Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat Lines Irrigated with Saline Water under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Site Conditions
2.2. Experimental Design, Agronomic Practices, and Salinity Treatments
2.3. Measurements
2.3.1. Determination of Plant Traits
2.3.2. Calculation of Different STIs
2.4. Analysis of Data
3. Results
3.1. Analysis of Variance (ANOVA)
3.2. Genotypic Variability of Traits and STIs under the Control and Salinity Stress Conditions
3.3. Traits and Genotypes Association
3.3.1. Correlation Analysis
3.3.2. Principal Component Analysis
3.3.3. Cluster Analysis
3.4. Ranking of Genotypes for Their Relative Salt Tolerance at Different Growth Stages
4. Discussion
Assessment of the Salt Tolerance of Genotypes Using Multivariate Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2021, 41, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 report of the lancet countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Quillerou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Refay, Y.; Abdella, K.A. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant Sci. 2017, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; De Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018; pp. 43–53. [Google Scholar]
- Etesami, H.; Noori, F. Soil salinity as a challenge for sustainable agriculture and bacterial-mediated alleviation of salinity stress in crop plants. In Saline Soil-Based Agriculture by Halotolerant Microorganisms; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–22. [Google Scholar]
- Munns, R.; Gilliham, M. Salinity tolerance of crops—What is the cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Oyiga, B.C.; Sharma, R.; Shen, J.; Baum, M.; Ogbonnaya, F.; Léon, J.; Ballvora, A. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Alderfasi, A.; El-Hendawy, S.E.; Al-Suhaibani, N.; El-Kafafi, S.; Seleiman, M.F. Detecting salt tolerance in doubled haploid wheat Lines. Agronomy 2019, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- Miransari, M.; Smith, D. Sustainable wheat (Triticum aestivum L.) production in saline fields: A review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.A.; Desoky, E.M.; Ali, M.M.A.; Yasin, M.A.T.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S.E. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Ding, J.; Li, C.; Zhu, X.; Guo, W.; Zhu, M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front. Plant Sci. 2021, 12, 646175. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sengar, R.S.; Kulshreshtha, N.; Datta, D.; Tomar, R.S.; Rao, V.P.; Garg, D.; Ojha, A. Assessment of multiple tolerance indices for salinity stress in bread wheat (Triticum aestivum L.). J. Agric. Sci. 2015, 7, 49–57. [Google Scholar] [CrossRef]
- Negarestani, M.; Tohidi-Nejad, E.; Khajoei-Nejad, G.; Nakhoda, B.; Mohammadi-Nejad, G. Comparison of different multivariate statistical methods for screening the drought tolerant genotypes of pearl millet (Pennisetum americanum L.) and sorghum (Sorghum bicolor L.). Agronomy 2019, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Pongprayoon, W.; Tisarum, R.; Theerawittaya, C.; Cha-um, S. Evaluation and clustering on salt-tolerant ability in rice genotypes (Oryza sativa L. subsp. indica) using multivariate physiological indices. Physiol. Mol. Biol. Plants 2019, 25, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Matković Stojšin, M.; Petrović, S.; Banjac, B.; Zečević, V.; Roljević Nikolić, S.; Majstorović, H.; Ðordević, R.; Knežević, D. Assessment of genotype stress tolerance as an effective way to sustain wheat production under salinity stress conditions. Sustainability 2022, 14, 6973. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hu, Y.C.; Yakout, G.M.; Awad, A.M.; Hafiz, S.E.; Schmidhalter, U. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur. J. Agron. 2005, 22, 243–253. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salt tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, M.T.; Marcińska, I.; Janowiak, F.; Rzepka, A.; Hura, T. The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol. Plant 2012, 34, 1757–1764. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Hassan, W.; Al-Suhaibani, N.; Schmidhalter, U. Spectral assessment of drought tolerance indices and grain yield in advanced spring wheat lines grown under full and limited water irrigation. Agric. Water Manag. 2017, 182, 1–12. [Google Scholar] [CrossRef]
- Grzesiak, S.; Hordyńska, N.; Szczyrek, P.; Grzesiak, M.T.; Noga, A.; Szechyńska-Hebda, M. Variation among wheat (Triticum easativum L.) genotypes in response to the drought stress: I—Selection approaches. J. Plant Interact. 2019, 14, 30–44. [Google Scholar]
- El-Hendawy, S.; Al-Suhaibani, N.; Mubushar, M.; Tahir, M.U.; Refay, Y.; Tola, E. Potential use of hyperspectral reflectance as a high-throughput nondestructive phenotyping tool for assessing salt tolerance in advanced spring wheat lines under field conditions. Plants 2021, 10, 2512. [Google Scholar] [CrossRef] [PubMed]
- Gholinezhad, E.; Darvishzadeh, R.; Bernousi, I. Evaluation of drought tolerance indices for selection of confectionery sunflower (Helianthus anuus L.) landraces under various environmental conditions. Not. Bot. Horti Agrobot. 2014, 42, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Morton, M.J.L.; Awlia, M.; Al-Tamimi, N.; Saade, S.; Pailles, Y.; Negrão, S.; Tester, M. Salt stress under the scalpel—Dissecting the genetics of salt tolerance. Plant J. 2019, 97, 148–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.S.; Tester, M.; Fiene, G.; Mousa, M.A.A. Early growth stage characterization and the biochemical responses for salinity stress in tomato. Plants 2021, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Talei, D.; Valdiani, A.; Yusop, M.K.; Abdullah, M.P. Estimation of salt tolerance in Andrographis paniculata accessions using multiple regression model. Euphytica 2013, 189, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Fernandez, G.C.J. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992; pp. 257–270. [Google Scholar]
- Hao, Z.F.; Li, X.H.; Su, Z.J.; Xie, C.X.; Li, M.S.; Liang, X.L.; Weng, J.F.; Zhang, D.G.; Li, L.; Zhang, S.H. A proposed selection criterion for drought resistance across multiple environments in maize. Breed. Sci. 2011, 61, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.U.; Rao, K.V.; Sharma, H.C. Comparison of selection indices to identify sorghum genotypes resistant to the spotted stemborer Chilo partellus (Lepidoptera: Noctuidae). Int. J. Trop. Insect. Sci. 2011, 31, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Cabello, R.; Monneveux, P.; De Mendiburu, F.; Bonierbale, M. Comparison of yield based drought tolerance indices in improved varieties, genetic stocks and landraces of potato (Solanum tuberosum L.). Euphytica 2013, 193, 147–156. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop. Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Raman, A.; Verulkar, S.; Mandal, N.; Variar, V.; Shukla, V.; Dwivedi, J.; Singh, B.; Singh, O.; Swain, P.; Mall, A.; et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice 2012, 5, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslam, M.; Maqbool, M.A.; Zaman, Q.U.; Shahid, M.; Akhtar, M.A.; Rana, A.S. Comparison of different tolerance indices and PCA biplot analysis for assessment of salinity tolerance in lentil (Lens culinaris) genotypes. Int. J. Agric. Biol. 2017, 19, 470–478. [Google Scholar] [CrossRef]
- Mohi-Ud-Din, M.; Hossain, M.A.; Rohman, M.M.; Uddin, M.N.; Haque, M.S.; Ahmed, J.U.; Hossain, A.; Hassan, M.M.; Mostofa, M.G. Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants 2021, 10, 879. [Google Scholar] [CrossRef]
- Ashraf, M. Evaluation of genetic variation for improvement of salt tolerance in spring wheat. In Prospects for Saline Agriculture; Ahmed, R., Malik, K.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 113–121. [Google Scholar]
- El-Hendawy, S.E.; Hu, Y.; Schmidhalter, U. Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. J. Integr. Plant Biol. 2007, 49, 1–9. [Google Scholar] [CrossRef]
- Al-Suhaibani, N.; Selim, M.; Alderfasi, A.; El-Hendawy, S. Comparative performance of integrated nutrient management between composted agricultural wastes, chemical fertilizers, and biofertilizers in improving soil quantitative and qualitative properties and crop yields under arid conditions. Agronomy 2020, 10, 1503. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campaline, R.G.; Ricciardi, G.L.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Schneider, K.A.; Rosales-Serna, R.; Ibarra-Perez, F.; Cazares-Enriquez, B.; Acosta-Gallegos, J.A.; Ramirez-Vallejo, P.; Wassimi, N.; Kelly, J.D. Improving common bean performance under drought stress. Crop Sci. 1997, 37, 43–50. [Google Scholar] [CrossRef]
- Saade, S.; Maurer, A.; Shahid, M.; Oakey, H.; Schmockel, S.M.; Negrão, S.; Pillen, K.; Tester, M. Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci. Rep. 2016, 6, 32586. [Google Scholar] [CrossRef] [PubMed]
- Pour-Aboughadareh, A.; Naghavi, M.R.; Khalili, M. Water deficit stress tolerance in some of barley genotypes and landraces under field conditions. Not. Sci. Biol. 2013, 5, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Mathew, I.; Shimelis, H.; Mutema, M.; Clulow, A.; Zengeni, R.; Nozibusiso Mbava, N.; Chaplot, V. Selection of wheat genotypes for biomass allocation to improve drought tolerance and carbon sequestration into soils. J. Agron. Crop Sci. 2019, 205, 385–400. [Google Scholar] [CrossRef]
- Marcos-Barbero, E.L.; Pérez, P.; Martínez-Carrasco, R.; Arellano, J.B.; Morcuende, R. Screening for higher grain yield and biomass among sixty bread wheat genotypes grown under elevated CO2 and high-temperature conditions. Plants 2021, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, S.; Al-Suhaibani, N.; Mubushar, M.; Tahir, M.U.; Marey, S.; Refay, Y.; Tola, E. Combining hyperspectral reflectance and multivariate regression models to estimate plant biomass of advanced spring wheat lines in diverse phenological stages under salinity conditions. Appl. Sci. 2022, 12, 1983. [Google Scholar] [CrossRef]
- Allel, D.; BenAmar, A.; Badri, M.; Abdelly, C. Evaluation of salinity tolerance indices in North African barley accessions at reproductive stage. Czech J. Genet. Plant Breed. 2019, 55, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, E.S.A.; Ali, M.M.A.; Kamara, M.M.; Awad, M.F.; Hassanin, A.A.; Mansour, E. Field screening of wheat advanced lines for salinity tolerance. Agronomy 2021, 11, 281. [Google Scholar] [CrossRef]
- Khalili, M.; Pour-Aboughadareh, A.; Naghavi, M.R. Assessment of drought tolerance in barley: Integrated selection criterion and drought tolerance indices. Environ. Exp. Biol. 2016, 14, 33–41. [Google Scholar] [CrossRef]
- Ahmadi, J.; Pour-Aboughadareh, A.; Fabriki-Ourang, S.; Mehrabi, A.A.; Kadambot HM Siddique, K.H.M. Screening wheat germplasm for seedling root architectural traits under contrasting water regimes: Potential sources of variability for drought adaptation. Arch. Agron. Soil Sci. 2018, 64, 1351–1365. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Azizi, F. Evaluation of drought tolerance indices in some new hybrids of corn. Electron. J. Crop Prod. 2011, 3, 139–155. [Google Scholar]
- Khatibi, A.; Omrani, S.; Omrani, A.; Shojaei, S.H.; Mousavi, S.M.N.; Illés, Á.; Bojtor, C.; Nagy, J. Response of maize hybrids in drought-stress using drought tolerance indices. Water 2022, 14, 1012. [Google Scholar] [CrossRef]
- El-Mohsen, A.A.A.; El-Shafi, M.A.; Gheith, E.; Suleiman, H. Using different statistical procedures for evaluating drought tolerance indices of bread wheat genotypes. Adv. Agric. Biol. 2015, 4, 19–30. [Google Scholar]
- Magudeeswari, P.; Sastry, E.V.D.; Devi, T.R. Principal component (PCA) and cluster analyses for plant nutrient traits in baby corn (Zea mays L.). Indian J. Agric. Res. 2019, 53, 353–357. [Google Scholar] [CrossRef]
- Alam, M.S.; Hossain, S.; Ali, M.A.; Hossain, M.G.; Islam, M.F. Assessment of genetic divergence in tomato (Solanum lycopersicum L.) through clustering and principal component analysis. J. Agric. Sci. Eng. Innov. 2020, 1, 10–14. [Google Scholar]
- Ahmed, H.G.M.-D.; Sajjad, M.; Li, M.; Azmat, M.A.; Rizwan, M.; Maqsood, R.H.; Khan, S.H. Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustainability 2019, 11, 2584. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.L.; Bai, H.B.; Hui, J.; Tian, X.Y.; Yang, C.G.; Ma, S.S.; Cai, Z.Y.; Li, S.H. Comprehensive evaluation of seedling drought resistance of RILs population derived from Indica rice and Japonica rice. J. Plant Genet. Resour. 2019, 20, 556–563. [Google Scholar]
- Sun, F.; Chen, Q.; Chen, Q.; Jiang, M.; Gao, W.; Qu, Y. Screening of key drought tolerance indices for cotton at the flowering and boll setting stage using the dimension reduction method. Front. Plant Sci. 2021, 12, 619926. [Google Scholar] [CrossRef]
Abb. | Index Name | Formula | Reference |
---|---|---|---|
YSI | Yield stability index | [34] | |
TOL | Tolerance index | [29] | |
YI | Yield index | [43] | |
STI | Stress tolerance index | [30] | |
SSI | Stress susceptibility index | [35] | |
MPI | Mean productivity index | [29] | |
GMPI | Geometric mean productivity index | [30] | |
MRPI | Mean relative performance index | [36] | |
REI | Relative efficiency index | [35] | |
HMPI | Harmonic mean productivity index | [44] | |
SWPI | Stress-weighted performance index | [45] | |
RSE | Relative salinity effect | [46] |
Source of Variance | DF | PDW-75 | PDW-90 | BY | GY |
---|---|---|---|---|---|
First Year | |||||
Salinity (S) | 1 | 8374.7 *** | 8710.8 *** | 3415.9 *** | 12,071.1 *** |
Genotype (G) | 63 | 22.34 *** | 34.43 *** | 5.71 *** | 11.79 *** |
G × S | 63 | 4.91 *** | 8.61 *** | 2.10 *** | 4.90 *** |
Second year | |||||
Salinity (S) | 1 | 1610.3 *** | 7420.6 *** | 2487.1 *** | 5055.9 *** |
Genotype (G) | 63 | 12.87 *** | 22.48 *** | 9.75 *** | 7.64 *** |
G × S | 63 | 2.10 *** | 6.28 *** | 3.45 *** | 3.12 *** |
Combined two years | |||||
Year (Y) | 1 | 11.03 ns | 0.63 ns | 30.73 ns | 17.70 ns |
Salinity (S) | 1 | 5698.4 *** | 16,078.4 *** | 5753.1 *** | 14,064.2 *** |
S × Y | 1 | 8.89 * | 8.34 * | 0.024 ns | 3.66 ns |
Genotype (G) | 63 | 28.49 *** | 48.09 *** | 13.43 *** | 16.50 *** |
G × Y | 63 | 4.62 *** | 6.85 *** | 1.79 *** | 1.97 *** |
G × S | 63 | 5.77 *** | 13.97 *** | 5.08 *** | 7.33 *** |
G × S × Y | 63 | 0.61 ns | 0.52 ns | 0.38 ns | 0.28 ns |
Source | DF | YSI | STI | YI | REI | SWPI | MRPI | MPI | GMPI | HMPI | SSI | TOL | RSE |
STIs calculated based on PDW-75 | |||||||||||||
G (Y1) | 63 | 11.47 ** | 12.61 ** | 14.44 ** | 12.58 ** | 13.93 ** | 14.40 ** | 14.20 ** | 14.23 ** | 14.26 ** | 11.84 ** | 11.54 ** | 11.88 ** |
G (Y2) | 63 | 11.01 ** | 6.62 *** | 9.56 *** | 6.64 *** | 12.22 ** | 7.76 *** | 7.38 *** | 7.64 *** | 7.92 *** | 10.99 ** | 8.15 *** | 11.05 ** |
G (C) | 63 | 20.57 ** | 14.56 ** | 20.20 ** | 14.67 ** | 23.41 ** | 17.48 ** | 16.98 ** | 17.43 ** | 17.92 ** | 20.96 ** | 17.89 ** | 21.05 ** |
G × Y | 63 | 1.94 *** | 2.72 *** | 2.97 *** | 2.72 *** | 2.74 *** | 2.82 *** | 2.75 *** | 2.76 *** | 2.76 *** | 1.90 *** | 1.89 *** | 1.94 *** |
STIs calculated based on PDW-90 | |||||||||||||
G (Y1) | 63 | 14.50 ** | 22.67 ** | 23.21 ** | 23.28 ** | 18.76 ** | 23.97 ** | 23.63 ** | 23.87 ** | 24.08 ** | 14.22** | 15.94 ** | 14.28 ** |
G (Y2) | 63 | 15.38 ** | 13.94** | 13.49 ** | 14.17 ** | 14.96 ** | 13.55 ** | 13.67 ** | 13.44 ** | 13.29 ** | 15.86** | 17.77 ** | 15.86 ** |
Y | 1 | 2.89 ns | 16.63 ns | 4.00 ns | 0.41 ns | 10.10 ns | 1.49 ns | 0.63 ns | 0.11 ns | 0.02 ns | 2.93 ns | 3.31 ns | 3.96 ns |
G (C) | 63 | 28.95 ** | 29.54 ** | 31.22 ** | 30.31 ** | 31.59 ** | 30.73 ** | 30.70 ** | 30.53 ** | 30.58 ** | 29.16 ** | 32.41 ** | 29.17 ** |
G × Y | 63 | 0.89 ns | 4.82 *** | 3.76 *** | 4.90 *** | 2.02 *** | 4.42 *** | 4.37 *** | 4.40 *** | 4.34 *** | 0.88ns | 1.21 ns | 0.88 ns |
STIs calculated based on BY | |||||||||||||
G (Y1) | 63 | 9.10 *** | 3.51 *** | 6.07 *** | 3.53 *** | 9.34 *** | 3.70 *** | 3.45 *** | 3.78 *** | 4.21 *** | 9.20 *** | 6.11 *** | 9.19 *** |
G (Y2) | 63 | 12.41 ** | 6.16 *** | 9.53 *** | 6.19 *** | 13.14 ** | 6.50 *** | 6.11 *** | 6.70 *** | 7.33 *** | 12.41 ** | 8.53 *** | 12.48 ** |
Y | 1 | 4.74 ns | 12.21 ns | 0.004 ns | 0.15 ns | 1.94 ns | 0.004 ns | 3.67 ns | 3.39 ns | 3.71 ns | 2.88 ns | 0.06 ns | 3.16 ns |
G (C) | 63 | 20.49 ** | 8.31 *** | 14.16 ** | 8.34 *** | 21.31 ** | 8.79 *** | 8.25 *** | 9.13 *** | 10.16 ** | 20.66 ** | 13.65 ** | 20.65 ** |
G × Y | 63 | 1.01 ns | 1.09 ns | 1.16 ns | 1.06 ns | 1.22 ns | 1.06 ns | 1.10 ns | 1.14 ns | 1.17 ns | 1.10 ns | 1.03 ns | 1.03 ns |
STIs calculated based on GY | |||||||||||||
G (Y1) | 63 | 11.52 ** | 6.99 *** | 6.61 *** | 6.92 *** | 8.17 *** | 6.92 *** | 7.32 *** | 7.04 *** | 6.89 *** | 11.42 ** | 12.57 ** | 11.30 ** |
G (Y2) | 63 | 11.12 ** | 4.73 *** | 5.55 *** | 4.69 *** | 8.06 *** | 4.53 *** | 4.49 *** | 4.57 *** | 4.75 *** | 11.67 ** | 10.59 ** | 11.74 ** |
Y | 1 | 5.85 ns | 9.09 ns | 0.92 * | 1.53 ns | 14.35 ns | 0.02 ns | 17.60 ns | 16.61 ns | 15.82 ns | 40.07 * | 34.8 * | 6.78 ns |
G (C) | 63 | 21.75 ** | 10.10 ** | 10.93 ** | 10.01 ** | 15.27 ** | 9.80 *** | 9.90 *** | 9.77 *** | 9.89 *** | 22.20 ** | 22.13 ** | 22.14 ** |
G × Y | 63 | 0.88 ns | 1.18 ns | 1.06 ns | 1.20 ns | 0.94 ns | 1.17 ns | 1.18 ns | 1.20 ns | 1.21 ns | 0.89 ns | 0.83 ns | 0.88 ns |
Source | YSI | STI | YI | REI | SWPI | MRPI | MPI | GMPI | HMPI | SSI | TOL | RSE |
STIs based on PDW-75 | ||||||||||||
Min | 0.53 | 0.30 | 0.60 | 0.44 | 1.19 | 1.32 | 3.41 | 3.28 | 3.15 | 0.57 | 1.06 | 17.36 |
Max | 0.83 | 1.02 | 1.27 | 1.47 | 2.09 | 2.43 | 6.22 | 6.02 | 5.82 | 1.56 | 3.15 | 47.20 |
Range | 0.30 | 0.72 | 0.68 | 1.03 | 0.90 | 1.10 | 2.81 | 2.74 | 2.67 | 0.98 | 2.09 | 29.84 |
Mean | 0.70 | 0.71 | 1.00 | 1.01 | 1.70 | 2.00 | 5.06 | 4.97 | 4.88 | 1.00 | 1.81 | 30.18 |
Var. (times) | 1.6 | 3.4 | 2.1 | 3.4 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 2.7 | 3.0 | 2.7 |
STIs based on PDW-90 | ||||||||||||
Min | 0.41 | 0.40 | 0.71 | 0.60 | 1.32 | 1.54 | 5.25 | 5.08 | 4.89 | 0.53 | 1.25 | 17.66 |
Max | 0.82 | 1.12 | 1.25 | 1.67 | 2.29 | 2.58 | 8.73 | 8.50 | 8.27 | 1.79 | 6.11 | 59.07 |
Range | 0.41 | 0.72 | 0.54 | 1.08 | 0.97 | 1.03 | 3.49 | 3.41 | 3.38 | 1.25 | 4.86 | 41.40 |
Mean | 0.67 | 0.68 | 1.00 | 1.01 | 1.90 | 2.00 | 6.74 | 6.59 | 6.45 | 0.99 | 2.67 | 32.63 |
Var. (times) | 2.0 | 2.8 | 1.8 | 2.8 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 3.3 | 4.9 | 3.3 |
STIs based on BY | ||||||||||||
Min | 0.48 | 0.43 | 0.70 | 0.62 | 2.12 | 1.58 | 12.82 | 12.34 | 11.83 | 0.49 | 2.72 | 14.70 |
Max | 0.85 | 0.97 | 1.21 | 1.38 | 3.66 | 2.35 | 18.63 | 18.40 | 18.17 | 1.75 | 10.43 | 52.47 |
Range | 0.38 | 0.53 | 0.51 | 0.76 | 1.55 | 0.76 | 5.82 | 6.06 | 6.35 | 1.26 | 7.71 | 37.77 |
Mean | 0.70 | 0.71 | 1.00 | 1.01 | 3.03 | 2.00 | 15.94 | 15.66 | 15.38 | 0.99 | 5.62 | 29.64 |
Var. (times) | 1.8 | 2.2 | 1.7 | 2.2 | 1.7 | 1.5 | 1.5 | 1.5 | 1.5 | 3.6 | 3.8 | 3.6 |
STIs based on GY | ||||||||||||
Min | 0.50 | 0.45 | 0.74 | 0.67 | 1.25 | 1.63 | 3.87 | 3.79 | 3.64 | 0.54 | 0.86 | 17.23 |
Max | 0.83 | 0.98 | 1.22 | 1.45 | 1.89 | 2.40 | 5.70 | 5.59 | 5.49 | 1.55 | 3.08 | 49.76 |
Range | 0.33 | 0.53 | 0.48 | 0.78 | 0.64 | 0.77 | 1.83 | 1.81 | 1.86 | 1.01 | 2.21 | 32.53 |
Mean | 0.68 | 0.68 | 1.00 | 1.01 | 1.62 | 2.00 | 4.76 | 4.66 | 4.57 | 0.99 | 1.82 | 31.69 |
Var. (times) | 1.6 | 2.2 | 1.7 | 2.2 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 2.9 | 3.6 | 2.9 |
Traits | PDW-75 | PDW-90 | BY | GY | ||||
---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
PDW-C | 0.708 | 0.704 | 0.752 | 0.656 | ||||
PDW-S | 0.998 | −0.057 | 0.974 | −0.225 | ||||
BY-C | 0.532 | 0.846 | ||||||
BY-S | 0.996 | −0.091 | ||||||
GY-C | 0.636 | 0.770 | ||||||
GY-S | 0.962 | −0.270 | ||||||
YSI | 0.631 | −0.775 | 0.318 | −0.947 | 0.646 | −0.762 | 0.335 | −0.942 |
STI | 0.953 | 0.295 | 0.973 | 0.222 | 0.933 | 0.356 | 0.961 | 0.274 |
YI | 0.998 | −0.057 | 0.974 | −0.225 | 0.996 | −0.091 | 0.963 | −0.268 |
REI | 0.953 | 0.295 | 0.973 | 0.221 | 0.934 | 0.356 | 0.960 | 0.274 |
SWPI | 0.920 | −0.390 | 0.772 | −0.635 | 0.896 | −0.444 | 0.722 | −0.692 |
MRPI | 0.954 | 0.299 | 0.973 | 0.230 | 0.931 | 0.365 | 0.961 | 0.277 |
MPI | 0.926 | 0.376 | 0.944 | 0.327 | 0.886 | 0.463 | 0.919 | 0.393 |
GMPI | 0.957 | 0.290 | 0.978 | 0.208 | 0.939 | 0.344 | 0.965 | 0.263 |
HMPI | 0.977 | 0.209 | 0.995 | 0.092 | 0.972 | 0.233 | 0.990 | 0.135 |
SSI | −0.630 | 0.775 | −0.319 | 0.947 | −0.646 | 0.762 | −0.335 | 0.942 |
TOL | −0.247 | 0.966 | 0.081 | 0.993 | −0.388 | 0.920 | −0.069 | 0.996 |
RSE | −0.631 | 0.775 | −0.318 | 0.947 | −0.646 | 0.762 | −0.335 | 0.942 |
PDW-75 | PDW-90 | BY | GY | |||||
Eigenvalue | 10.05 | 3.92 | 9.05 | 4.92 | 9.69 | 4.29 | 8.64 | 5.34 |
Variability (%) | 71.79 | 28.02 | 64.63 | 35.13 | 69.22 | 30.66 | 61.75 | 38.12 |
Cumulative (%) | 71.79 | 99.81 | 64.63 | 99.76 | 69.22 | 99.88 | 61.75 | 99.86 |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | |
---|---|---|---|---|---|---|---|---|
Traits | PDW-75 | PDW-90 | ||||||
No. of genotypes | 9 | 24 | 18 | 13 | 35 | 15 | 8 | 6 |
C | 5.74 | 5.89 | 6.10 | 6.05 | 7.76 | 8.70 | 7.21 | 9.42 |
S | 4.55 | 4.36 | 4.16 | 3.51 | 5.63 | 5.69 | 4.33 | 4.78 |
YSI | 0.79 | 0.74 | 0.68 | 0.58 | 0.73 | 0.66 | 0.60 | 0.51 |
STI | 0.74 | 0.73 | 0.72 | 0.61 | 0.68 | 0.77 | 0.49 | 0.70 |
YI | 1.10 | 1.05 | 1.00 | 0.84 | 1.04 | 1.05 | 0.80 | 0.88 |
REI | 1.06 | 1.05 | 1.04 | 0.88 | 1.02 | 1.15 | 0.72 | 1.04 |
SWPI | 1.90 | 1.79 | 1.68 | 1.42 | 2.02 | 1.93 | 1.61 | 1.56 |
MRPI | 2.06 | 2.04 | 2.02 | 1.86 | 2.00 | 2.13 | 1.69 | 2.05 |
MPI | 5.15 | 5.13 | 5.13 | 4.78 | 6.70 | 7.19 | 5.77 | 7.10 |
GMPI | 5.11 | 5.07 | 5.03 | 4.60 | 6.61 | 7.03 | 5.58 | 6.70 |
HMPI | 5.08 | 5.01 | 4.94 | 4.43 | 6.52 | 6.88 | 5.40 | 6.32 |
SSI | 0.69 | 0.86 | 1.05 | 1.38 | 0.83 | 1.04 | 1.20 | 1.49 |
TOL | 1.19 | 1.54 | 1.94 | 2.54 | 2.14 | 3.01 | 2.88 | 4.65 |
RSE | 20.78 | 26.06 | 31.88 | 41.93 | 27.41 | 34.45 | 39.72 | 49.10 |
Traits | BY | GY | ||||||
No. of genotypes | 18 | 22 | 16 | 8 | 15 | 30 | 7 | 12 |
C | 17.60 | 18.80 | 20.23 | 18.29 | 5.12 | 5.80 | 5.87 | 5.92 |
S | 13.79 | 13.74 | 13.13 | 10.00 | 3.97 | 4.03 | 3.76 | 3.30 |
YSI | 0.78 | 0.73 | 0.65 | 0.55 | 0.78 | 0.70 | 0.64 | 0.56 |
STI | 0.70 | 0.74 | 0.76 | 0.52 | 0.64 | 0.73 | 0.69 | 0.61 |
YI | 1.05 | 1.05 | 1.00 | 0.76 | 1.03 | 1.05 | 0.98 | 0.86 |
REI | 1.00 | 1.06 | 1.09 | 0.75 | 0.94 | 1.08 | 1.02 | 0.90 |
SWPI | 3.28 | 3.17 | 2.92 | 2.35 | 1.75 | 1.67 | 1.55 | 1.35 |
MRPI | 1.99 | 2.05 | 2.08 | 1.74 | 1.93 | 2.07 | 2.01 | 1.90 |
MPI | 15.70 | 16.27 | 16.68 | 14.14 | 4.54 | 4.91 | 4.81 | 4.61 |
GMPI | 15.57 | 16.07 | 16.28 | 13.49 | 4.51 | 4.83 | 4.69 | 4.41 |
HMPI | 15.45 | 15.86 | 15.89 | 12.88 | 4.47 | 4.75 | 4.58 | 4.23 |
SSI | 0.72 | 0.89 | 1.16 | 1.49 | 0.70 | 0.95 | 1.12 | 1.38 |
TOL | 3.82 | 5.06 | 7.10 | 8.29 | 1.15 | 1.77 | 2.11 | 2.63 |
RSE | 21.73 | 26.84 | 34.90 | 44.61 | 22.35 | 30.38 | 35.87 | 44.21 |
Gen. | BT | AN | MT | Sum | Rank | FTD | Gen. | BT | AN | MT | Sum | Rank | TD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kharchia | 1 | 1 | 1 | 3 | 1 | T | G2-L4 | 3 | 2 | 1 | 6 | 2 | MT |
G2-L6 | 1 | 1 | 1 | 3 | 1 | T | G2-L25 | 2 | 1 | 3 | 6 | 2 | MT |
G2-L19 | 1 | 1 | 1 | 3 | 1 | T | G2-L27 | 2 | 1 | 3 | 6 | 2 | MT |
G2-L10 | 1 | 1 | 1 | 3 | 1 | T | G1-L21 | 2 | 1 | 3 | 6 | 2 | MT |
G2-L21 | 1 | 1 | 1 | 3 | 1 | T | G2-L15 | 3 | 1 | 2 | 6 | 2 | MT |
G1-L17 | 1 | 1 | 2 | 4 | 1 | T | G1-L19 | 3 | 1 | 3 | 7 | 3 | MS |
G2-L11 | 2 | 1 | 1 | 4 | 1 | T | G1-L25 | 3 | 2 | 2 | 7 | 3 | MS |
G2-L12 | 2 | 1 | 1 | 4 | 1 | T | G2-L23 | 3 | 2 | 2 | 7 | 3 | MS |
G2-L13 | 2 | 1 | 1 | 4 | 1 | T | G1-L11 | 2 | 2 | 3 | 7 | 3 | MS |
G2-L16 | 2 | 1 | 1 | 4 | 1 | T | G1-L28 | 3 | 2 | 2 | 7 | 3 | MS |
G2-L17 | 1 | 1 | 2 | 4 | 1 | T | G2-L1 | 3 | 2 | 2 | 7 | 3 | MS |
G2-L20 | 1 | 1 | 2 | 4 | 1 | T | Kawz | 3 | 2 | 2 | 7 | 3 | MS |
G2-L28 | 2 | 1 | 1 | 4 | 1 | T | G1-L23 | 2 | 2 | 3 | 7 | 3 | MS |
G1-L13 | 2 | 1 | 1 | 4 | 1 | T | G1-L6 | 3 | 2 | 3 | 8 | 3 | MS |
G2-L8 | 2 | 1 | 1 | 4 | 1 | T | G2-L2 | 3 | 2 | 3 | 8 | 3 | MS |
G2-L18 | 2 | 1 | 1 | 4 | 1 | T | Shandaweel 1 | 3 | 2 | 3 | 8 | 3 | MS |
G2-L7 | 2 | 1 | 2 | 5 | 2 | MT | G2-L24 | 3 | 3 | 3 | 9 | 3 | MS |
G1-L14 | 2 | 1 | 2 | 5 | 2 | MT | G1-L7 | 4 | 2 | 3 | 9 | 3 | MS |
G1-L15 | 1 | 2 | 2 | 5 | 2 | MT | G1-L18 | 4 | 2 | 4 | 10 | 4 | S |
G1-L16 | 2 | 1 | 2 | 5 | 2 | MT | G1-L24 | 4 | 3 | 3 | 10 | 4 | S |
Sakha 93 | 2 | 1 | 2 | 5 | 2 | MT | G1-L26 | 3 | 3 | 4 | 10 | 4 | S |
Gemiza 9 | 2 | 1 | 2 | 5 | 2 | MT | G2-L22 | 4 | 3 | 3 | 10 | 4 | S |
MISR 1 | 2 | 1 | 2 | 5 | 2 | MT | G1-L2 | 3 | 4 | 4 | 11 | 4 | S |
G2-L5 | 2 | 1 | 2 | 5 | 2 | MT | G1-L20 | 4 | 3 | 4 | 11 | 4 | S |
G2-L9 | 2 | 1 | 2 | 5 | 2 | MT | G1-L5 | 4 | 3 | 4 | 11 | 4 | S |
G2-L14 | 2 | 1 | 2 | 5 | 2 | MT | G1-L22 | 4 | 3 | 4 | 11 | 4 | S |
Sids1 | 2 | 1 | 3 | 6 | 2 | MT | G2-L26 | 4 | 3 | 4 | 11 | 4 | S |
G1-L8 | 2 | 2 | 2 | 6 | 2 | MT | G1-L3 | 4 | 4 | 4 | 12 | 4 | S |
G1-L10 | 3 | 1 | 2 | 6 | 2 | MT | G1-L4 | 4 | 4 | 4 | 12 | 4 | S |
G1-L12 | 3 | 1 | 2 | 6 | 2 | MT | Sakha 61 | 4 | 4 | 4 | 12 | 4 | S |
G1-L27 | 3 | 1 | 2 | 6 | 2 | MT | G1-L1 | 4 | 4 | 4 | 12 | 4 | S |
G2-L3 | 3 | 1 | 2 | 6 | 2 | MT | G1-L9 | 4 | 4 | 4 | 12 | 4 | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubushar, M.; El-Hendawy, S.; Tahir, M.U.; Alotaibi, M.; Mohammed, N.; Refay, Y.; Tola, E. Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat Lines Irrigated with Saline Water under Field Conditions. Agronomy 2022, 12, 3084. https://doi.org/10.3390/agronomy12123084
Mubushar M, El-Hendawy S, Tahir MU, Alotaibi M, Mohammed N, Refay Y, Tola E. Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat Lines Irrigated with Saline Water under Field Conditions. Agronomy. 2022; 12(12):3084. https://doi.org/10.3390/agronomy12123084
Chicago/Turabian StyleMubushar, Muhammad, Salah El-Hendawy, Muhammad Usman Tahir, Majed Alotaibi, Nabil Mohammed, Yahya Refay, and ElKamil Tola. 2022. "Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat Lines Irrigated with Saline Water under Field Conditions" Agronomy 12, no. 12: 3084. https://doi.org/10.3390/agronomy12123084
APA StyleMubushar, M., El-Hendawy, S., Tahir, M. U., Alotaibi, M., Mohammed, N., Refay, Y., & Tola, E. (2022). Assessing the Suitability of Multivariate Analysis for Stress Tolerance Indices, Biomass, and Grain Yield for Detecting Salt Tolerance in Advanced Spring Wheat Lines Irrigated with Saline Water under Field Conditions. Agronomy, 12(12), 3084. https://doi.org/10.3390/agronomy12123084