Removal of Dominant Species Impairs Nitrogen Utilization in Co-Existing Ledum palustre and Vaccinium uliginosum Communities Subjected to Five-Year Continuous Interruptions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Condition
2.2. Study Placement and Design
2.3. Field Sampling
2.4. Chemical Analysis
2.5. Parameter Calculation and Statistics
3. Results
3.1. Soil Chemicophysical Properties
3.2. Plant Parameters
3.3. Soil Microbial Community
3.4. Relationship between Soil Microbial Phyla and Plant Variables
3.5. Principal Component Analysis
4. Discussion
4.1. N Availabilities in Two Communities with Contrasting Soil Chemicophysical Properties
4.2. Removal of Dominant Species Modifies N Availability
4.3. N Utilization and Driving Forces
4.4. Limits of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Unasylva. FAO Forestry: Towards a Harmonized Definition of Non-Wood Forest Products. Available online: https://www.fao.org/3/x2450e/x2450e0d.htm#fao%20forestry (accessed on 26 March 2022).
- FAO. About Non-WOOD Forest Products. Available online: https://www.fao.org/forestry/nwfp/6388/en/ (accessed on 26 March 2022).
- Calama, R.; Tome, M.; Sanchez-Gonzalez, M.; Miina, J.; Spanos, K.; Palahi, M. Modelling non-wood forest products in Europe: A review. For. Syst. 2010, 19, 69–85. [Google Scholar] [CrossRef]
- Vacik, H.; Wolfslehner, B.; Huber, P.; Ruprecht, H. Analysis of Non Wood Forest Products and Forest Services in Sustainable Forest Management. Austrian J. For. Sci. 2014, 131, 147–169. [Google Scholar]
- Wannitikul, G. Deforestation in northeast Thailand, 1975–91: Results of a general statistical model. Singap. J. Trop. Geogr. 2005, 26, 102–118. [Google Scholar] [CrossRef]
- PerezGarcia, J.; Lippke, B.; Baker, J. Trade barriers in the Pacific forest sector: Who wins and who loses. Contemp. Econ. Policy 1997, 15, 87–103. [Google Scholar] [CrossRef]
- Tumaneng-Diete, T.; Ferguson, I.S.; MacLaren, D. Log export restrictions and trade policies in the Philippines: Bane or blessing to sustainable forest management? For. Policy Econ. 2005, 7, 187–198. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Guo, Y.L.; Zhu, F.X.; Jiang, Y. Prediction of the impact of climate change on fast-growing timber trees in China. For. Ecol. Manag. 2021, 501, 119653. [Google Scholar] [CrossRef]
- Liu, K.; Liang, Y.; He, H.S.; Wang, W.J.; Huang, C.; Zong, S.W.; Wang, L.; Xiao, J.T.; Du, H.B. Long-Term Impacts of China’s New Commercial Harvest Exclusion Policy on Ecosystem Services and Biodiversity in the Temperate Forests of Northeast China. Sustainability 2018, 10, 1071. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.D.; Sun, S.B.; Yeo-Chang, Y. Impact of Forest Logging Ban on the Welfare of Local Communities in Northeast China. Forests 2021, 12, 3. [Google Scholar] [CrossRef]
- Song, Y.Y.; Song, C.C.; Ren, J.S.; Tan, W.W.; Jin, S.F.; Jiang, L. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China. Sci. Total Environ. 2018, 625, 640–646. [Google Scholar] [CrossRef]
- Qu, H.C.; Xiang, R.; Obsie, E.Y.; Wei, D.W.; Drummond, F. Parameterization and Calibration of Wild Blueberry Machine Learning Models to Predict Fruit-Set in the Northeast China Bog Blueberry Agroecosystem. Agronomy 2021, 11, 1736. [Google Scholar] [CrossRef]
- Li, R.; Wang, P.; Guo, Q.Q.; Wang, Z.Y. Anthocyanin composition and content of the Vaccinium uliginosum berry. Food Chem. 2011, 125, 116–120. [Google Scholar] [CrossRef]
- Jiang, J.; Wei, J.; Yu, H.; He, S. The Developing Blueberry Industry in China. In The Developing Blueberry Industry in China; IntechOpen: London, UK, 2019. [Google Scholar]
- Ejankowski, W. Demographic variation of dwarf birch (Betula nana) in communities dominated by Ledum palustre and Vaccinium uliginosum. Biologia 2010, 65, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Rohrs-Richey, J.K.; Mulder, C.P.H. Effects of local changes in active layer and soil climate on seasonal foliar nitrogen concentrations of three boreal forest shrubs. Can. J. For. Res. 2007, 37, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Dampc, A.; Luczkiewicz, M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia 2013, 85, 130–143. [Google Scholar] [CrossRef]
- Gretsusnikova, T.; Jarvan, K.; Orav, A.; Koel, M. Comparative analysis of the composition of the essential oil from the shoots, leaves and stems the wild Ledum palustre L. from Estonia. In Proceedings of the 5th International Conference of the Nordic-Separation-Science-Society, Tallinn Univ Technol, Tallinn, Estonia, 26–29 August 2009; Tallinn University of Technology: Tallinn, Estonia, 2010; pp. 168–173. [Google Scholar]
- Jin, C.; Strembiski, W.; Kulchytska, Y.; Micetich, R.G.; Danesstalab, M. Flavonoid glycosides from Ledum palustre L. subsp. decumbens (Ait.) Hulton. DARU J. Pharm. Sci. 1999, 7, 5–8. [Google Scholar]
- Gao, C.Y.; He, J.B.; Cong, J.X.; Zhang, S.Q.; Wang, G.P. Impact of forest fires generated black carbon deposition fluxes in Great Hinggan Mountains (China). Land Degrad. Dev. 2018, 29, 2073–2081. [Google Scholar] [CrossRef]
- Qu, B.; Li, W.; Chen, Y.; Liu, J. Protection versus culture-driven exploitation of wild plant resources: The case on Changbai Mountain. Int. J. Sustain. Dev. World Ecol. 2011, 18, 404–411. [Google Scholar] [CrossRef]
- Kocianova-Mackova, D. Population structure of Ledum palustre in Klin peat bog in NW Slovakia. Biologia 1999, 54, 61–65. [Google Scholar]
- Che, L.N.; Cheng, M.Y.; Xing, L.B.; Cui, Y.F.; Wan, L.H. Effects of permafrost degradation on soil organic matter turnover and plant growth. Catena 2022, 208, 9. [Google Scholar] [CrossRef]
- Shan, W.; Xu, Z.; Guo, Y.; Zhang, C.; Hu, Z.; Wang, Y. Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China. Sci. Rep. 2020, 10, 21297. [Google Scholar] [CrossRef]
- Iturrate-Garcia, M.; Heijmans, M.; Cornelissen, J.H.C.; Schweingruber, F.H.; Niklaus, P.A.; Schaepman-Strub, G. Plant trait response of tundra shrubs to permafrost thaw and nutrient addition. Biogeosciences 2020, 17, 4981–4998. [Google Scholar] [CrossRef]
- Mukhortova, L.; Krivobokov, L.; Sergeeva, O.; Meteleva, M.; Schepaschenko, D.J.B.W.C. Specifisity of phytocoenotic structure and biomass of ground cover in northern boreal forests of Middle Siberia. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 24, p. 57. [Google Scholar]
- Shaver, G.R.; Chapin, F.S. Effect of Fertilizer on Production and Biomass of Tussock Tundra, Alaska, U.S.A. Arct. Alp. Res. 1986, 18, 261–268. [Google Scholar] [CrossRef]
- Wei, H.X.; Zhao, H.T.; Chen, X. Foliar N:P Stoichiometry in Aralia elata Distributed on Different Slope Degrees. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.X.; Zhao, H.T.; Chen, X.; He, X.Y. Secondary metabolites, carbohydrate accumulation, and nutrient uptake in Aralia elata (Miq.) Seem seedlings exposed to shoot cutting and different LED spectra. Acta Physiol. Plant. 2020, 42, 162. [Google Scholar] [CrossRef]
- Wei, H.X.; Chen, X.; Chen, G.S.; Zhao, H.T. Foliar nutrient and carbohydrate in Aralia elata can be modified by understory light quality in forests with different structures at Northeast China. Ann. For. Res. 2019, 62, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.X.; Xu, C.Y.; Ma, L.Y.; Wang, W.J.; Duan, J.; Jiang, L.N. Short-term Nitrogen (N)-Retranslocation within Larix olgensis Seedlings is Driven to Increase by N-deposition: Evidence from a Simulated N-15 Experiment in Northeast China. Int. J. Agric. Biol. 2014, 16, 1031–1040. [Google Scholar]
- Xing, A.J.; Xu, L.C.; Shen, H.H.; Du, E.Z.; Liu, X.Y.; Fang, J.Y. Long term effect of nitrogen addition on understory community in a Chinese boreal forest. Sci. Total Environ. 2019, 646, 989–995. [Google Scholar] [CrossRef]
- Wei, H.X.; Xu, C.Y.; Ren, J.; Ma, L.Y.; Duan, J.; Jiang, L.N. Newly transplanted Larix olgensis Henry stock with greater root biomass has higher early nitrogen flux rate. Soil Sci. Plant Nutr. 2013, 59, 740–749. [Google Scholar] [CrossRef]
- Wei, H.X.; Guo, P. Carbohydrate metabolism during new root growth in transplanted Larix olgensis seedlings: Post-transplant response to nursery-applied inorganic fertilizer and organic amendment. Iforest-Biogeosci. For. 2017, 10, 15–22. [Google Scholar] [CrossRef] [Green Version]
- He, C.X.; Gao, J.; Zhao, Y.; Liu, J. Root Foraging Precision of Pinus pumila (Pall.) Regel Subjected to Contrasting Light Spectra. Plants 2021, 10, 1482. [Google Scholar] [CrossRef]
- Tan, L.; Fan, R.F.; Sun, H.F.; Guo, S.L. Root foraging of birch and larch in heterogeneous soil nutrient patches under water deficit. PLoS ONE 2021, 16, e0255848. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B.; Shugart, H.H. Environmental-factors and ecological processes in boreal forests. Annu. Rev. Ecol. Syst. 1989, 20, 1–28. [Google Scholar] [CrossRef]
- Xu, W.Y.; Elberling, B.; Ambus, P.L. Fire increases soil nitrogen retention and alters nitrogen uptake patterns among dominant shrub species in an Arctic dry heath tundra. Sci. Total Environ. 2022, 807, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.; Wei, H.X. Chitosan oligosaccharide addition affects current-year shoot of post-transplant Buddhist pine (Podocarpus macrophyllus) seedlings under contrasting photoperiods. Iforest-Biogeosci. For. 2017, 10, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, Z.; Xu, S.J.; Li, Y.J.; He, C.X. Nutrient assimilation and utilization in Korean pine (Pinus koraiensis) seedlings exposed to exponential fertilization under contrasting spectra. Commun. Soil Sci. Plant Anal. 2020, 51, 2414–2428. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, X.; Wei, H.X.; Lv, J.; Chen, C.; Liu, X.Y.; Wen, Q.; Jia, L.M. Nutrient uptake and utilization in Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr.) seedlings exposed to a combination of light-emitting diode spectra and exponential fertilization. Soil Sci. Plant Nutr. 2019, 65, 358–368. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Zhao, S.J.; Tang, J.Y.; Zhu, H.; Wei, H.X.; Cui, W.; Wang, M.H.; Guo, P. White-light emitting diodes’ spectrum effect on photosynthesis and nutrient use efficiency in Podocarpus macrophyllus seedlings. J. Plant Nutr. 2020, 43, 2876–2884. [Google Scholar] [CrossRef]
- Chu, X.L.; Luo, X.Y.; Zhou, Z.C. Exponential fertilization on red-seed tree (Ormosia hosiei) seedlings subjected to contrasting light conditions: Do we really need intensive nutrient loading? Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12244. [Google Scholar] [CrossRef]
- Li, X.W.; Chen, Q.X.; Lei, H.Q.; Wang, J.W.; Yang, S.; Wei, H.X. Nutrient Uptake and Utilization by Fragrant Rosewood (Dalbergia odorifera) Seedlings Cultured with Oligosaccharide Addition under Different Lighting Spectra. Forests 2018, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.X.; Hauer, R.J.; Chen, G.S.; Chen, X.; He, X.Y. Growth, Nutrient Assimilation, and Carbohydrate Metabolism in Korean Pine (Pinus koraiensis) Seedlings in Response to Light Spectra. Forests 2020, 11, 44. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Tan, W.Z.; Li, B.; Wen, L.; Lei, G.C.; Blakeslee, A. Habitat alteration facilitates the dominance of invasive species through disrupting niche partitioning in floodplain wetlands. Divers. Distrib. 2021, 27, 1861–1871. [Google Scholar] [CrossRef]
- Feng, J.Y.; Li, Z.; Hao, Y.F.; Wang, J.; Ru, J.Y.; Song, J.; Wan, S.Q. Litter removal exerts greater effects on soil microbial community than understory removal in a subtropical-warm temperate climate transitional forest. For. Ecol. Manag. 2022, 505, 119867. [Google Scholar] [CrossRef]
- Deng, J.J.; Zhou, W.M.; Dai, L.M.; Yuan, Q.; Zhou, L.; Qi, L.; Yu, D.P. The Effects of Shrub Removal on Soil Microbial Communities in Primary Forest, Secondary Forest and Plantation Forest on Changbai Mountain. Microb. Ecol. 2022, online. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.X.; Chen, G.S.; Chen, X.; Zhao, H.T. Geographical distribution of Aralia elata characteristics correlated with topography and forest structure in Heilongjiang and Jilin Provinces, Northeast China. J. For. Res. 2021, 32, 1115–1125. [Google Scholar] [CrossRef]
- Raison, R.J.; Connell, M.J.; Khanna, P.K. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 1987, 19, 521–530. [Google Scholar] [CrossRef]
- Kuiters, A.T.; Sarink, H.M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 1986, 18, 475–480. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.; Mulvaney, C. Nitrogen-Total, Methods of Soil Analysis; American Society of Agronomy: Madison, MI, USA, 1982. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.K.; Liang, W.J.; Jiang, Y.; Dai, G.H.; Wang, X.G.; Han, S.J. Distribution of Soil Organic Carbon Fractions Along the Altitudinal Gradient in Changbai Mountain, China. Pedosphere 2011, 21, 615–620. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–160. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Black, T. Abundance and distribution of the multi-functional root associated fungus Meliniomyces variabilis. Master Thesis, Saint Mary’s University, Halifax, NS, Canada, 2016. [Google Scholar]
- Grelet, G.A.; Johnson, D.; Paterson, E.; Anderson, I.C.; Alexander, I.J. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol. 2009, 182, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.C.; Lin, W.R.; Hsu, Y.C.; Pan, H.Y. Influences of Three Oidiodendron maius Isolates and Two Inorganic Nitrogen Sources on the Growth of Rhododendron kanehirae. Hortic. Sci. Technol. 2020, 38, 742–753. [Google Scholar]
- Vohnik, M.; Albrechtova, J.; Vosatka, M. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis 2005, 40, 87–96. [Google Scholar]
- Ding, X.; Li, X.; Qi, Y.; Zhao, Z.; Sun, D.; Wei, H. Depth-Dependent C-N-P Stocks and Stoichiometry in Ultisols Resulting from Conversion of Secondary Forests to Plantations and Driving Forces. Forests 2021, 12, 1300. [Google Scholar] [CrossRef]
- Li, X.W.; Gao, Y.; Wei, H.X.; Xia, H.T.; Chen, Q.X. Growth, biomass accumulation and foliar nutrient status in fragrant rosewood (Dalbergia odorifera TC Chen) seedlings cultured with conventional and exponential fertilizations under different photoperiod regimes. Soil Sci. Plant Nutr. 2017, 63, 153–162. [Google Scholar] [CrossRef] [Green Version]
- An, B.Y.; Wei, H.X.; Li, L.L.; Guo, P. Nutrient Uptake and Utilization and Antioxidants of Fruits in Red Raspberry (Rubus idaeus L.) Cultivar ’Autumn Bliss’ in response to Fertilization under Extended Photoperiod. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Salifu, K.F.; Timmer, V.R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Can. J. For. Res. 2003, 33, 1287–1294. [Google Scholar] [CrossRef]
- Suzuki, S.; Kudo, G. Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Glob. Change Biol. 1997, 3, 108–115. [Google Scholar] [CrossRef]
- Castells, E.; Penuelas, J.; Valentine, D.W. Influence of the phenolic compound bearing species Ledum palustre on soil N cycling in a boreal hardwood forest. Plant Soil 2003, 251, 155–166. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, J.J.; Zhang, M.; Yan, Q.L.; Sun, O.J. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: A comparison between natural secondary forest and larch plantation. J. Plant Ecol. 2010, 3, 175–182. [Google Scholar] [CrossRef]
- Sui, X.; Liu, Y.N.; Yang, L.B.; Li, M.S.; Zhang, S.Y.; Zhang, T.; Wang, J.F.; Cui, X.Y.; Ni, H.W. Response of Soil AMF Diversity to Nitrogen Deposition in a Calamagrostis augustifolia Wetland of Sanjiang Plain, China. Int. J. Agric. Biol. 2019, 22, 1565–1572. [Google Scholar]
- Parlak, M.; Parlak, A.O. Effect of soil compaction on root growth and nutrient uptake of forage crops. J. Food Agric. Environ. 2011, 9, 275–278. [Google Scholar]
- Makarov, M.I.; Malysheva, T.I.; Kadulin, M.S.; Verkhovtseva, N.V.; Sabirova, R.V.; Lifanova, V.O.; Zhuravleva, A.I.; Karpukhin, M.M. The Effect of Ericoid Mycorrhizal and Ectomycorrhizal Plants on Soil Properties of Grass Meadow in Tundra of the Khibiny Mountains. Eurasian Soil Sci. 2020, 53, 569–579. [Google Scholar] [CrossRef]
- Urcelay, C.; Bret-Harte, M.S.; Diaz, S.; Chapin, F.S. Mycorrhizal colonization mediated by species interactions in arctic tundra. Oecologia 2003, 137, 399–404. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.; Bao, J.; Zhu, H.; Chen, Y.; Luo, Y.; Zhang, L. Microbial diversity and physicochemical properties in farmland soils amended by effective microorganisms and fulvic acid for cropping Asian ginseng. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12563. [Google Scholar] [CrossRef]
- Miller, B.D.; Hawkins, B.J. Nitrogen uptake and utilization by slow- and fast-growing families of interior spruce under contrasting fertility regimes. Can. J. For. Res. -Rev. Can. Rech. For. 2003, 33, 959–966. [Google Scholar] [CrossRef]
- Hawkins, B.J. Family variation in nutritional and growth traits in Douglas-fir seedlings. Tree Physiol. 2007, 27, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, M.Y.; Glass, A.D.M. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J. Plant Nutr. 1981, 4, 289–302. [Google Scholar] [CrossRef]
- Martinez-Alcantara, B.; Quinones, A.; Primo-Millo, E.; Legaz, F. Nitrogen remobilization response to current supply in young citrus trees. Plant Soil 2011, 342, 433–443. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Shevtsova, A.; Chapin, F.S. Plant responses to species removal and experimental warming in Alaskan tussock tundra. Oikos 1999, 84, 417–434. [Google Scholar] [CrossRef]
Soil Parameter | Source of Variance | |||||
---|---|---|---|---|---|---|
Dominant | Interruption | D × I | ||||
F Value | p Value | F Value | p Value | F Value | p Value | |
Bulk density | 8.07 1 | 0.0101 | 56.54 | <0.0001 | 0.04 | 0.8344 |
pH | 6.47 | 0.0193 | 2.05 | 0.1675 | 7.22 | 0.0142 |
Phenol content | 1.95 | 0.1775 | 22.34 | 0.0001 | 3.44 | 0.0786 |
SOC 2 | 33.05 | <0.0001 | 18.82 | 0.0003 | 6.45 | 0.0195 |
SON 3 | 50.36 | <0.0001 | 204.74 | <0.0001 | 9.51 | 0.0059 |
C/N ratio 4 | 16.70 | 0.0006 | 25.04 | <0.0001 | 4.61 | 0.0442 |
Microbial biomass C | 96.09 | <0.0001 | 53.88 | <0.0001 | 7.59 | 0.0122 |
Microbial biomass N | 2.11 | 0.1621 | 83.62 | <0.0001 | 4.48 | 0.0470 |
N mineralization | 120.02 | <0.0001 | 76.01 | <0.0001 | 8.16 | 0.0098 |
Ammonium N | 34.92 | <0.0001 | 92.69 | <0.0001 | 2.72 | 0.1150 |
Nitrate N | 5.76 | 0.0260 | 13.84 | 0.0010 | 7.71 | 0.0120 |
Total N content | 8.07 | 0.0101 | 56.54 | <0.0001 | 0.04 | 0.8344 |
Total P content | 0.37 | 0.5516 | 2.52 | 0.1278 | 1.51 | 0.2341 |
Total K content | 1.50 | 0.2347 | 0.01 | 0.9262 | 2.09 | 0.1634 |
Soil Property | Ledum palustre | Vaccinium uliginosum | ||
---|---|---|---|---|
Co-Exist | Removal | Co-Exist | Removal | |
Bulk density (g cm−3) | 28.79 ± 2.47 a 1 | 36.12 ± 2.26 a | 25.72 ± 2.85 a | 33.48 ± 0.93 a |
pH | 4.47 ± 0.19 a | 3.99 ± 0.44 b | 4.45 ± 0.14 a | 4.60 ± 0.16 a |
Soluble phenol content (mg kg−1) | 42.94 ± 10.62 a | 30.72 ± 4.68 a | 44.88 ± 15.32 a | 16.89 ± 3.98 a |
SOC (%) | 7.13 ± 0.61 a | 6.77 ± 0.59 a | 6.49 ± 0.22 a | 5.11 ± 0.22 b |
SON (%) | 1.36 ± 0.05 d | 1.67 ± 0.09 b | 1.47 ± 0.05 c | 1.94 ± 0.05 a |
C/N ratio | 34.62 ± 3.85 a | 31.12 ± 3.49 a | 32.24 ± 1.52 a | 23.48 ± 0.93 b |
Microbial biomass C (mg kg−1) | 48.96 ± 11.05 b | 22.76 ± 11.47 c | 120.72 ± 16.41 a | 63.03 ± 11.50 b |
Microbial biomass N (mg kg−1) | 31.23 ± 4.44 a | 13.12 ± 4.30 b | 25.49 ± 3.41 a | 14.19 ± 1.41 b |
Net N mineralization (mg kg−1 d−1) | 2.52 ± 0.37 b | 3.89 ± 0.23 a | 1.55 ± 0.22 c | 2.25 ± 0.21 b |
Ammonium N (mg kg−1) | 34.37 ± 2.37 a | 23.91 ± 2.18 a | 27.36 ± 2.00 a | 19.95 ± 1.71 a |
Nitrate N (mg kg−1) | 0.44 ± 0.14 b | 1.07 ± 0.32 a | 0.48 ± 0.11 b | 0.57 ± 0.24 b |
Total N content (mg g−1) | 28.79 ± 2.47 a | 36.12 ± 2.26 a | 25.72 ± 2.85 a | 33.48 ± 0.93 a |
Total P content (mg g−1) | 7.90 ± 0.32 a | 8.04 ± 0.70 a | 7.67 ± 0.84 a | 8.72 ± 1.22 a |
Total K content (mg g−1) | 21.96 ± 3.43 a | 19.76 ± 2.31 a | 21.60 ± 4.13 a | 24.10 ± 4.33 a |
Plant Parameter | Source of Variance | |||||
---|---|---|---|---|---|---|
Dominant | Interruption | D × I | ||||
F Value | p Value | F Value | p Value | F Value | p Value | |
Biomass | 11.06 1 | 0.0034 | 36.10 | <0.0001 | 0.91 | 0.3518 |
Total N content (mg g−1) | 0.12 | 0.7358 | 4.98 | 0.0372 | 0.07 | 0.7884 |
N utilization index | 4.96 | 0.0377 | 6.61 | 0.0182 | 1.10 | 0.3063 |
Colonization rate (%) | 6.21 | 0.0216 | 37.13 | <0.0001 | 3.42 | 0.0791 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Fu, X.; Zhou, X.; Gao, D.; Zhang, L.; Wu, F. Removal of Dominant Species Impairs Nitrogen Utilization in Co-Existing Ledum palustre and Vaccinium uliginosum Communities Subjected to Five-Year Continuous Interruptions. Agronomy 2022, 12, 932. https://doi.org/10.3390/agronomy12040932
Duan Y, Fu X, Zhou X, Gao D, Zhang L, Wu F. Removal of Dominant Species Impairs Nitrogen Utilization in Co-Existing Ledum palustre and Vaccinium uliginosum Communities Subjected to Five-Year Continuous Interruptions. Agronomy. 2022; 12(4):932. https://doi.org/10.3390/agronomy12040932
Chicago/Turabian StyleDuan, Yadong, Xuepeng Fu, Xingang Zhou, Danmei Gao, Lei Zhang, and Fengzhi Wu. 2022. "Removal of Dominant Species Impairs Nitrogen Utilization in Co-Existing Ledum palustre and Vaccinium uliginosum Communities Subjected to Five-Year Continuous Interruptions" Agronomy 12, no. 4: 932. https://doi.org/10.3390/agronomy12040932
APA StyleDuan, Y., Fu, X., Zhou, X., Gao, D., Zhang, L., & Wu, F. (2022). Removal of Dominant Species Impairs Nitrogen Utilization in Co-Existing Ledum palustre and Vaccinium uliginosum Communities Subjected to Five-Year Continuous Interruptions. Agronomy, 12(4), 932. https://doi.org/10.3390/agronomy12040932