Dissipation, Residue, and Dietary Risk Assessment of Methoxyfenozide, Chlorantraniliprole, Indoxacarb, Lufenuron, and Chlorfenapyr in Spinach Using a Modified QuEChERS Method Combined with a Tandem Mass Spectrometry Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instrumental Conditions
2.3. Field Experiment Design
2.4. Sample Preparation by Modified QuEChERS
2.5. Calculation Equations
2.5.1. Definition of Chlorfenapyr Assessment
2.5.2. Long-Term Dietary Risk Assessment
2.5.3. Dissipation Dynamics
2.5.4. Matrix Effect
2.6. Method Validation
3. Results and Discussion
3.1. Optimization of Purification
3.2. Method Validation
3.3. Residue Dissipation Dynamics
3.4. Final Residue
3.5. Long-Term Dietary Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kadereit, G.; Borsch, T.; Weising, K.; Freitag, H. Phylogeny of Amaranthaceae and chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 2003, 164, 959–986. [Google Scholar] [CrossRef]
- Cai, X.; Peng, F.; Xu, C.; Wang, X.; Ge, C.; Wang, Q. Adaptability evaluation of 39 spinach cultivars in Shanghai. China Cucurbits Veg. 2021, 34, 87–92. [Google Scholar]
- Ministry of Agriculture and Rural Affairs. Administration of Pesticide Registration. 2017. Available online: http://www.agroinfo.com.cn/other_detail_4214.html (accessed on 1 September 2022).
- Xu, F.; Xu, D.; Hu, M.; Chen, L.; Xu, C.; Zha, X. Dissipation behaviour, residue analysis, and dietary safety evaluation of chlorfenapyr on various vegetables in China. Food Addit. Contam. Part A 2022, 39, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Xu, D.; Du, G.; Guo, Z.; Zha, X.; Chen, L. Residue analysis, dissipation patterns of chlorfenapyr, diafenthiuron and their corresponding metabolites in tea trees, and dietary intake risk assessment. J. Sci. Food Agric. 2022. [Google Scholar] [CrossRef]
- Sun, R.; Wang, X.; Pengcheng, R.; Jing, J.; Li, J.; Qiao, X.; Qin, S. Residue behavior and dietary risk assessment of chlorfenapyr and its metabolite tralopyril in mustard. Chin. J. Pestic. Sci. 2022, 24, 563–571. [Google Scholar]
- Huang, J.X.; Liu, C.Y.; Lu, D.H.; Chen, J.J.; Deng, Y.C.; Wang, F.H. Residue behavior and risk assessment of mixed formulation of imidacloprid and chlorfenapyr in chieh-qua under field conditions. Environ. Monit. Assess. 2015, 187, 650. [Google Scholar] [CrossRef]
- Feng, Y.; Li, R.; Wang, X.; Qi, X.; Zhang, A.; Liu, T.; Yu, J.; Liang, L.; Zuo, B. Residue Dissipation and dietary risk assessment of chlorfenapyr in flowering chinese cabbage under field conditions. Agrochimicals 2020, 59, 665–669. [Google Scholar]
- Wang, T.; Sun, Q.; Shen, Q.; Shanshan, C.; Wen, G.; Zhao, L.; Dong, M.; Wang, W. Determination of chlorfenapyr and its metabolite in fruits and vegetables by ultra performance liquid chromatography and its application in residual evaluation of cabbage. J. Instrum. Anal. 2021, 40, 1706–1712. [Google Scholar]
- Tang, H.; Ma, L.; Huang, J.; Li, Y.; Liu, Z.; Meng, D.; Wen, G.; Dong, M.; Wang, W.; Zhao, L. Residue behavior and dietary risk assessment of six pesticides in pak choi using QuEChERS method coupled with UPLC-MS/MS. Ecotoxicol. Environ. Saf. 2021, 213, 112022. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, L.; Zhang, X.; Luo, F.; Yang, M.; Wang, X.; Lou, Z.; Chen, Z. Residue dissipation and dietary exposure risk assessment of methoxyfenozide in cauliflower and tea via modified QuEChERS using UPLC/MS/MS. J. Sci. Food Agric. 2020, 100, 2358–2363. [Google Scholar] [CrossRef]
- Liu, S. Residue Analysis and Dietary Risk Assessment of Metaflumizone and Methoxyfenozide in Rice. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2019. [Google Scholar]
- Paramasivam, M. Dissipation kinetics, dietary and ecological risk assessment of chlorantraniliprole residue in/on tomato and soil using GC–MS. J. Food Sci. Technol. 2021, 58, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Kansara, R.V.; Solanki, V.H.; Singh, S.; Chauhan, D. Persistence, dissipation behavior and dietary risk assessment of a combi-product of chlorantraniliprole and λ-cyhalothrin in/on pigeonpea (Cajanus cajan L.). Heliyon 2021, 7, e6377. [Google Scholar] [CrossRef] [PubMed]
- Mandal, K.; Kaur, R.; Sahoo, S.K.; Arora, R.; Singh, B. Degradation pattern and risk assessment of chlorantraniliprole on berseem (Trifolium alexandrinum L.) using high performance liquid chromatography. Chemosphere 2014, 112, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guideline for the Testing of Pesticide Residues in Crops (NY/T 788-2018); China agriculture press: Beijing, China, 2018.
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guidelines for Pesticide Registration Residual Test Sites; Institute for the Control of Agrochemicals: Beijing, China, 2018.
- Anastassiades, M.; Lehotay, S.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Chlorfenapyr. List of Pesticides Evaluated by JMPR and JMPS–T. 2018. Available online: https://www.fao.org/3/CA3581EN/bookmarks-ca3581en.pdf (accessed on 21 September 2022).
- Bian, Y.; Feng, Y.; Zhang, A.; Qi, X.; Pan, J.; Han, J.; Ma, X.; Liang, L. Residue distribution and risk assessment of bifenazate and its metabolite in garlic plant. Food Chem. 2022, 379, 132013. [Google Scholar] [CrossRef]
- Feng, Y.; Qi, X.; Wang, X.; Liang, L.; Zuo, B. Residue dissipation and dietary risk assessment of trifloxystrobin, trifloxystrobin acid, and tebuconazole in wheat under field conditions. Int. J. Environ. Anal. Chem. 2022, 102, 1598–1612. [Google Scholar] [CrossRef]
- You, X.; Jiang, H.; Zhao, M.; Suo, F.; Zhang, C.; Zheng, H.; Sun, K.; Zhang, G.; Li, F.; Li, Y. Biochar reduced Chinese chive (Allium tuberosum) uptake and dissipation of thiamethoxam in an agricultural soil. J. Hazard. Mater. 2020, 390, 121749. [Google Scholar] [CrossRef]
- Chen, X.; Fan, X.; Ma, Y.; Hu, J. Dissipation behaviour, residue distribution and dietary risk assessment of tetraconazole and kresoxim-methyl in greenhouse strawberry via RRLC-QqQ-MS/MS technique. Ecotoxicol. Environ. Saf. 2018, 148, 799–804. [Google Scholar] [CrossRef]
- Saber, A.N.; Malhat, F.M.; Badawy, H.M.A.; Barakat, D.A. Dissipation dynamic, residue distribution and processing factor of Hexythiazox-FC. Food Chem. 2016, 196, 1108–1116. [Google Scholar] [CrossRef]
- Malhat, F.; Saber, E.; Anagnostopoulos, C.; Shokr, S.A. Dissipation behavior and dietary risk assessment of pyridaben in open field strawberries and cucumber under Egyptian cultivation conditions. Environ. Sci. Pollut. Res. 2021, 28, 60122–60129. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, F.; Lou, Z.; Lu, M.; Chen, Z. Simultaneous and enantioselective determination of cis-epoxiconazole and indoxacarb residues in various teas, tea infusion and soil samples by chiral high performance liquid chromatography coupled with tandem quadrupole-time-of-flight mass spectrometry. J. Chromatogr. A 2014, 1359, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, M.G.; Failla, M.L.; Schwartz, S.J. Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and caco-2 human cell model. J. Agric. Food Chem. 2001, 49, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Huang, B.; Zhang, J.; Han, Y.; Li, Y.; Zou, N.; Yang, J.; Pan, C. Analytical method for 44 pesticide residues in spinach using multi-plug-filtration cleanup based on multiwalled carbon nanotubes with liquid chromatography and tandem mass spectrometry detection. J. Sep. Sci. 2016, 39, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Walorczyk, S.; Drożdżyński, D.; Kierzek, R. Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry. Talanta 2015, 132, 197–204. [Google Scholar] [CrossRef]
- Graham, C.M.; Meng, Y.; Ho, T.; Anderson, J.L. Sorbent coatings for solid-phase microextraction based on mixtures of polymeric ionic liquids. J. Sep. Sci. 2011, 34, 340–346. [Google Scholar] [CrossRef]
- Mol, H.G.J.; Rooseboom, A.; Dam, R.V.; Roding, M.; Arondeus, K.; Sunarto, S. Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce. Anal. Bioanal. Chem. 2007, 389, 1715–1754. [Google Scholar] [CrossRef] [Green Version]
- Koesukwiwat, U.; Lehotay, S.J.; Miao, S.; Leepipatpiboon, N. High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. A 2010, 1217, 6692–6703. [Google Scholar] [CrossRef]
- Hayward, D.G.; Wong, J.W.; Park, H.Y. Determinations for pesticides on black, green, oolong, and white teas by gas chromatography triple-quadrupole mass spectrometry. J. Agric. Food Chem. 2015, 63, 8116–8124. [Google Scholar] [CrossRef]
- Lee, J.; Kim, L.; Shin, Y.; Lee, J.; Lee, J.; Kim, E. Rapid and simultaneous analysis of 360 pesticides in brown rice, spinach, orange, and potato using microbore GC-MS/MS. J. Agric. Food Chem. 2017, 65, 3387–3395. [Google Scholar] [CrossRef]
- Lee, J.; Shin, Y.; Lee, J.; Lee, J.; Kim, B.J.; Kim, J. Simultaneous analysis of 310 pesticide multiresidues using UHPLC-MS/MS in brown rice, orange, and spinach. Chemosphere 2018, 207, 519–526. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, Y.; Feng, Y.; Di, C.; Wang, X.; Liang, L. Residue dissipation and dietary risk assessment of chlorfenapyr and thiamethoxam in asparagus. Agrochemicals 2021, 60, 654–658. [Google Scholar]
- Zhong, Q.; Li, H.; Wang, M.; Luo, F.; Wang, X.; Yan, H.; Cang, T.; Zhou, L.; Chen, Z.; Zhang, X. Enantioselectivity of indoxacarb during the growing, processing, and brewing of tea: Degradation, metabolites, and toxicities. Sci. Total Environ. 2022, 823, 153763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, M.; Zhao, E.; Yu, P.; Yan, Z.; Wu, Y. Residue and safety evaluation of 50% iprodione and procymidone suspension on greenhouse and open field tomatoes. J. Food Saf. Qual. 2022, 13, 4091–4097. [Google Scholar]
- Fan, S.; Zhao, P.; Zhang, F.; Yu, C.; Pan, C. Spinach or amaranth may represent highest residue of thiophanate-methyl with open field application on six leaf vegetables. Bull. Environ. Contam. Toxicol. 2013, 90, 477–481. [Google Scholar] [CrossRef]
- GB2763-2021; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. China Standard Press: Beijing, China, 2021.
- OECD (Organisation for Economic Co–Operation and Development). OECD MRL Calculator: Spreadsheet for Single Data Set and Spreadsheet for Multiple Data Set. 2011. Available online: http://www.epa.gov/pesticide-tolerances/oecd-maximum-residue-limit-calculator/ (accessed on 16 May 2022).
- Zhao, H.; Zhao, Y.; Hu, J. Dissipation, residues and risk assessment of pyraclostrobin and picoxystrobin in cucumber under field conditions. J. Sci. Food Agric. 2020, 100, 5145–5151. [Google Scholar] [CrossRef]
Sites | Longitude and Latitude | Trial Date | Average Temperature during the Test (°C) | Precipitation during the Test (mm) | Varieties | Planting Type | Crop Status | Sample Intervals (d) |
---|---|---|---|---|---|---|---|---|
BBCH | ||||||||
Inner Mongolia Autonomous Region | 40.42 N, 110.48 E | 2021.06.17–6.24 | 15–30 | 22 | Spinach-no.001 | Green house | 41 | 5,7 |
Shaanxi | 37.33 N, 112.40 E | 2021.05.06–5.13 | 13–28 | 30 | Qiulu-spinach | Open field | 47 | 5,7 |
Beijing | 40.17 N, 116.36 E | 2021.05.18–5.25 | 12–28 | 25 | Halimu | Green house | 45 | 5,7 |
Shandong | 36.07 N, 116.94 E | 2021.05.07–5.17 | 25–37 | 15 | Royal Dutch F1 | Green house | 45 | 0,3,5,7,10 |
Anhui | 31.85 N, 117.01 E | 2021.05.23–6.2 | 18–32 | 36 | Huabo no.1 | Green house | 47 | 0,3,5,7,10 |
Hunan | 28.53 N, 113.13 E | 2021.05.31–6.7 | 18–30 | 45 | Big leaf spinach | Open field | 43 | 5,7 |
Guizhou | 26.41 N, 106.40 E | 2021.04.23–5.3 | 15–23 | 37 | Hybrid spinach no.168 | Open field | 45 | 0,3,5,7,10 |
Guangdong | 23.25 N, 113.06 E | 2021.10.21–10.31 | 22–32 | 65 | Transcend no.3 | Open field | 47 | 0,3,5,7,10 |
Compounds | Spiked Level (mg·kg−1) | Average Recovery (%) (n = 5) | RSD (%) | Matrix | Acetonitrile | ME (%) | LOQ (mg·kg−1) | ||
---|---|---|---|---|---|---|---|---|---|
Regression Equation | r | Regression Equation | r | ||||||
Methoxyfenozide | 0.02 | 96 | 5 | Y = 22,356X + 4262 | 0.9966 | Y = 25,757X + 5715 | 0.9952 | −13 | 0.02 |
0.5 | 98 | 2 | |||||||
5 | 91 | 5 | |||||||
Chlorantraniliprole | 0.02 | 84 | 5 | Y = 8006X + 1654 | 0.9961 | Y = 9990X + 1901 | 0.9961 | −20 | 0.02 |
0.5 | 98 | 4 | |||||||
5 | 92 | 2 | |||||||
Indoxacarb | 0.02 | 98 | 7 | Y = 3536X + 485 | 0.9962 | Y = 3598X + 754 | 0.9925 | −2 | 0.02 |
0.5 | 96 | 3 | |||||||
3 | 96 | 2 | |||||||
Lufenuron | 0.02 | 99 | 11 | Y = 91,324X + 6542 | 0.9985 | Y = 112,601X + 1730 | 0.9997 | −19 | 0.02 |
0.5 | 89 | 6 | |||||||
5 | 91 | 2 | |||||||
Chlorfenapyr | 0.02 | 97 | 3 | Y = 97,232X + 3569 | 0.9997 | Y = 69,382X + 2531 | 0.9996 | 40 | 0.02 |
0.5 | 95 | 2 | |||||||
5 | 95 | 3 | |||||||
Tralopyril | 0.02 | 92 | 4 | Y = 249,504X + 25,412 | 0.9949 | Y = 254,563X + 30,967 | 0.9931 | −2 | 0.02 |
0.5 | 99 | 7 | |||||||
5 | 98 | 6 |
Compounds | Dosage (g a.i. ha−1) | Location | Regression Equation | Correlation Coefficient (r) | Half-Life (day) | Initial Residue (mg kg–1) |
---|---|---|---|---|---|---|
Methoxyfenozide | 50.4 | Shandong | C = 1.25e−0.228T | 0.992 | 3.0 | 1.2 |
Anhui | C = 4.58e−0.611T | 0.899 | 1.1 | 2.8 | ||
Guizhou | C = 4.64e−0.569T | 0.963 | 1.2 | 3.3 | ||
Guangdong | C = 5.97e−0.497T | 0.998 | 1.4 | 3.8 | ||
Chlorantraniliprole | 22.5 | Shandong | C = 2.02e−0.175T | 0.982 | 4.0 | 2.1 |
Anhui | C = 3.62e−0.238T | 0.984 | 2.9 | 3.1 | ||
Guizhou | C = 4.23e−0.267T | 0.891 | 2.6 | 3.5 | ||
Guangdong | C = 5.71e−0.253T | 0.766 | 2.7 | 4.4 | ||
Indoxacarb | 40.5 | Shandong | C = 1.05e−0.166T | 0.920 | 4.2 | 0.91 |
Anhui | C = 2.20e−0.408T | 0.942 | 1.7 | 1.7 | ||
Guizhou | C = 1.66e−0.321T | 0.926 | 2.2 | 1.2 | ||
Guangdong | C = 1.84e−0.295T | 0.991 | 2.3 | 1.6 | ||
Lufenuron | 22.5 | Shandong | C = 0.811e−0.17T | 0.899 | 4.1 | 1.1 |
Anhui | C = 0.739e−0.156T | 0.936 | 4.4 | 0.80 | ||
Guizhou | C = 1.57e−0.204T | 0.963 | 3.4 | 1.4 | ||
Guangdong | C = 1.63e−0.197T | 0.981 | 3.5 | 1.5 | ||
Chlorfenapyr | 49.5 | Shandong | C = 3.12e−0.163T | 0.992 | 4.3 | 3.0 |
Anhui | C = 4.95e−0.239T | 0.986 | 2.9 | 4.2 | ||
Guizhou | C = 4.87e−0.248T | 0.960 | 2.8 | 3.7 | ||
Guangdong | C = 3.78e−0.213T | 0.994 | 3.3 | 3.5 |
Compounds | MRL (mg kg–1) | ADI mg kg–1 (bw) | ||||||
---|---|---|---|---|---|---|---|---|
China | CAC | The United States | Australia | Korea | European Union | Japan | ||
Methoxyfenozide | 20 | 4 | 30 | 0.1 | ||||
Indoxacarb | 3 | 14 * | 5 * | 3 * | 2 | 0.01 | ||
Chlorantraniliprole | 20 * | 20 * | 13 * | 15 * | 5 | 20 | 20 | 2 |
Chlorfenapyr | 10 | 0.03 | ||||||
Lufenuron | 5 | 0.01 |
Food Classification | Dietary | Methoxyfenozide | Chlorantraniliprole | Indoxacarb | Lufenuron | Chlorfenapyr | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Amount (kg) | Reference Residue Limits (Sources) | NEDI(mg kg–1)/ RQ(%) | Reference Residue Limits (Sources) | NEDI (mg kg–1)/ RQ(%) | Reference Residue Limits (Sources) | NEDI (mg kg–1)/ RQ(%) | Reference Residue Limits (Sources) | NEDI (mg kg–1)/ RQ(%) | Reference Residue Limits (Sources) | NEDI (mg kg–1)/ RQ(%) | |
Rice and its products | 0.2399 | 0.1 (China) | 0.009597/ 9.6 | 0.5 (China) | 0.010983/ 0.55 | 0.1 (China) | 0.010831/ 108.3 | 0.003998/ 40.0 | 0.012907/ 43.0 | ||
Flour and its products | 0.1385 | ||||||||||
Other cereals | 0.0233 | 0.02 (China) | 0.01 (CAC) | ||||||||
Tubers | 0.0495 | 0.02 (China) | 0.01 (CAC) | ||||||||
Dried beans and their products | 0.016 | 0.05 (China) | |||||||||
Dark color vegetables | 0.0915 | 0.34 (STMR) | 1.1 (STMR) | 0.48 (STMR) | 0.22 (STMR) | 1.7 (STMR) | |||||
Light color vegetable | 0.1837 | 2 (China) | 2 (China) | 3 (China) | 1 (China) | 2 | |||||
Pickies | 0.0103 | ||||||||||
Fruits | 0.0457 | 3 (China) | 2 (China) | 1 (China) | 1 | ||||||
Nuts | 0.0039 | ||||||||||
Livestock and poultry | 0.0795 | ||||||||||
Milk and its products | 0.0263 | ||||||||||
Egg and its products | 0.0236 | ||||||||||
Fish and shrimp | 0.0301 | ||||||||||
Vegetable oil | 0.0327 | 0.3 (China) | 0.1 (China) | 0.05 (China) | |||||||
Animal oil | 0.0087 | ||||||||||
Sugar, starch | 0.0044 | 0.05 (China) | |||||||||
Salt | 0.012 | 5 (China) | 20 | ||||||||
Soy sauce | 0.009 | 5 (USA) | 0.02 (China) | 0.01 (USA) | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Zhang, G.; Zhang, A.; Zhou, L.; Bian, Y.; Pan, J.; Yang, S.; Han, J.; Ma, X.; Qi, X.; et al. Dissipation, Residue, and Dietary Risk Assessment of Methoxyfenozide, Chlorantraniliprole, Indoxacarb, Lufenuron, and Chlorfenapyr in Spinach Using a Modified QuEChERS Method Combined with a Tandem Mass Spectrometry Technique. Agronomy 2022, 12, 3173. https://doi.org/10.3390/agronomy12123173
Feng Y, Zhang G, Zhang A, Zhou L, Bian Y, Pan J, Yang S, Han J, Ma X, Qi X, et al. Dissipation, Residue, and Dietary Risk Assessment of Methoxyfenozide, Chlorantraniliprole, Indoxacarb, Lufenuron, and Chlorfenapyr in Spinach Using a Modified QuEChERS Method Combined with a Tandem Mass Spectrometry Technique. Agronomy. 2022; 12(12):3173. https://doi.org/10.3390/agronomy12123173
Chicago/Turabian StyleFeng, Yizhi, Guofu Zhang, Aijuan Zhang, Li Zhou, Yanli Bian, Jinju Pan, Sumei Yang, Jifeng Han, Xingang Ma, Xiaoxue Qi, and et al. 2022. "Dissipation, Residue, and Dietary Risk Assessment of Methoxyfenozide, Chlorantraniliprole, Indoxacarb, Lufenuron, and Chlorfenapyr in Spinach Using a Modified QuEChERS Method Combined with a Tandem Mass Spectrometry Technique" Agronomy 12, no. 12: 3173. https://doi.org/10.3390/agronomy12123173
APA StyleFeng, Y., Zhang, G., Zhang, A., Zhou, L., Bian, Y., Pan, J., Yang, S., Han, J., Ma, X., Qi, X., Liang, L., & Zuo, B. (2022). Dissipation, Residue, and Dietary Risk Assessment of Methoxyfenozide, Chlorantraniliprole, Indoxacarb, Lufenuron, and Chlorfenapyr in Spinach Using a Modified QuEChERS Method Combined with a Tandem Mass Spectrometry Technique. Agronomy, 12(12), 3173. https://doi.org/10.3390/agronomy12123173