; Centeno, A.; Pérez-López, D.; Moriana, A. Absence of Yield Reduction after Controlled Water Stress during Prehaverst Period in Table Olive Trees. Agronomy 2020, 10, 258. [Google Scholar] [CrossRef] [Green Version]
- Kovalikova, Z.; Jiroutova, P.; Toman, J.; Dobrovolna, D.; Drbohlavova, L. Physiological Responses of Apple and Cherry In Vitro Culture under Different Levels of Drought Stress. Agronomy 2020, 10, 1689. [Google Scholar] [CrossRef]
- Wasonga, D.O.; Kleemola, J.; Alakukku, L.; Mäkelä, P.S.A. Growth Response of Cassava to Deficit Irrigation and Potassium Fertigation during the Early Growth Phase. Agronomy 2020, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Elnashar, A.; Abbas, M.; Sobhy, H.; Shahba, M. Crop Water Requirements and Suitability Assessment in Arid Environments: A New Approach. Agronomy 2021, 11, 260. [Google Scholar] [CrossRef]
- Aguilar Morales, D.; Sánchez-Bravo, P.; Lipan, L.; Cano-Lamadrid, M.; Issa-Issa, H.; del Campo-Gomis, F.J.; Lluch, D.B.L. Designing of an Enterprise Resource Planning for the Optimal Management of Agricultural Plots Regarding Quality and Environmental Requirements. Agronomy 2020, 10, 1352. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Tejero, I.F.; Durán-Zuazo, V.H. Plant Water Use Efficiency for a Sustainable Agricultural Development. Agronomy 2022, 12, 1806. https://doi.org/10.3390/agronomy12081806
García-Tejero IF, Durán-Zuazo VH. Plant Water Use Efficiency for a Sustainable Agricultural Development. Agronomy. 2022; 12(8):1806. https://doi.org/10.3390/agronomy12081806
Chicago/Turabian StyleGarcía-Tejero, Iván Francisco, and Víctor Hugo Durán-Zuazo. 2022. "Plant Water Use Efficiency for a Sustainable Agricultural Development" Agronomy 12, no. 8: 1806. https://doi.org/10.3390/agronomy12081806
APA StyleGarcía-Tejero, I. F., & Durán-Zuazo, V. H. (2022). Plant Water Use Efficiency for a Sustainable Agricultural Development. Agronomy, 12(8), 1806. https://doi.org/10.3390/agronomy12081806