Exogenous Diethylaminoethyl Hexanoate Highly Improved the Cold Tolerance of Early japonica Rice at Booting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Material and Exogenous DA-6 Treatment
2.3. Yield and Yield Components
2.4. Dry Matter Production and Culm Traits
2.5. Physiology
2.6. Statistical Analysis
3. Results
3.1. Changes in Rice Yield Components and Yield in Response to DA-6 Applications
3.2. Rice Culm Trait Changes in Response to DA-6 Application under Cold Stress
3.3. Changes in Dry Matter Production in Response to DA-6 Application under Cold Stress
3.4. Physiological Changes in Rice Leaf in Response to DA-6 Application under Cold Stress
3.5. Correlations of Yield Factors and Dry Matter Production after DA-6 Application under Cold Stress
4. Discussion
4.1. Response of Rice Yield to Exogenous DA-6 under CWS
4.2. Physiological Responses in Rice Leaves to DA-6 under CWS
4.3. Differences in Cold Tolerance of Both Cultivars Treated with DA-6 under CWS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.C.; Xie, S.P.; Men, L.N.; Wei, Z.H.; Sun, Z.H.; Zong, T.P.; Fu, Q.; Dong, X.H.; Wang, C.H. Current situation and countermeasures of quality breeding of japonica rice in Heilongjiang Province. Chin. Rice 2022, 28, 19–22. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhao, H.H.; Xiao, C.L.; Zhao, L.M.; Gu, C.M.; Na, Y.G.; Xie, B.S.; Cheng, S.H. Effects of booting stage cold stress on dry matter production of rice in cold region. Chin. J. Rice Sci. 2016, 30, 313–322. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, S.Q.; Zhao, H.H.; Xiao, C.L.; Gu, C.M.; Na, Y.G.; Xie, B.S.; Cao, L.Y.; Cheng, S.H. Effects of booting stage cold stress on yield components and plant type characteristics of rice in cold region. J. Shenyang Agricult. Univ. 2016, 47, 129–134. [Google Scholar] [CrossRef]
- Wang, S.Q.; Song, X.H.; Zhao, H.H.; Sun, M.M.; Xiao, C.L.; Gu, C.M.; Na, Y.G.; Xie, B.S.; Cao, L.Y.; Cheng, S.H. Effect of cold stress in booting stage on rice yield and quality in the cold region. Res. Agric. Mod. 2016, 37, 579–586. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhao, H.H.; Zhao, L.M.; Wang, L.P.; Wang, H.; Gu, C.M.; Na, Y.G. Research progress of physiological function changes and regulations in rice under chilling damage. Chin. Agric. Sci. Bull. 2017, 33, 1–6. [Google Scholar]
- Li, C.J.; Liu, J.D.; Bian, J.X.; Jin, T.; Zou, B.L.; Liu, S.L.; Zhang, X.Y.; Wang, P.; Tan, J.G.; Wu, G.L.; et al. Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS. BMC Plant Biol. 2021, 21, 542. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, H.L.; Qu, Z.J.; Wang, J.; Wang, X.P.; Wang, Z.Q.; Yang, L.; Zhang, D.; Zou, D.T.; Zhao, H.W. Transcriptome sequencing and iTRAQ of different rice cultivars provide insight into molecular mechanisms of cold-tolerance response in japonica rice. Rice 2020, 13, 43. [Google Scholar] [CrossRef]
- Wang, S.Q.; Yang, S.W.; He, D.M.; Yi, Y.Z.; Fu, Y.M.; Yin, D.W.; Zhao, H.H.; Xiao, C.L. Exogenous 6-benzyladenine treatment alleviates cold stress in early japonica rice at booting in Northeast China. Agron. J. 2022, 111, 871–884. [Google Scholar] [CrossRef]
- Zhao, H.W.; Li, X.; Jia, Y.; Qu, Z.J.; Zhang, S.N.; Zhang, Y.; Wang, Z.; Han, D. Effect of salicylic acid on formation of spikelet in japonica rice under low-temperature stress at booting stage. J. Northeast. Agric. Univ. 2019, 50, 1–9. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhao, H.H.; Zhao, L.M.; Gu, C.M.; Na, Y.G.; Xie, B.S.; Cheng, S.H.; Pan, G.J. Application of brassinolide alleviates cold stress at the booting stage of rice. J. Integr. Agric. 2020, 19, 974–986. [Google Scholar] [CrossRef]
- Xiang, H.T.; Wang, T.T.; Zheng, D.F.; Wang, L.Z.; Luo, Y.; Li, W. Effect of ABA on seed-setting rate and physiological characteristics of rice leaves under low temperature stress at booting stage. Chin. Agric. Sci. Bull. 2016, 32, 16–23. [Google Scholar]
- Xu, C.; Wang, W.J.; Cao, S.; Li, R.X.; Zhang, B.B.; Sun, A.Q.; Zhang, C.Q. Mechanism of DA-6 treatment regulating wheat seed vigor after anthesis. Sci. Agric. Sin. 2021, 54, 1821–1834. [Google Scholar] [CrossRef]
- Zhou, W.G.; Chen, F.; Zhao, S.H.; Yang, C.Q.; Meng, Y.J.; Shuai, H.W.; Luo, X.W.; Dai, Y.J.; Yin, H.; Du, J.B.; et al. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J. Exp. Bot. 2019, 70, 101–114. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Liu, F.; Ren, J.; Guo, J.M.; Yan, X.M. Effects of DA-6 and EDDS on growth and Cd uptake by Solanum nigrum L. and on the soil bacterial community structure. Environ. Sci. 2022, 43, 1641–1648. [Google Scholar] [CrossRef]
- Qiu, Y.B.; Zhang, H.L.; Wang, B.C.; Wang, C.J.; Yang, Z.Y.; Zhao, Q.Z. Effects of DA-6 on growth and physiology of different Ilex verticillata varieties. J. Jiangsu For. Sci. Technol. 2021, 48, 1–5. [Google Scholar] [CrossRef]
- Guan, P.X. Study on the Way of DA-6 Improving the Resistance of Tomato Seedlings to Low Night Temperature. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2020; pp. 1–2. [Google Scholar]
- Hao, Q.N.; Wang, A.A.; Long, Z.F.; Chen, H.F.; Shan, Z.H.; Chen, S.L.; Deng, J.B.; Zhou, X.A. Effects of DA-6 on the characteristics, yield and quality of soybean varietiesin south china. Soybean Sci. 2021, 40, 799–804. [Google Scholar] [CrossRef]
- Liang, Y. Influence of DA-6 on cold resistance of rice seedling. J. Mt. Agric. Biol. 2003, 22, 95–98. [Google Scholar] [CrossRef]
- Zhang, Z.L. Effects of DA-6 on seedling growth and its cold–resistance in rice. Guizhou Agric. Sci. 2001, 29, 14–16. [Google Scholar] [CrossRef]
- Zhang, L.X.; Zhang, T.F.; Li, L.H. Methods and Techniques of Plant Biochemical Experiment, 2nd ed; Higher Education Press: Beijing, China, 1997; pp. 188–192. [Google Scholar]
- Chen, J.X.; Wang, X.F. Experimental Guide for Plant Physiology; South China University of Technology Pres: Guangzhou, China, 2002; pp. 70–110. [Google Scholar]
- Zhang, X.Z. Crop Physiology Research Method; Agriculture Press: Beijing, China, 1992. [Google Scholar]
- Li, H.S.; Sun, Q.; Zhao, S.J.; Zhang, W.H. Principles and Techniques of Plant Physiological Biochemical Experiment; Higher Education Press: Beijing, China, 2000; pp. 59–88, 184–260. [Google Scholar]
- Wen, Y.J.; Li, G.H.; Huang, J.L.; Liu, Y.X.; Gao, X.; Wang, H. Determination nitrogen in the Kjeldahl digests of plant samples by continuous flow analyzer in comparison with automated distillation-titration instrument. Soils Fertil. Sci. China 2015, 47, 146–151. [Google Scholar] [CrossRef]
- Lu, C. Comparative study on two methods for determination of total phosphorus in wetland plants. Acta Agric. Jiangxi 2009, 21, 142–143. [Google Scholar] [CrossRef]
- Tao, S.H.; Gong, H.R.; Chen, Z.W.; Chen, Y.Z.; Miao, X.X.; Wang, J.M. Determination of total potassium in plants samples by microwave digestion-flame photometry. Hubei Agric. Sci. 2019, 58, 142–145. [Google Scholar] [CrossRef]
- John, W. Chinese Version Excel 2016 Treasure Book; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Tang, Q.Y. DPS Data Processing System-Experimental Design, Statistical Analysis and Data Mining; Science Press: Beijing, China, 2010. [Google Scholar]
- Fan, F.; Li, S.P.; Gao, X.S.; Chen, Y.L. Research about alleviating heat stress on eggplant seedlings by applying DA-6. Guangdong Agric. Sci. 2013, 40, 35–39. [Google Scholar] [CrossRef]
- Li, X.C. The Effects of Plant Growth Regulators on Machine-Transplanted japonica during the Recovery. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2016; pp. I–II. [Google Scholar]
- Li, J.H.; Arkorful, E.; Cheng, S.Y.; Zhou, Q.; Li, H.; Chen, X.; Sun, K.; Li, X. Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze). Sci. Hortic. 2018, 238, 356–362. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liang, C.; Wang, G.P.; Luo, Y.; Wang, W. The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. Biol. Plant. 2010, 54, 83–88. [Google Scholar] [CrossRef]
- Swanson, S.; Gilroy, S. Ros in plant development. Physiol. Plant. 2010, 138, 384–392. [Google Scholar] [CrossRef]
- Chen, Y.L.; Fan, F.; Wang, X.; Li, S.P.; Cao, Z.M. Effects of DA-6 on capsicum chinense Jacq. seedlings subjected to high temperature. Chin. J. Trop. Crops 2014, 35, 1795–1801. [Google Scholar] [CrossRef]
- Shao, L.; Liang, G.J.; Cai, H.L. Influence of hexanoic acid 2-(diethylamino) ethy1 ester on some physiological indexes related to cold resistance of tomato (Lycopersicon esculentum Mill.) seedlings. Plant Physiol. J. 2007, 43, 1105–1108. [Google Scholar] [CrossRef]
- Wang, L.; Cai, Q.H. Impacts of cold stress on activities of SOD and POD of seedling stage. Hunan Agric. Sci. 2011, 40, 56–58+62. [Google Scholar] [CrossRef]
- Sun, B.; Liu, G.L.; Pan, T.T.; Yang, L.T.; Li, Y.R.; Xing, Y.X. Effects of cold stress on root growth and physiological metabolisms in seedlings of different sugarcane varieties. Sugar Tech. 2017, 19, 165–175. [Google Scholar] [CrossRef]
- Peng, X.J.; Teng, L.H.; Yan, X.Q.; Zhao, M.L.; Shen, S.H. The cold responsive mechanism of the paper mulberry: Decreased photosynthesis capacity and increased starch accumulation. BMC Genom. 2015, 16, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.F.; Ye, Y.; Liu, W.C.; Tang, J.W.; Zhang, C.N.; Qiu, J.B.; Chen, J.N. Recovery of photosynthesis, sucrose metabolism, and proteolytic enzymes in Kandelia obovata from rare cold events in the northern most mangrove, China. Ecol. Processes 2016, 5, 9. [Google Scholar]
- Beck, E.H.; Fettig, S.; Knake, C.; Hartig, K.; Bhattarai, T. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 2007, 32, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Jiang, L.N.; Zhang, D.J.; Song, F.; Liu, P.; Fan, T.T.; Yu, H.B.; Li, C.X. Evaluation of cold resistance of different wheat varieties based on physiological responses of leaves to low temperature at the jointing stage. Acta Ecol. Sin. 2014, 34, 4251–4261. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.Y.; Li, Y.Y.; Chen, L.P.; Ou, X.Q.; Zhao, X.X.; Zhang, Z.Y.; Liu, M.J.; Zhu, Q.D. Effect of low temperature stress on seed setting rate and active oxygen metabolism of different wheat varieties. Jiangsu Agric. Sci. 2018, 46, 63–65. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, L.Q.; Wu, J.H.; Pang, C.; Li, P.F.; Jiao, F. Effect of nitrogen application reduction of rice on soil fertility, enzyme activity and yield under continuous straw returning to field. J. Heilongjiang Bayi Agric. Univ. 2021, 33, 30–35. [Google Scholar] [CrossRef]
- Lin, H.B. Effect of the Mian Reducing Matters on Yield of Rice in Cold Waterlogged Paddy Field. Master’s Thesis, Guizhou University, Guiyang, China, 2016. [Google Scholar]
- Tang, X.Y.; Shao, C.H.; Xie, J.S. Analysis of 6-BA on rice leaves proteomes under nutrient stress. China Rice 2011, 17, 29–31. [Google Scholar] [CrossRef]
Total N (%) | Available P (%) | Available K (%) | pH | Organic Matter (%) |
---|---|---|---|---|
10.53 | 2.12 × 10−3 | 1.12 × 10−2 | 6.3 | 3.84 |
Kongyu131 | NFGD | NFGM | SSRD | SSRM | SSRI | YD | YM | TP | TF | BYH | DPH | DSH | DLH | BYM | DPM | DSM | DLM | RPH | RPM | RSM | ES | ERS | TRS | |
NFG | 0.78 * | 0.89 ** | 0.57 | 0.46 | 0.53 | 0.63 | 0.38 | 0.81 * | 0.96 ** | 0.72 | 0.57 | 0.61 | 0.88 ** | 0.51 | 0.49 | 0.50 | 0.50 | 0.46 | 0.47 | −0.47 | 0.63 | 0.58 | 0.63 | |
SSR | 0.24 | 0.72 | 0.96 ** | 0.98 ** | 0.75 | 0.41 | 0.79 * | 0.53 | 0.60 | 0.85 * | 0.85 * | 0.83 * | 0.74 | 0.70 | 0.65 | 0.71 | 0.91 ** | 0.80 * | 0.55 | −0.70 | 0.86 * | 0.95 ** | 0.85 * | |
TGW | 0.90 ** | 0.30 | 0.20 | 0.24 | 0.49 | 0.92 ** | 0.46 | 0.71 | 0.49 | 0.45 | 0.36 | 0.55 | 0.40 | 0.73 | 0.74 | 0.58 | 0.58 | 0.25 | 0.76 * | −0.72 | 0.53 | 0.41 | 0.54 | |
Y | 0.68 | 0.66 | 0.76 * | 0.63 | 0.85 * | 0.87 * | 0.92 ** | 0.59 | 0.66 | 0.93 ** | 0.93 ** | 0.97 ** | 0.76 * | 0.96 ** | 0.96 ** | 0.97 ** | 0.80 * | 0.88 ** | 0.95 ** | −0.95 ** | 0.95 ** | 0.86 * | 0.96 ** | |
Kenjiandao6 | NFGM | NFGI | TP | TF | BYH | DPH | DSH | DLH | BYM | DPM | RPH | RSH | RPM | RSM | ES | ERS | TRS | SSRD | SSRM | SSRI | KGWI | YM | YI | |
NFG | 0.97 ** | 0.87 * | 0.97 ** | 0.94 ** | 0.92 ** | 0.97 ** | 0.82 * | 0.95 ** | 0.78 * | 0.86 * | 0.97 ** | −0.91 ** | 0.88 ** | −0.87 * | 0.86 * | 0.81 * | 0.86 * | 0.92 ** | 0.82 * | 0.90 ** | −0.05 | 0.93 ** | 0.81 * | |
SSR | 0.95 ** | 0.75 | 0.79 * | 0.71 | 0.66 | 0.80 * | 0.51 | 0.71 | 0.73 | 0.79 * | 0.94 ** | −0.81 * | 0.79 * | −0.79 * | 0.54 | 0.47 | 0.54 | 0.85 * | 0.99 ** | 0.79 * | −0.46 | 0.99 ** | 0.62 | |
TGW | −0.18 | 0.07 | 0.12 | 0.10 | 0.21 | 0.03 | 0.31 | 0.19 | −0.30 | −0.19 | −0.18 | −0.01 | −0.06 | 0.09 | 0.38 | 0.45 | 0.38 | −0.05 | −0.55 | 0.07 | 0.96 ** | −0.33 | 0.22 | |
Y | 0.96 ** | 0.89 ** | 0.97 ** | 0.93 ** | 0.90 ** | 0.97 ** | 0.79 * | 0.94 ** | 0.81 * | 0.89 ** | 0.99 ** | −0.94 ** | 0.91 ** | −0.91 ** | 0.82 * | 0.76 * | 0.82 * | 0.94 ** | 0.84 * | 0.91 ** | −0.15 | 0.95 ** | 0.83 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; He, D.; Yang, S.; Yin, D.; Zhao, H.; Xiao, C. Exogenous Diethylaminoethyl Hexanoate Highly Improved the Cold Tolerance of Early japonica Rice at Booting. Agronomy 2022, 12, 3045. https://doi.org/10.3390/agronomy12123045
Wang S, He D, Yang S, Yin D, Zhao H, Xiao C. Exogenous Diethylaminoethyl Hexanoate Highly Improved the Cold Tolerance of Early japonica Rice at Booting. Agronomy. 2022; 12(12):3045. https://doi.org/10.3390/agronomy12123045
Chicago/Turabian StyleWang, Shiqiang, Dengmei He, Shanwei Yang, Dawei Yin, Haihong Zhao, and Changliang Xiao. 2022. "Exogenous Diethylaminoethyl Hexanoate Highly Improved the Cold Tolerance of Early japonica Rice at Booting" Agronomy 12, no. 12: 3045. https://doi.org/10.3390/agronomy12123045
APA StyleWang, S., He, D., Yang, S., Yin, D., Zhao, H., & Xiao, C. (2022). Exogenous Diethylaminoethyl Hexanoate Highly Improved the Cold Tolerance of Early japonica Rice at Booting. Agronomy, 12(12), 3045. https://doi.org/10.3390/agronomy12123045