Does Phosphorus Fertilization Increase Biomass Production and Salinity Tolerance of Blue Panicum (Panicum antidotale Retz.) in the Salt-Affected Soils of Arid Regions?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Climate
2.2. Experimental Design, Treatments, and Crop Management Practices
2.3. Measurements
2.3.1. Forage Biomass
2.3.2. Soil Salinity
2.3.3. Stomatal Conductance
2.3.4. Leaf Mineral Content
2.4. Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Effect of Irrigation Water Salinity on Fresh Biomass Production
3.3. Stomatal Conductance
3.4. Leaf Mineral Content
3.5. Correlation Matrix
3.6. Multivariate Analysis
3.7. Salinity in Different Soil Depth and Distance from the Plant
4. Discussion
4.1. Effect of Phosphorus Fertilization
4.2. Stomatal Conductance
4.3. Mineral Nutrition as Affected by Salinity and P Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Global Map of Salt-Affected Soils | FAO SOILS PORTAL | Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/ (accessed on 18 March 2022).
- Amimi, T.; Elbelrhiti, K.; Adnani, M.; Elbelrhiti, H.; Chao, J.; Oubbih, J. Soil Map of Khnifiss Lagoon and Its Surrounding Environment. Arab. J. Geosci. 2021, 14, 515. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S. Critical Knowledge Gaps and Research Priorities in Global Soil Salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar]
- Zeng, H.; Wu, B.; Zhang, M.; Zhang, N.; Elnashar, A.; Zhu, L.; Zhu, W.; Wu, F.; Yan, N.; Liu, W. Dryland Ecosystem Dynamic Change and Its Drivers in Mediterranean Region. Curr. Opin. Environ. Sustain. 2021, 48, 59–67. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhowmik, P.C.; Hossain, M.A.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential Use of Halophytes to Remediate Saline Soils. BioMed Res. Int. 2014, 2014, e589341. [Google Scholar] [CrossRef]
- Hamed, K.B.; Castagna, A.; Ranieri, A.; García-Caparrós, P.; Santin, M.; Hernandez, J.A.; Espin, G.B. Halophyte Based Mediterranean Agriculture in the Contexts of Food Insecurity and Global Climate Change. Environ. Exp. Bot. 2021, 191, 104601. [Google Scholar] [CrossRef]
- Brakez, M.; Daoud, S.; Harrouni, M.C.; Tachbibi, N.; Brakez, Z. Nutritional Value of Chenopodium Quinoa Seeds Obtained from an Open Field Culture Under Saline Conditions. In Halophytes for Food Security in Dry Lands; Khan, M.A., Ozturk, M., Gul, B., Ahmed, M.Z., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 37–47. ISBN 9780128018545. [Google Scholar]
- El Aich, A. Fodder Trees and Shrubs in Range and Farming Systems in North Africa. FAO Anim. Prod. Health Pap. 1992, 102, 61–73. [Google Scholar]
- Khan, M.A.; Ansari, R.; Ali, H.; Gul, B.; Nielsen, B.L. Panicum Turgidum, a Potentially Sustainable Cattle Feed Alternative to Maize for Saline Areas. Agric. Ecosyst. Environ. 2009, 129, 542–546. [Google Scholar] [CrossRef]
- Ali, H.; Gul, B.; Adnan, M.Y.; Ahmed, M.Z.; Aziz, I.; Gulzar, S.; Ansari, R.; Khan, M.A. NPK Mediated Improvement in in Biomass Production, Photosynthesis and and Na+ Regulation in Panicum Antidotale Under under Saline Conditions. Pak. J. Bot. 2014, 46, 1975–1979. [Google Scholar]
- Ashraf, M.Y.; Awan, A.R.; Mahmood, K. Rehabilitation of Saline Ecosystems through Cultivation of Salt Tolerant Plants. Pak. J. Bot. 2012, 44, 69–75. [Google Scholar]
- Jacobs, S.W.L.; Wall, C.A. Poaceae. Flora New South Wales 1993, 4, 410–656. [Google Scholar]
- Eshghizadeh, H.R.; Kafi, M.; Nezami, A. The Mechanisms of Salinity Tolerance in the Xero-Halophyte Blue Panicgrass (Panicum antidotale Retz). Not. Sci. Biol. 2012, 4, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Cope, T.A. Poaceae. In Flora of Pakistan; Nasir, E., Ali, S.I., Eds.; Karachi University Press: Karachi, Pakistan, 1982. [Google Scholar]
- Ahmad, M.S.A.; Ashraf, M.; Ali, Q. Soil Salinity as a Selection Pressure Is a Key Determinant for the Evolution of Salt Tolerance in Blue Panicgrass (Panicum antidotale Retz.). Flora Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 37–45. [Google Scholar] [CrossRef]
- Bokhari, U.G.; ALYaeesh, F.; AL Noori, M. Potentials of Forage Crops. Saudi Arab. J. Sci. Res. 1987, 6, 359–367. [Google Scholar]
- Ashraf, M. Some Important Physiological Selection Criteria for Salt Tolerance in Plants. Flora Morphol. Distrib. Funct. Ecol. Plants 2004, 199, 361–376. [Google Scholar] [CrossRef]
- Sallam, S.M.A.; Khalil, M.M.H.; Attia, M.F.A.; El-Zaiat, H.M.; Abdellattif, M.G.; Abo-Zeid, H.M.; Zeitoun, M.M. Utilization of Blue Panic (Panicum antidotale) as an Alternative Feed Resource for Feeding Barky Sheep in Arid Regions. Trop. Anim. Health Prod. 2019, 51, 2351–2360. [Google Scholar] [CrossRef]
- Munns, R.; Day, D.A.; Fricke, W.; Watt, M.; Arsova, B.; Barkla, B.J.; Bose, J.; Byrt, C.S.; Chen, Z.-H.; Foster, K.J.; et al. Energy Costs of Salt Tolerance in Crop Plants. New Phytol. 2020, 225, 1072–1090. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Koyro, H.-W.; Hussain, T.; Huchzermeyer, B.; Khan, M.A. Photosynthetic and Growth Responses of a Perennial Halophytic Grass Panicum turgidum to Increasing NaCl Concentrations. Environ. Exp. Bot. 2013, 91, 22–29. [Google Scholar] [CrossRef]
- Ashraf, M. Relationships between Leaf Gas Exchange Characteristics and Growth of Differently Adapted Populations of Blue Panicgrass (Panicum antidotale Retz.) under Salinity or Waterlogging. Plant Sci. 2003, 165, 69–75. [Google Scholar] [CrossRef]
- Ding, Z.; Kheir, A.M.S.; Ali, M.G.M.; Ali, O.A.M.; Abdelaal, A.I.N.; Lin, X.; Zhou, Z.; Wang, B.; Liu, B.; He, Z. The Integrated Effect of Salinity, Organic Amendments, Phosphorus Fertilizers, and Deficit Irrigation on Soil Properties, Phosphorus Fractionation and Wheat Productivity. Sci. Rep. 2020, 10, 2736. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Shahzad, S.M.; Imtiaz, M.; Rizwan, M.S. Salinity Effects on Nitrogen Metabolism in Plants–Focusing on the Activities of Nitrogen Metabolizing Enzymes: A Review. J. Plant Nutr. 2018, 41, 1065–1081. [Google Scholar] [CrossRef]
- Irshad, M.; Yamamoto, S.; Eneji, A.E.; Endo, T.; Honna, T. Urea and Manure Effect on Growth and Mineral Contents of Maize under Saline Conditions. J. Plant Nutr. 2002, 25, 189–200. [Google Scholar] [CrossRef]
- Bouras, H.; Choukr-Allah, R.; Amouaouch, Y.; Bouaziz, A.; Devkota, K.P.; El Mouttaqi, A.; Bouazzama, B.; Hirich, A. How Does Quinoa (Chenopodium quinoa Willd.) Respond to Phosphorus Fertilization and Irrigation Water Salinity? Plants 2022, 11, 216. [Google Scholar] [CrossRef]
- Bouras, H.; Bouaziz, A.; Bouazzama, B.; Hirich, A.; Choukr-Allah, R. How Phosphorus Fertilization Alleviates the Effect of Salinity on Sugar Beet (Beta vulgaris L.) Productivity and Quality. Agronomy 2021, 11, 1491. [Google Scholar] [CrossRef]
- Bouras, H.; Bouaziz, A.; Choukr-Allah, R.; Hirich, A.; Devkota, K.P.; Bouazzama, B. Phosphorus Fertilization Enhances Productivity of Forage Corn (Zea mays L.) Irrigated with Saline Water. Plants 2021, 10, 2608. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity–Mineral Nutrient Relations in Horticultural Crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Mineral Element Acquisition and Growth Response of Plants Grown in Saline Environments. Agric. Ecosyst. Environ. 1992, 38, 275–300. [Google Scholar] [CrossRef]
- Dey, G.; Banerjee, P.; Sharma, R.K.; Maity, J.P.; Etesami, H.; Shaw, A.K.; Huang, Y.-H.; Huang, H.-B.; Chen, C.-Y. Management of Phosphorus in Salinity-Stressed Agriculture for Sustainable Crop Production by Salt-Tolerant Phosphate-Solubilizing Bacteria—A Review. Agronomy 2021, 11, 1552. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar Soil Amendment on Alleviation of Drought and Salt Stress in Plants: A Critical Review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef]
- Khorsandi, F.; Yazdi, F.A. Estimation of Saturated Paste Extracts’ Electrical Conductivity from 1:5 Soil/Water Suspension and Gypsum. Commun. Soil Sci. Plant Anal. 2011, 42, 315–321. [Google Scholar] [CrossRef]
- Wolf, B. A Comprehensive System of Leaf Analyses and Its Use for Diagnosing Crop Nutrient Status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; University of California: Berkeley, CA, USA, 1961. [Google Scholar]
- Marcum, K.B.; Murdoch, C.L. Salinity Tolerance Mechanisms of Six C4 Turfgrasses. J. Am. Soc. Hortic. Sci. 1994, 119, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Liu, X. Low Salinity Improves Photosynthetic Performance in Panicum Antidotale Under Drought Stress. Front. Plant Sci. 2020, 11, 13. [Google Scholar] [CrossRef]
- Farrag, K.; Abdelhakim, S.G.; Abd El-Tawab, A.R.; Abdelrahman, H. Growth Response of Blue Panic Grass (Panicum antidotale) to Saline Water Irrigation and Compost Applications. Water Sci. 2021, 35, 31–38. [Google Scholar] [CrossRef]
- Jamil, M.; Rha, E.-S. The Effect of Salinity (NaCl) on the Germination and Seedling of Sugar Beet (Beta vulgaris L.) and Cabbage (Brassica oleracea L.). Plant Resour. 2004, 7, 226–232. [Google Scholar]
- AI-Karaki, G.N. Barley Response to Salt Stress at Varied Levels of Phosphorus. J. Plant Nutr. 1997, 20, 1635–1643. [Google Scholar] [CrossRef]
- Khosh Kholgh Sima, N.A.; Ahmad, S.T.; Alitabar, R.A.; Mottaghi, A.; Pessarakli, M. Interactive Effects of Salinity and Phosphorus Nutrition on Physiological Responses of Two Barley Species. J. Plant Nutr. 2012, 35, 1411–1428. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Dikilitas, M.; Tuna, A. Alleviation of Salt Stress-Induced Adverse Effects on Maize Plants by Exogenous Application of Indoleacetic Acid (IAA) and Inorganic Nutrients—A Field Trial. Aust. J. Crop. Sci. 2013, 7, 249–254. [Google Scholar]
- Jahan, M.N.; Barua, S.; Ali, H.; Ali, M.N.; Chowdhury, M.S.H.; Hasan, M.M.; Ferdous, T.; Eti, F.S.; Khayer, A.; Hossen, K. Effects of Phosphorus Fertilization on Hybrid Varieties of Mungbean [Vigna radiata (L.) Wilczek] in a Salinity Prone Area of the Subtropics. Acta Agrobot. 2020, 73, 7338. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Huang, J.; Peng, S.; Xiong, D. Diffusional Conductance to CO2 Is the Key Limitation to Photosynthesis in Salt-Stressed Leaves of Rice (Oryza sativa). Physiol. Plant. 2018, 163, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; James, R.A. Screening Methods for Salinity Tolerance: A Case Study with Tetraploid Wheat. Plant Soil 2003, 253, 201–218. [Google Scholar] [CrossRef]
- Sobhanian, H.; Motamed, N.; Jazii, F.R.; Razavi, K.; Niknam, V.; Komatsu, S. Salt Stress Responses of a Halophytic Grass Aeluropus lagopoides and Subsequent Recovery. Russ. J. Plant Physiol. 2010, 57, 784–791. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M.-J.; Ding, M.-Q.; Deng, S.-R.; Liu, M.-Q.; Lu, C.-F.; Zhou, X.-Y.; Shen, X.; Zheng, X.-J.; Zhang, Z.-K.; et al. H2O2 and Cytosolic Ca2+ Signals Triggered by the PM H+-Coupled Transport System Mediate K+/Na+ Homeostasis in NaCl-Stressed Populus Euphratica Cells. Plant Cell Environ. 2010, 33, 943–958. [Google Scholar] [CrossRef]
- Blumwald, E.; Aharon, G.S.; Apse, M.P. Sodium Transport in Plant Cells. Biochim. Biophys. Acta BBA Biomembr. 2000, 1465, 140–151. [Google Scholar] [CrossRef] [Green Version]
Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Soil pH | EC (dS/m) | Cl (g/kg) | Na2O (g/kg) | MO (%) | N (g/kg) | P2O5 (mg/kg) | K2O (g/kg) | MgO (g/kg) | CaO (g/kg) | Zinc (mg/kg) | Iron (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–20 | 61.81 | 18.64 | 18.64 | 8.47 | 1.91 | 2.12 | 2.00 | 0.47 | 0. 3 | 44.12 | 0.33 | 0.92 | 9.73 | 0.80 | 1.23 |
20–40 | 71.29 | 12.91 | 23.79 | 8.47 | 1.80 | 1.43 | 1.51 | 0.40 | 0. 3 | 36.29 | 0.31 | 0.85 | 9.46 | 0.80 | 1.23 |
Water Content | EC | pH | Cations (meq·L−1) | Anions (meq·L−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(dS·m−1) | K | Na | Ca | Mg | Cl | SO4 | NO3 | CO3 | HCO3 | ||
Freshwater | 4.04 | 7.45 | 0.883 | 24.35 | 11.25 | 6.48 | 28.12 | 11.21 | 3.46 | 0.0 | 3.52 |
Groundwater | 11.98 | 7.35 | 3.44 | 114.07 | 28.4 | 26.42 | 124.55 | 52.15 | 1.01 | 0.0 | 3.88 |
Periods (10 day) | Jan | Feb | March | April | May | June | July | August | Sept | Oct | Nov | Dec | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st 0–10 | 9 | 18 | 20 | 18 | 22 | 27 | 27 | 27 | 22 | 18 | 18 | 9 | 235 |
2nd 10–20 | 9 | 18 | 18 | 18 | 22 | 27 | 27 | 27 | 18 | 18 | 9 | 9 | 220 |
3rd 20–31 | 18 | 18 | 18 | 22 | 22 | 27 | 18 | 22 | 18 | 18 | 9 | 9 | 219 |
Total irrigation (mm/month) | 36 | 54 | 56 | 58 | 66 | 81 | 9 | 76 | 58 | 54 | 36 | 27 | 674 |
Factors Na: | DF | FB | SC | OM | Leaf Mineral Content | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | N | P | K | Mg | Ca | Zn | Fe | Na | |||
Irrigation water salinity (S) | 2 | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.02 * | 0.11 | 0.03 * | 0.02 * | 0.17 | 0.02 * | 0.04 * | 0.42 | 0.01 * |
Phosphorus rate (P) | 2 | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.74 | 0.82 | 0.34 | 0.46 | 0.19 | 0.45 | 0.59 | 0.04 * | 0.03 * |
Interaction (S × P) | 4 | 0.006 ** | 0.001 ** | 0.04 * | 0.07 | 0.81 | 0.94 | 0.65 | 0.63 | 0.68 | 0.66 | 0.53 | 0.24 | 0.18 |
Irrigation Water Salinity (dS·m−1) | 5 (Control) | 12 | 17 | ||||||
---|---|---|---|---|---|---|---|---|---|
Phosphorus Rate (kg P2O5 ha−1) | 0 | 90 | 108 | 0 | 90 | 108 | 0 | 90 | 108 |
OM (%) | 91.4 ± 2.06 a | 90.2 ± 0.71 a | 90.3 ± 1.84 a | 90.8 ± 1.02 a | 92.4 ± 4.30 a | 93.3 ± 5.12 a | 95.3 ± 4.73 a | 93.8 ± 1.51 a | 96.2 ± 2.38 a |
90.6 ± 1.53 B | 92.2 ± 3.53 AB | 95.1 ± 2.94 A | |||||||
N (%) | 2.3 ± 0.51 a | 2.2 ± 0.29 a | 2.1 ± 0.25 a | 2.3 ± 0.34 a | 2.3 ± 0.59 a | 2.2 ± 0.32 a | 1.9 ± 0.22 a | 1.8 ± 0.35 a | 1.9 ± 0.12 a |
2.2 ± 0.34 A | 2.3 ± 0.38 A | 1.9 ± 0.23 A | |||||||
P (%) | 0.2 ± 0.04 a | 0.2 ± 0.03 a | 0.2 ± 0.05 a | 0.2 ± 0.06 a | 0.2 ± 0.04 a | 0.2 ± 0.01 a | 0.2 ± 0.05 a | 0.2 ± 0.01 a | 0.1 ± 0.01 a |
0.2 ± 0.04 A | 0.2 ± 0.04 A | 0.2 ± 0.03 B | |||||||
K (%) | 2.6 ± 0.41 a | 3.0 ± 0.35 a | 2.5 ± 0.59 a | 2.6 ± 0.12 a | 2.3 ± 0.60 a | 2.4 ± 0.34 a | 2.1 ± 0.29 a | 2.3 ± 0.44 a | 2.0 ± 0.08 a |
2.7 ± 0.46 A | 2.4 ± 0.37 AB | 2.1 ± 0.29 B | |||||||
Mg (%) | 0.3 ± 0.04 a | 0.2 ± 0.03 a | 0.3 ± 0.07 a | 0.3 ± 0.03 a | 0.3 ± 0.08 a | 0.3 ± 0.02 a | 0.3 ± 0.04 a | 0.2 ± 0.01 b | 0.2 ± 0.02 b |
0.3 ± 0.04 A | 0.3 ± 0.04 A | 0.2 ± 0.04 A | |||||||
Ca (%) | 0.7 ± 0.21 a | 0.6 ± 0.03 a | 0.6 ± 0.09 a | 0.6 ± 0.06 a | 0.6 ± 0.13 a | 0.6 ± 0.03 a | 0.6 ± 0.12 a | 0.4 ± 0.02 a | 0.4 ± 0.05 a |
0.6 ± 0.11 A | 0.6 ± 0.08 AB | 0.5 ± 0.09 B | |||||||
Na (%) | 0.2 ± 0.01 a | 0.3 ± 0.09 a | 0.2 ± 0.06 a | 0.3 ± 0.06 a | 0.3 ± 0.03 a | 0.4 ± 0.08 a | 0.3 ± 0.04 a | 0.3 ± 0.10 a | 0.4 ± 0.05 a |
0.2 ± 0.07 B | 0.3 ± 0.09 AB | 0.3 ± 0.07 A | |||||||
Zn (ppm) | 20.6 ± 4.36 a | 25.4 ± 8.11 a | 21.6 ± 5.62 a | 23.4 ± 3.80 a | 31.6 ± 16.5 a | 23.1 ± 3.17 a | 18.8 ± 1.47 a | 14.5 ± 3.38 a | 17.9 ± 2.92 a |
22.5 ± 5.81 AB | 26.0 ± 9.56 A | 17.1 ± 3.06 B | |||||||
Fe (ppm) | 43.3 ± 4.76 a | 55.1 ± 6.68 a | 47.8 ± 5.28 a | 38.7 ± 4.95 a | 38.7 ± 11.5 a | 57.24 ± 9.22 a | 46.5 ± 16.95 a | 46.8 ± 12.12 a | 59.15 ± 7.64 a |
48.7 ± 7.10 A | 44.9 ± 12.12 A | 50.8 ± 12.73 A | |||||||
K/Na | 13.0 ± 2.39 a | 10.9 ± 2.44 a | 11.4 ± 3.98 a | 10.0 ± 2.38 a | 8.9 ± 2.46 a | 6.05 ± 1.14 a | 7.2 ± 0.90 a | 7.2 ± 3.09 a | 5.4 ± 0.88 a |
11.8 ± 2.79 A | 8.3 ± 2.52 B | 6.6 ± 1.90 B | |||||||
Ca/Na | 3.3 ± 0.92 a | 2.2 ± 0.63 a | 2.7 ± 0.54 a | 2.1 ± 0.25 a | 2.1 ± 0.28 a | 1.5 ± 0.26 a | 1.9 ± 0.16 a | 1.4 ± 0.50 ab | 1.1 ± 0.07 b |
2.7 ± 0.76 A | 1.9 ± 0.38 B | 1.5 ± 0.45 B | |||||||
Mg/Na | 1.3 ± 0.22 a | 0.9 ± 0.36 a | 1.2 ± 0.23 a | 1.1 ± 0.13 a | 1.0 ± 0.20 ab | 0.7 ± 0.14 b | 1.0 ± 0.01 a | 0.6 ± 0.17 ab | 0.6 ± 0.15 b |
1.2 ± 0.30 A | 0.9 ± 0.23 AB | 0.7 ± 0.21 B |
Soil Horizon/Depth (cm) | Irrigation Water Salinity (dS·m−1) | Distance between Plants (cm) | Distance between Line (cm) | |||||
---|---|---|---|---|---|---|---|---|
0–10 | 10–20 | 20–30 | 30–40 | 20 | 40 | Dripper | ||
0–10 | 5 (Control) | 1.8 ± 1.5 b | 8.1 ± 2.1 a | 6.1 ± 2.5 a | 1.5 ± 0.3 b | 8.9 ± 3.2 a | 8.6 ± 4.6 a | 2.6 ± 1.4 a |
12 | 3.7 ± 1.4 a | 7.7 ± 2.2 a | 7.4 ± 1.8 a | 4.5 ± 2.0 a | 7.1 ± 2.8 a | 8.0 ± 3.2 a | 3.4 ± 1.6 a | |
17 | 4.2 ± 1.3 a | 6.9 ± 2.5 a | 7.2 ± 3.1 a | 5.4 ± 3.9 a | 8.5 ± 1.6 a | 8.7 ± 2.3 a | 4.0 ± 0.7 a | |
p-value | 0.003 ** | 0.524 | 0.535 | 0.008 ** | 0.311 | 0.916 | 0.086 | |
10–20 | 5 (Control) | 2.2 ± 1.3 c | 4.2 ± 1.2 a | 4.7 ± 1.7 a | 1.9 ± 0.7 b | 9.1 ± 4.1 a | 8.5 ± 2.9 a | 2.4 ± 0.8 b |
12 | 4.9 ± 1.6 b | 5.8 ± 2.3 a | 5.9 ± 1.9 a | 5.4 ± 1.3 a | 5.6 ± 2.6 b | 7.3 ± 1.8 a | 4.8 ± 1.5 a | |
17 | 6.5 ± 1.1 a | 7.1 ± 3.7 a | 6.5 ± 3.3 a | 6.1 ± 3.4 a | 5.9 ± 1.1 ab | 6.6 ± 2.1 a | 4.8 ± 1.4 a | |
p-value | 0.000 *** | 0.092 | 0.321 | 0.001 ** | 0.031 * | 0.259 | 0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouras, H.; Choukr-Allah, R.; Mosseddaq, F.; Bouaziz, A.; Devkota, K.P.; Mouttaqi, A.E.; Bouazzama, B.; Hirich, A. Does Phosphorus Fertilization Increase Biomass Production and Salinity Tolerance of Blue Panicum (Panicum antidotale Retz.) in the Salt-Affected Soils of Arid Regions? Agronomy 2022, 12, 791. https://doi.org/10.3390/agronomy12040791
Bouras H, Choukr-Allah R, Mosseddaq F, Bouaziz A, Devkota KP, Mouttaqi AE, Bouazzama B, Hirich A. Does Phosphorus Fertilization Increase Biomass Production and Salinity Tolerance of Blue Panicum (Panicum antidotale Retz.) in the Salt-Affected Soils of Arid Regions? Agronomy. 2022; 12(4):791. https://doi.org/10.3390/agronomy12040791
Chicago/Turabian StyleBouras, Hamza, Redouane Choukr-Allah, Fatema Mosseddaq, Ahmed Bouaziz, Krishna Prasad Devkota, Ayoub El Mouttaqi, Bassou Bouazzama, and Abdelaziz Hirich. 2022. "Does Phosphorus Fertilization Increase Biomass Production and Salinity Tolerance of Blue Panicum (Panicum antidotale Retz.) in the Salt-Affected Soils of Arid Regions?" Agronomy 12, no. 4: 791. https://doi.org/10.3390/agronomy12040791
APA StyleBouras, H., Choukr-Allah, R., Mosseddaq, F., Bouaziz, A., Devkota, K. P., Mouttaqi, A. E., Bouazzama, B., & Hirich, A. (2022). Does Phosphorus Fertilization Increase Biomass Production and Salinity Tolerance of Blue Panicum (Panicum antidotale Retz.) in the Salt-Affected Soils of Arid Regions? Agronomy, 12(4), 791. https://doi.org/10.3390/agronomy12040791