Prediction of Strawberry Leaf Color Using RGB Mean Values Based on Soil Physicochemical Parameters Using Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Leaf Sample Collection and Soil Physicochemical Parameter Measurement
2.1.2. Image Acquisition
2.1.3. Leaf Image Segmentation, Denoising, and Color Feature Extraction
2.1.4. Data Preprocessing and Models Building
2.1.5. Development of MLR and LGBM (GBR) Models
2.1.6. Statistical Analysis
3. Results and Discussion
3.1. Color Feature Extraction
3.2. Data Preprocessing Results
3.3. Performance of the MLR and LGBM (GBR) Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prasad, R.; Lisiecka, J.; Antala, M.; Rastogi, A. Influence of Different Spent Mushroom Substrates on Yield, Morphological and Photosynthetic Parameters of Strawberry (Fragaria × ananassa Duch.). Agronomy 2021, 11, 2086. [Google Scholar] [CrossRef]
- Madhavi, B.G.K.; Khan, F.; Bhujel, A.; Jaihuni, M.; Kim, N.E.; Moon, B.E.; Kim, H.T. Influence of Different Growing Media on the Growth and Development of Strawberry Plants. Heliyon 2021, 7, e07170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, T.; Liu, X.-J.; Liu, L.; Cao, W.-X.; Yan, Z.H.U. Modeling Dynamics of Leaf Color Based on RGB Value in Rice. J. Integr. Agric. 2014, 13, 749–759. [Google Scholar] [CrossRef]
- Yang, W.-H.; Peng, S.; Huang, J.; Sanico, A.L.; Buresh, R.J.; Witt, C. Using Leaf Color Charts to Estimate Leaf Nitrogen Status of Rice. Agron. J. 2003, 95, 212–217. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, F.; Zhang, P.; Ke, C.; Zhu, Y.; Cao, W.; Jiang, H. Skewed Distribution of Leaf Color RGB Model and Application of Skewed Parameters in Leaf Color Description Model. Plant Methods 2020, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Borhan, M.S.; Panigrahi, S.; Satter, M.A.; Gu, H. Evaluation of Computer Imaging Technique for Predicting the SPAD Readings in Potato Leaves. Inf. Process. Agric. 2017, 4, 275–282. [Google Scholar] [CrossRef]
- Zhang, B.; Thornburg, T.E.; Liu, J.; Xue, H.; Fontana, J.E.; Wang, G.; Li, Q.; Davis, K.E.; Zhang, Z.; Liu, M. Potassium Deficiency Significantly Affected Plant Growth and Development as Well as MicroRNA-Mediated Mechanism in Wheat (Triticum aestivum L.). Front. Plant Sci. 2020, 11, 1219. [Google Scholar]
- Jaihuni, M.; Khan, F.; Lee, D.; Basak, J.K.; Bhujel, A.; Moon, B.E.; Park, J.; Kim, H.T. Determining Spatiotemporal Distribution of Macronutrients in a Cornfield Using Remote Sensing and a Deep Learning Model. IEEE Access 2021, 9, 30256–30266. [Google Scholar] [CrossRef]
- Sim, H.S.; Kim, D.S.; Ahn, M.G.; Ahn, S.R.; Kim, S.K. Prediction of Strawberry Growth and Fruit Yield Based on Environmental and Growth Data in a Greenhouse for Soil Cultivation with Applied Autonomous Facilities. Hortic. Sci. Technol. 2020, 840–849. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and Use of PH and Electrical Conductivity for Soil Quality Analysis. Methods Assess. Soil Qual. 1997, 49, 169–185. [Google Scholar]
- Dixon, E.K.; Strik, B.C.; Fernandez-Salvador, J.; DeVetter, L.W. Strawberry Nutrient Management Guide for Oregon and Washington. In Proceedings of the Northwest Center for Small Fruits Research, Pacific Northwest, Ferndale, WA, USA, 2–4 December 2019; Oregon State University Extension Service: Corvallis, OR, USA, 2019. [Google Scholar]
- Milosevic, T.M.; Milosevic, N.T.; Glisic, I.P. Strawberry (Fragaria × ananassa Duch.) Yiel Das Affected by the Soil pH. An. Acad. Bras. Cienc. 2009, 81, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagale, K.V. The Effect of Electrical Conductivity on Growth and Development of Strawberries Grown in Deep Tank Hydroponic Systems, a Physiological Study. J. Pharmacogn. Phytochem. 2018, 7, 1939–1944. [Google Scholar]
- Himelrick, D.G.; Wood, C.W.; Dozier, W.A., Jr. Relationship between SPAD-502 Meter Values and Extractable Chlorophyll in Strawberry. Adv. Strawb. Res. 1992, 11, 59–61. [Google Scholar]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef] [Green Version]
- Özreçberoğlu, N.; Kahramanoğlu, İ. Mathematical Models for the Estimation of Leaf Chlorophyll Content Based on RGB Colours of Contact Imaging with Smartphones: A Pomegranate Example. Folia Hortic. 2020, 32, 57–67. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Rao, R.S.P.; Salvato, F.; Havelund, J.F.; Møller, I.M.; Thelen, J.J.; Xu, D. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants. Front. Plant Sci. 2018, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Khan, F.; Okyere, F.G.; Basak, J.K.; Qasim, W.; Park, J.; Arulmozhi, E.; Lee, Y.J.; Kim, H.T. Comparison of Different Compost Materials for Growing Strawberry Plants. In Proceedings of the International Symposium on Advanced Technologies and Management for Innovative Greenhouses: GreenSys2019 1296, Angers, France, 16–20 June 2019; pp. 869–876. [Google Scholar]
- Shimoji, H.; Tokuda, G.; Tanaka, Y.; Moshiri, B.; Yamasaki, H. A Simple Method for Two-Dimensional Color Analyses of Plant Leaves. Russ. J. Plant Physiol. 2006, 53, 126–133. [Google Scholar] [CrossRef]
- Loukas, S. How and Why to Standardize Your Data: A Python Tutorial. Available online: https://towardsdatascience.com/how-and-why-to-standardize-your-data-996926c2c832 (accessed on 4 April 2022).
- Basak, J.K.; Qasim, W.; Okyere, F.G.; Khan, F.; Lee, Y.J.; Park, J.; Kim, H.T. Regression Analysis to Estimate Morphology Parameters of Pepper Plant in a Controlled Greenhouse System. J. Biosyst. Eng. 2019, 44, 57–68. [Google Scholar] [CrossRef]
- Basak, J.K.; Okyere, F.G.; Arulmozhi, E.; Park, J.; Khan, F.; Kim, H.T. Artificial Neural Networks and Multiple Linear Regression as Potential Methods for Modelling Body Surface Temperature of Pig. J. Appl. Anim. Res. 2020, 48, 207–219. [Google Scholar] [CrossRef]
- Abdipour, M.; Ebrahimi, M.; Izadi-Darbandi, A.; Mastrangelo, A.M.; Najafian, G.; Arshad, Y. Variability and Association Grain Weight with Grain Size (and Shape) and Grain Quality, and Stepwise Regression Analysis on Thousand Grain Weight in Iranian Durum Wheat Landraces. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 7, 944. [Google Scholar]
- Darlington, R.B.; Hayes, A.F. Regression Analysis and Linear Models: Concepts, Applications, and Implementation; Guilford Publications: New York, NY, USA, 2016; ISBN 1462521134. [Google Scholar]
- Cai, W.; Wei, R.; Xu, L.; Ding, X. A Method for Modelling Greenhouse Temperature Using Gradient Boost Decision Tree. Inf. Process. Agric. 2021. [Google Scholar] [CrossRef]
- Analytics Vidhya Which Algorithm Takes the Crown: Light GBM vs. XGBOOST? Available online: https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/ (accessed on 10 March 2022).
- Jiao, F.; Xu, J.; Yu, L.; Schuurmans, D. Protein Fold Recognition Using the Gradient Boost Algorithm. In Proceedings of the Computational Systems Bioinformatics; World Scientific, University of California: San Diego, CA, USA, 2006; pp. 43–53. [Google Scholar] [CrossRef]
- Nagano, S.; Moriyuki, S.; Wakamori, K.; Mineno, H.; Fukuda, H. Leaf-Movement-Based Growth Prediction Model Using Optical Flow Analysis and Machine Learning in Plant Factory. Front. Plant Sci. 2019, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Jaihuni, M.; Basak, J.K.; Khan, F.; Okyere, F.G.; Arulmozhi, E.; Bhujel, A.; Park, J.; Hyun, L.D.; Kim, H.T. A Partially Amended Hybrid Bi-GRU—ARIMA Model (PAHM) for Predicting Solar Irradiance in Short and Very-Short Terms. Energies 2020, 13, 435. [Google Scholar] [CrossRef] [Green Version]
- Wenting, H.; Yu, S.; Tengfei, X.; Xiangwei, C.; Ooi, S.K. Detecting Maize Leaf Water Status by Using Digital RGB Images. Int. J. Agric. Biol. Eng. 2014, 7, 45–53. [Google Scholar]
- Qiuxia, L.; Gangqiang, C.; Mingjie, S.; Guangyong, Q. Research Progress on Plant Leaf Senescence. Chin. Agric. Sci. Bull. 2006, 22, 282–285. [Google Scholar]
- Yadav, S.P.; Ibaraki, Y.; Dutta Gupta, S. Estimation of the Chlorophyll Content of Micropropagated Potato Plants Using RGB Based Image Analysis. Plant Cell Tissue Organ Cult. 2010, 100, 183–188. [Google Scholar] [CrossRef]
- Garson, G.D. Partial Least Squares. In Regression and Structural Equation Models; Statistical Associates Publishers: Asheboro, NC, USA, 2016. [Google Scholar]
- Keskin, M.; Sekerli, Y.E.; Gunduz, K. Influence of Leaf Water Content on the Prediction of Nutrient Stress in Strawberry Leaves Using Chromameter. Int. J. Agric. Biol. 2018, 20, 2103–2109. [Google Scholar]
- Abdalla, A.; Cen, H.; Wan, L.; Mehmood, K.; He, Y. Nutrient Status Diagnosis of Infield Oilseed Rape via Deep Learning-Enabled Dynamic Model. IEEE Trans. Ind. Inform. 2020, 17, 4379–4389. [Google Scholar] [CrossRef]
- Chugh, A. MAE, MSE, RMSE, Coefficient of Determination, Adjusted R Squared—Which Metric Is Better? 2020. Available online: https://medium.com/analytics-vidhya/MAE-mse-RMSE-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e (accessed on 13 March 2022).
Parameters | R Mean Value | G Mean Value | B Mean Value |
---|---|---|---|
Estimators | 1000 | 1000 | 400 |
Learning rate | 0.1 | 0.1 | 0.01 |
Bagging seed | 100 | 100 | 1 |
Subsample | 0.75 | 0.75 | 0.75 |
Max number of leaves | 80 | 80 | 80 |
Max depth | 6 | 6 | 10 |
Max bin | 10 | 10 | 100 |
Color Mean Value | MLR | GBR | ||||
---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |
R | 0.68 | 8.67 | 6.73 | 0.99 | 1.40 | 1.07 |
G | 0.62 | 9.69 | 7.70 | 0.99 | 1.43 | 1.08 |
B | 0.58 | 7.95 | 5.88 | 0.83 | 5.11 | 3.73 |
Color Mean Value | MLR | GBR | ||||
---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |
R | 0.67 | 8.59 | 6.63 | 0.77 | 7.16 | 5.53 |
G | 0.57 | 9.12 | 7.49 | 0.72 | 7.37 | 5.55 |
B | 0.56 | 6.81 | 5.23 | 0.70 | 5.68 | 4.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhavi, B.G.K.; Basak, J.K.; Paudel, B.; Kim, N.E.; Choi, G.M.; Kim, H.T. Prediction of Strawberry Leaf Color Using RGB Mean Values Based on Soil Physicochemical Parameters Using Machine Learning Models. Agronomy 2022, 12, 981. https://doi.org/10.3390/agronomy12050981
Madhavi BGK, Basak JK, Paudel B, Kim NE, Choi GM, Kim HT. Prediction of Strawberry Leaf Color Using RGB Mean Values Based on Soil Physicochemical Parameters Using Machine Learning Models. Agronomy. 2022; 12(5):981. https://doi.org/10.3390/agronomy12050981
Chicago/Turabian StyleMadhavi, Bolappa Gamage Kaushalya, Jayanta Kumar Basak, Bhola Paudel, Na Eun Kim, Gyeong Mun Choi, and Hyeon Tae Kim. 2022. "Prediction of Strawberry Leaf Color Using RGB Mean Values Based on Soil Physicochemical Parameters Using Machine Learning Models" Agronomy 12, no. 5: 981. https://doi.org/10.3390/agronomy12050981
APA StyleMadhavi, B. G. K., Basak, J. K., Paudel, B., Kim, N. E., Choi, G. M., & Kim, H. T. (2022). Prediction of Strawberry Leaf Color Using RGB Mean Values Based on Soil Physicochemical Parameters Using Machine Learning Models. Agronomy, 12(5), 981. https://doi.org/10.3390/agronomy12050981