Changes in the Composition of Flavonols and Organic Acids during Ripening for Three cv. Sauvignon Blanc Clones Grown in a Cool-Climate Valley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Site, Plant Material and Experimental Design
2.2. Extraction of Phenolic Compounds from Grape Berries
2.3. Spectrophotometric Characterization
2.4. Extraction of Organic Acids from Grapes and HPLC-DAD Analysis
2.5. HPLC-DAD Analyses of Low-Molecular-Weight Phenolic Compounds
2.6. Statistical Analysis
3. Results
3.1. General Physical and Chemical Composition of Sauvignon Blanc Clones
3.2. Phenolic Composition of Skins of cv. Sauvignon Blanc Clones
3.3. Composition of Organic Acids in Clones of cv. Sauvignon Blanc Grapes
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agati, G.; Tattini, M. Multiple functional roles of flavonoids in photoprotection. New Phytol. 2010, 186, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust. J. Grape Wine Res. 2003, 9, 110–121. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Kolb, C.; Kopecký, J.; Riederer, M.; Pfündel, E. UV screening by phenolics in berries of grapevine (Vitis vinifera). Funct. Plant Biol. 2003, 30, 1177–1186. [Google Scholar] [CrossRef] [Green Version]
- Gregan, S.M.; Wargent, J.J.; Liu, L.; Shinkle, J.; Hofmann, R.; Winefield, C.; Jordan, B. Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes. Aust. J. Grape Wine Res. 2012, 18, 227–238. [Google Scholar] [CrossRef]
- Del-Castillo-Alonso, M.; Diago, M.P.; Tomás-Las-Heras, R.; Monforte, L.; Soriano, G.; Martínez-Abaigar, J.; Núñez-Olivera, E. Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions. Plant Physiol. Biochem. 2016, 109, 374–386. [Google Scholar] [CrossRef]
- Liu, L.; Gregan, S.M.; Winefield, C.; Jordan, B. Comparisons of controlled environment and vineyard experiments in sauvignon blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis. Plant Sci. 2018, 276, 44–53. [Google Scholar] [CrossRef]
- Mendes Ferreira, A.; Mendes-Faia, A. The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef]
- Cortez, P.; Cerdeira, A.; Almeida, F.; Matos, T.; Reis, J. Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 2009, 47, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.M. The biochemistry of organic acids in the grape. In The Biochemistry of the Grape Berry; Bentham Books: Sharjah, United Arab Emirates, 2012; pp. 67–88. [Google Scholar]
- Jančářová, I.; Jančář, L.; Náplavová, A.; Kubáň, V. Changes of organic acids and phenolic compounds contents in grapevine berries during their ripening. Open Chem. 2013, 11, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Šuklje, K.; Antalick, G.; Buica, A.; Langlois, J.; Coetzee, Z.A.; Gouot, J.; Schmidtke, L.; Deloire, A. Clonal differences and impact of defoliation on Sauvignon blanc (Vitis vinifera L.) wines: A chemical and sensory investigation. J. Sci. Food Agric. 2016, 96, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Vujović, D.; Maletić, R.; Popović-Đorđević, J.; Pejin, B.; Ristić, R. Viticultural and chemical characteristics of Muscat Hamburg preselected clones grown for table grapes. J. Sci. Food Agric. 2017, 97, 587–594. [Google Scholar] [CrossRef]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef]
- OIV (International Organization of Vine and Wine). Statistical Report on World Vitiviniculture; OIV: Paris, France, 2019. [Google Scholar]
- SAG (Servicio Agrícola y Ganadero). Zonificación Vitícola y Denominación de Origen. Available online: https://www.sag.gob.cl (accessed on 2 January 2022).
- SAG (Servicio Agrícola y Ganadero). Informe Ejecutivo Producción de Vinos. Available online: https://www.sag.gob.cl/content/informe-ejecutivo-produccion-de-vinos-2019 (accessed on 19 January 2022).
- Saavedra, J.; Fuentealba, C.; Yáñez, L.; Bravo, M.; Quiroz, W.; Lukacsy, G.; Carot, J.M. Chemometric approaches for the zoning of Pinot Noir wines from the Casablanca valley, Chile. Food Chem. 2011, 127, 1842–1847. [Google Scholar] [CrossRef]
- Cuneo, I.; Salgado, E.; Castro, M.; Córdova, A.; Saavedra, J. Effects of climate and anthocyanin variables on the zoning of Pinot Noir wine from the Casablanca Valley. J. Wine Res. 2013, 24, 264–277. [Google Scholar] [CrossRef]
- Reyes, G.; Zamora, G. Estudio Agrológico V Región: Descripciones de Suelos, Materiales Y Símbolos; CIREN N°116; Chile. 2009. Available online: https://www.semanticscholar.org/paper/Estudio-agrol%C3%B3gico-V-Regi%C3%B3n.-Descripciones-de-y-Calvo-Gatica/302955f8cc07797d3a3b9b4c6482a4e6a09c815d (accessed on 15 May 2022).
- OIV (International Organization of Vine and Wine). Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2012. [Google Scholar]
- Bindon, K.; Kassara, S.; Cynkar, W.; Robinson, E.; Scrimgeour, N.; Smith, P. Comparison of extraction protocols to determine differences in wine-extractable tannin and anthocyanin in Vitis vinifera L. cv. Shiraz and Cabernet Sauvignon grapes. J. Agric. Food Chem. 2014, 62, 4558–4570. [Google Scholar] [CrossRef]
- Glories, Y. La coleur des vins rouges, 2eme Partier. Mesure, origine et interpretation. Connaiss. Vigne Vin 1984, 18, 253–271. [Google Scholar]
- Gil i Cortiella, M.; Ubeda, C.; Covarrubias, J.I.; Peña-Neira, A. Chemical, physical, and sensory attributes of Sauvignon blanc wine fermented in different kinds of vessels. Innov. Food Sci. Emerg. Technol. 2020, 66, 102521. [Google Scholar] [CrossRef]
- Peña-Neira, A.; Cáceres, A.; Pastenes, C. Low molecular weight phenolic and anthocyanin composition of grape skins from cv. Syrah (Vitis vinifera L.) in the Maipo Valley (Chile): Effect of clusters thinning and vineyard yield. Food Sci. Technol. Int. 2007, 13, 153–158. [Google Scholar] [CrossRef]
- Souza Gonzaga, L.; Capone, D.; Bastian, S.; Jeffery, D. Defining wine typicity: Sensory characterization and consumer perspectives. Aust. J. Grape Wine Res. 2021, 27, 246–256. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Coombe, B.; McCarthy, M. Dynamics of grape berry growth and physiology of ripening. Aust. J. Grape Wine Res. 2000, 6, 131–135. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Battista, G. Effects of irrigation on ecophysiology, sugar content and thiol precursors (3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol) on Vitis vinifera cv. Sauvignon Blanc. Plant Physiol. Biochem. 2021, 164, 247–259. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzis, G.; Squadrito, M.; Rossoni, M.; Simone di Lorenzo, G.; Brancadoro, L.; Scienza, A. Study of intra-varietal diversity in biotypes of Aglianico and Muscat of Alexandria (Vitis vinifera L.) cultivars. Aust. J. Grape Wine Res. 2017, 23, 132–142. [Google Scholar] [CrossRef]
- Iland, P.; Dry, P.; Proffitt, T.; Tyerman, S. The Grapevine: From the Science to the Practice of Growing Vines for Wine; Patrick Iland Wine Promotions: Adelaide, Australia, 2011. [Google Scholar]
- Keller, M. The Science of Grapevines, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Mpelasoka, B.; Schachtman, D.; Treeby, M.; Thomas, M. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Rogiers, S.; Zelmari, A.; Coetzee, Z.; Walker, R.; Deloire, A.; Tyerman, S. Potassium in the grape (Vitis vinifera L.) berry: Transport and function. Front. Plant Sci. 2017, 8, 1629. [Google Scholar] [CrossRef]
- Volschenk, H.; Van Vuuren, H.; Viljoen-Bloom, M. Malic acid in wine: Origin, function and metabolism during vinification. S. Afr. J. Enol. Vitic. 2006, 27, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.; Ferrara, G.; Matarrese, A.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Rustioni, L.; Fracassetti, D.; Prinsi, B.; Geuna, F.; Ancelotti, A.; Fauda, V.; Failla, O. Oxidations in white grape (Vitis vinifera L.) skins: Comparison between ripening process and photooxidative sunburn symptoms. Plant Physiol. Biochem. 2020, 150, 270–278. [Google Scholar] [CrossRef] [PubMed]
- George, N.; Clark, A.; Prenzler, P.; Scollary, G. Factors influencing the production and stability of xanthylium cation pigments in a model white wine system. Aust. J. Grape Wine Res. 2006, 12, 57–68. [Google Scholar] [CrossRef]
- Waterhouse, A.; Laurie, V. Oxidation of wine phenolics: A critical evaluation and hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar]
- Ortega, A.; López-Toledano, A.; Mayen, M.; Mérida, J.; Medina, M. Changes in color and phenolic compounds during oxidative aging of sherry white wine. J. Food Sci. 2003, 68, 2461–2468. [Google Scholar] [CrossRef]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Danilewicz, J. Review of oxidative processes in wine and value of reduction potentials in enology. Am. J. Enol. Vitic. 2012, 63, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Czemmel, S.; Stracke, R.; Weisshaar, B.; Cordon, N.; Harris, N.; Walker, A.; Robinson, S.; Bogs, J. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 2009, 151, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Matus, J.T.; Loyola, R.; Vega, A.; Peña-Neira, A.; Bordeau, E.; Arce-Johnson, P.; Alcalde, J.A. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J. Exp. Bot. 2009, 60, 853–867. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lücher, J.; Brillante, L.; Kaan Kurtural, S. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Front. Plant Sci. 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Ewart, A.; Gawel, R.; Thistlewood, S.; McCarthy, M. Evaluation of must composition and wine quality of six clones of Vitis vinifera cv. Sauvignon Blanc. Aust. J. Exp. Agric. 1993, 33, 945–951. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.; Tavares, R.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2007, 1, 1–22. [Google Scholar]
- Hufnagel, J.; Hofmann, T. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J. Agric. Food Chem. 2008, 56, 9190–9199. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Jones, G.; Tait, A.; Hall, A.; Trought, M.C. Analysis of viticulture region climate structure and suitability in New Zealand. Oeno One 2012, 46, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Spellman, G. Wine, weather and climate. Weather 1999, 54, 230–239. [Google Scholar] [CrossRef]
- Rösti, J.; Schumann, M.; Cléroux, M.; Lorenzini, F.; Zufferey, V.; Rienth, M. Effect of drying on tartaric acid and malic acid in Shiraz and Merlot berries. Aust. J. Grape Wine Res. 2018, 24, 421–429. [Google Scholar] [CrossRef]
- Dai, Z.W.; Ollat, N.; Gomès, E.; Decroocq, S.; Tandonnet, J.; Bordenave, L. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. Am. J. Enol. Vitic. 2011, 62, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Shrestha, P.M. Solute accumulation differs in the vacuoles and apoplast of ripening grape berries. Planta 2014, 239, 633–642. [Google Scholar] [CrossRef]
Low Zone | High Zone | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Months | Mean Max Temp. (°C) | Mean Min Temp. (°C) | Thermal Oscillation (°C) | Relative Humidity (%) | Solar Radiation (W m−2) | Day Degrees (Base 10 °C) | Mean Max Temp. (°C) | Mean Min Temp. (°C) | Thermal Oscillation (°C) | Relative Humidity (%) | Solar Radiation (W m−2) | Day Degrees (Base 10 °C) |
January | 28.1 | 7.7 | 20.4 | 68.8 | 341.5 | 744.3 | 28.6 | 6.4 | 22.2 | 68.9 | 307.9 | 618.8 |
February | 28.5 | 8.9 | 19.6 | 74.2 | 281.3 | 991.7 | 29.2 | 7.8 | 21.4 | 72.2 | 272.2 | 829.0 |
March | 26.3 | 6.8 | 19.5 | 74.3 | 240.4 | 1209.8 | 26.8 | 4.9 | 21.9 | 73.6 | 219.7 | 1044.7 |
April | 22.9 | 6.1 | 16.8 | 79.9 | 149.1 | 1157.1 | 23.4 | 4.5 | 18.9 | 79.7 | 151.3 | 1153.5 |
Low Zone | High Zone | ||||||
---|---|---|---|---|---|---|---|
Parameters | DAV | 242 | 107 | 1-Davis | 242 | 107 | 1-Davis |
Weight of | 0 | 30.80 ± 0.80 Bab | 31.30 ± 0.90 a | 25.52 ± 1.00 Bb | 44.23 ± 1.60 A | 39.77 ± 4.02 | 43.60 ± 0.30 A |
50 berries (g) | 15 | 50.64 ± 3.11 ab | 48.40 ± 2.40 a | 46.76 ± 1.51 Ba | 56.44 ± 2.80 ab | 49.38 ± 2.20 b | 59.08 ± 2.57 Aa |
30 | 62.42 ± 2.09 a | 65.72 ± 2.30 a | 53.24 ± 2.80 Bb | 65.10 ± 2.23 | 70.20 ± 2.70 | 67.12 ± 2.96 A | |
45 | 70.56 ± 1.60 a | 69.66 ± 2.90 ab | 61.78 ± 1.61 Bb | 75.42 ± 1.49 | 70.20 ± 2.70 | 77.84 ± 1.87 A | |
Skins weight (g) | 0 | 5.50 ± 0.41 | 5.40 ± 0.2 B | 4.90 ± 0.16 B | 6.10 ± 0.18 c | 7.20 ± 0.20 Ab | 8.50 ± 0.15 Aa |
15 | 7.50 ± 0.16 B | 7.30 ± 0.38 B | 7.10 ± 0.31 B | 10.70 ± 0.67 A | 9.00 ± 0.43 A | 10.30 ± 0.40 A | |
30 | 8.50 ± 0.12 | 8.10 ± 0.29 B | 8.30 ± 0.26 B | 8.70 ± 0.25 b | 11.00 ± 0.56 A | 12.30 ± 0.65 A | |
45 | 10.00 ± 0.32 B | 9.60 ± 0.18 B | 9.50 ± 0.16 B | 11.80 ± 0.28 Aab | 11.50 ± 0.47 Ab | 13.40 ± 0.63 Aa | |
Seeds weight (g) | 0 | 3.26 ± 0.06 | 3.40 ± ± 0.10 | 3.54 ± 0.07 | 3.33 ± 0.12 | 3.27 ± 0.06 | 3.30 ± 0.15 |
15 | 3.26 ± 0.06 A | 3.54 ± 0.11 A | 3.12 ± 0.10 | 2.40 ± 0.24 Bb | 2.88 ± 0.04 Bab | 3.02 ± 0.06 a | |
30 | 3.00 ± 0.03 | 3.26 ± 0.13 | 3.16 ± 0.09 | 2.78 ± 0.12 | 3.06 ± 0.17 | 2.98 ± 0.12 | |
45 | 2.78 ± 0.10 | 3.16 ± 0.10 | 3.00 ± 0.15 | 2.66 ± 0.10 | 2.96 ± 0.12 | 2.78 ± 0.10 | |
Soluble solids | 0 | 4.78 ± 0,34 a | 3.36 ± 0.11 Bb | 4.54 ± 0.16 Ba | 4.01 ± 0.05 b | 5.00 ± 0.49 Aab | 5.47 ± 0.17 Aa |
(°Brix) | 15 | 10.64 ± 0.44 Aa | 8.32 ± 0.45 Bb | 11.46 ± 0.29 a | 9.20 ± 0.34 B | 10.02 ± 0.29 A | 10.56 ± 0.80 |
30 | 14.49 ± 0.33 Aa | 13.90 ± 0.18 b | 13.52 ± 0.26 Bb | 13.32 ± 0.46 Bb | 14.22 ± 0.34 ab | 15.36 ± 0.19 Aa | |
45 | 19.48 ± 0.25 a | 18.76 ± 0.55 ab | 17.64 ± 0.20 Bb | 19.32 ± 0.43 b | 20.02 ± 0.45 ab | 21.36 ± 0.29 Aa | |
pH | 0 | 2.65 ± 0.10 | 2.57 ± 0.07 | 2.54 ± 0.06 | 2.52 ± 0.02 | 2.68 ± 0.10 | 2.67 ± 0.08 |
15 | 2.67 ± 0.05 Bb | 2.78 ± 0.04 Bb | 2.97 ± 0.03 Aa | 2.89 ± 0.04 A | 2.89 ± 0.02 A | 2.83 ± 0.03 B | |
30 | 2.93 ± 0.06 ab | 2.80 ± 0.10 Bb | 3.17 ± 0.04 Aa | 3.04 ± 0.02 | 3.08 ± 0.03 A | 2.97 ± 0.06 B | |
45 | 3.22 ± 0.04 b | 3.11 ± 0.03 Bb | 3.46 ± 0.03 Aa | 3.25 ± 0.05 | 3.29 ± 0.04 A | 3.33 ± 0.03 B | |
TA | 0 | 14.23 ± 0.84 | 14.03 ± 0.30 A | 13.80 ± 0.39 | 13.46 ± 0.38 a | 11.92 ± 0.28 Bb | 12.61 ± 0.07 ab |
(g tartaric acid L−1) | 15 | 7.78 ± 0.67 ab | 8.31 ± 0.78 a | 5.66 ± 0.10 Bb | 6.98 ± 0.32 | 6.74 ± 0.47 | 6.39 ± 0.27 A |
30 | 5.00 ± 0.20 Ab | 6.12 ± 0.18 Aa | 5.49 ± 0.13 Aab | 4.19 ± 0.06 B | 3.80 ± 0.14 B | 3.98 ± 0.15 B | |
45 | 4.65 ± 0.15 Ab | 6.06 ± 0.32 Aa | 4.86 ± 0.17 Ab | 3.23 ± 0.03 Ba | 2.88 ± 0.26 Ba | 3.23 ± 0.03 Ba |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peirano-Bolelli, P.; Heller-Fuenzalida, F.; Cuneo, I.F.; Peña-Neira, Á.; Cáceres-Mella, A. Changes in the Composition of Flavonols and Organic Acids during Ripening for Three cv. Sauvignon Blanc Clones Grown in a Cool-Climate Valley. Agronomy 2022, 12, 1357. https://doi.org/10.3390/agronomy12061357
Peirano-Bolelli P, Heller-Fuenzalida F, Cuneo IF, Peña-Neira Á, Cáceres-Mella A. Changes in the Composition of Flavonols and Organic Acids during Ripening for Three cv. Sauvignon Blanc Clones Grown in a Cool-Climate Valley. Agronomy. 2022; 12(6):1357. https://doi.org/10.3390/agronomy12061357
Chicago/Turabian StylePeirano-Bolelli, Pierina, Florencia Heller-Fuenzalida, Italo F. Cuneo, Álvaro Peña-Neira, and Alejandro Cáceres-Mella. 2022. "Changes in the Composition of Flavonols and Organic Acids during Ripening for Three cv. Sauvignon Blanc Clones Grown in a Cool-Climate Valley" Agronomy 12, no. 6: 1357. https://doi.org/10.3390/agronomy12061357
APA StylePeirano-Bolelli, P., Heller-Fuenzalida, F., Cuneo, I. F., Peña-Neira, Á., & Cáceres-Mella, A. (2022). Changes in the Composition of Flavonols and Organic Acids during Ripening for Three cv. Sauvignon Blanc Clones Grown in a Cool-Climate Valley. Agronomy, 12(6), 1357. https://doi.org/10.3390/agronomy12061357