Nursery Plant Production Models under Quarantine Pests’ Outbreak: Assessing the Environmental Implications and Economic Viability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Implications Assessment
2.1.1. Goals and Scope
- Cutting stage: With respect to the CM, cuttings are sourced from pot-bred mother plants from previous production cycles and selected from those with better physiological and bearing features. For all species, cuttings are produced exclusively from the middle-lignified portion of the branch. Hence, the cuttings are prepared for the next stage in a very short time that usually does not exceed 24 h. Regarding the NSM, cuttings are sourced from mother plants raised permanently in the open field, kept in isolated portions of the farm, and protected from harmful pathogens and external agents using specific expedients (i.e., anti-aphid nets, protective sheeting, etc.). For some species such as Lantana, the innovative protocol also involves finding the cutting from the apical part of the branch. For both models, the composition of the substrates mixture used at this stage is as follows: peat (90%) and perlite (10%).
- Rooting stage: Concerning the CM, the rooting stage involves here planting the cuttings in honeycomb containers placed in controlled environment rooting greenhouses equipped with basal heating, a fog system, and a manual irrigation system. The operating temperature of the greenhouse is set according to the species introduced, varying within a range of 12 to 30 °C. Humidity is kept between 60 and 70%. The heating system is composed of a burner of 5 Hp with split ventilation in the greenhouses. The cuttings are immersed in the forementioned substrate, respectively, after treatment with a rooting powder hormone, IBA 0.5% w/w (commercial name: Rhizopon AA). As preventive or robust curative measures, a biocontrol fungus agent for soil borne diseases such Trichoderma spp. (commercial name: Triash) is used to enhance and improve plant health even in the absence of pathogens. Chemical fungicides are also applied at this stage, such as the following: Azaka/Azoxystrobin to protect plants against stem rot (Sclerotinia sclerotium) and dark leaf and pod spot (Alternaria spp.); Omix/Propamocarb Hydrochloride; Alias DG/Mancozeb; and Pindarus 25 WDG/Tebuconazole against the damping-off of seedlings such as Phytophthora spp. and Pythium spp. (Table 3). The NSM at this stage differs only in the application of the Rhizopon AA whose optimal concentration (1%) has been applied.
- First transplanting: For the CM, the first transplanting takes place in d7 polyethylene pots with a substrate mixture of peat (70%) and pumice (30%) to which scheduled-release fertilizer is added. The plants are moved to another greenhouse where treatments are like those in phase 2. In addition, Radicifo, a bio activator of root and plant growth, mixed with Omix, is used at this stage (Table 3). In respect to the NSM, this stage presumably differs only in what concerns timing and mortality.
- Second transplanting: For the CM, the second transplanting takes place in a d16 polyethylene pot with the same mixture substrate and treatments as mentioned in the previous stage (Table 3). Regarding the NSM, this stage presumably differs only in what concerns timing and mortality.
Stage | Commercial Product | Concentration | Quantity (1000 Plants) | Rate of Application |
---|---|---|---|---|
Rooting | Rhizopon AA | 0.5% | 20 g | One-off |
Omix | 300 Ml·hL−1 | 5 mL | Each 2 weeks | |
Azaka | 100 mL·hL−1 | 1 mL | 1 per month | |
Alias DG | 200 g·hL−1 | 2 g | 1 per month | |
Pindarus 25 WG | 50 g·hL−1 | 0.5 g | 1 per month | |
Triash | 200 mL·hL−1 | 2 mL | 1 per month | |
1st transplanting | Omix + Radicifo | 300 mL·hL−1 | 5 mL + 5 mL | Each 2 weeks |
Azaka | 100 mL·hL−1 | 1 mL | 1 per month | |
Alias DG | 200 g·hL−1 | 2 g | 1 per month | |
Pindarus 25 WG | 50 g·hL−1 | 0.5 g | 1 per month | |
Triash | 200 mL·hL−1 | 2 mL | 1 per month | |
2nd transplanting | Omix + Radicifo | 300 mL·hL−1 | 5 mL + 5 mL | Each 2 weeks |
Azaka | 100 mL·hL−1 | 1 ml | 1 per month | |
Alias DG | 200 g·hL−1 | 2 g | 1 per month | |
Pindarus 25 WG | 50 g·hL−1 | 0.5 g | 1 per month | |
Triash | 200 mL·hL−1 | 2 mL | 1 per month |
2.1.2. Inventory of Resources Used and Emissions
- Characteristics of the species: the first aspect observed concerns the duration of each phase and the mortality rate calculated in the passage from one phase to the next. The further element of a general nature, characteristic of each species, concerns the type of stationing of the pots in the last phase of the production cycle. While for some species it occurs in the open field, for others it continues in the greenhouse (Table 1 and Table 2).
- Pottery: The rooting phase takes place in germination trays of 104 thermoformed polystyrene cells of 14 mL. After the first transplant, the plants grow in extruded and thermoformed polypropylene pots of 0.30 l (d7 cm) and 1.8 l (d16 cm) at the second transplant.
- Fuel and energy: The energy data survey concerned the characteristics of the company structures responsible for heating the greenhouse, the machines for preparing the substrates and for transplanting, and finally the extraction of water from the ground and for irrigation. The data of power and absorption/energy consumption were gathered through the collection of operating technical sheets. Finally, the data for each species concerned the operating times of the individual machines and equipment as well as the data on the area occupied annually to estimate heating consumption.
- Cultivation substrates: Data relating to the cultivation substrates used in the different stages of production were collected, peat by volume and perlite and pumice by weight.
- Chemical residuals: The data of the treatments were calculated based on the timing of the cultivation of each species, assuming a production of residues introduced into agricultural soil equal to 10% of the quantities administered. In particular, the values in grams of fungicides (Table 3) were calculated.
- Water: The amount of water used for irrigation was entered into the inventory as the amount in liters of ground water taken from wells and used for irrigation as a support activity for agriculture.
- Land occupation: The annual occupation data in square meters of greenhouse and agricultural land per year have been estimated on the time extent and the surface area occupied in each production phase.
2.1.3. Impact Assessment
- Agricultural land occupation—ALOP (m2);
- Climate change—GWP100 (kg CO2-Eq);
- Fossil depletion—FDP (kg oil-Eq);
- Freshwater ecotoxicity—FETPinf (kg 1,4-DCB-Eq);
- Freshwater eutrophication—FEP (kg P-Eq);
- Human toxicity—HTPinf (kg 1,4-DCB-Eq);
- Ionizing radiation—IRP_HE (kg U235-Eq);
- Marine ecotoxicity—METPinf (kg 1,4-DCB-Eq);
- Marine eutrophication—MEP (kg N-Eq);
- Metal depletion—MDP (kg Fe-Eq);
- Natural land transformation—NLTP (m2);
- Ozone depletion—ODPinf (kg CFC-11-Eq);
- Particulate matter formation—PMFP (kg PM10-Eq);
- Photochemical oxidant formation—POFP (kg NMVOC);
- Terrestrial acidification—TAP100 (kg SO2-Eq);
- Terrestrial ecotoxicity—TETPinf (kg 1,4-DCB-Eq);
- Urban land occupation—ULOP (m2);
- Water depletion—WDP (m3).
2.2. Economic Viability Analysis
3. Results
3.1. Ornemental Species Life Span
3.2. Environmental Implications
3.3. Economic Viability
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Input (Unit) | Ornamental Species | ||||||||
---|---|---|---|---|---|---|---|---|---|
Abelia grandiflora | Bougainvillea cv Don Mario | Jasminum officinalis | Lantana camara cv Bandana rosa | Loropetalum chinense cv Black Pearl | Photinia fraseri cv Red Robin | Trachelospermum jasminoides | Viburnum lucidum | ||
Labor per cycle (hours) | 26.6 | 28.40 | 29.36 | 22.07 | 30.11 | 30.00 | 31.29 | 30.11 | |
Cultivation substrates | Peat (mc) | 2.04 | 2.08 | 2.04 | 2.04 | 2.09 | 2.04 | 2.04 | 2.04 |
Pumice(kg) | 373.07 | 378.69 | 373.07 | 373.07 | 381.99 | 373.07 | 373.07 | 373.07 | |
Perlite (kg) | 0.11 | 0.25 | 0.12 | 0.12 | 0.13 | 0.15 | 0.12 | 0.11 | |
Water Irrigation | Rooting (l) | 62.80 | 244.22 | 104.67 | 52.33 | 129.29 | 125.60 | 99.16 | 109.90 |
Growth (l) | 1470 | 3266.67 | 2940.00 | 1470.00 | 3458.82 | 2940.00 | 2940.00 | 2940.00 | |
Maturity (l) | 9045 | 18,090 | 9045 | 4020 | 12,060 | 12,060 | 18,090 | 12,060 | |
Energy Fuel | Diesel for heating and machinery (l) | 5.78 | 294.44 | 11.23 | 67.82 | 13.31 | 11.56 | 11.14 | 11.31 |
Electricity for water pumping and irrigation (Kwh) | 18.89 | 38.57 | 21.59 | 9.90 | 27.94 | 27.01 | 37.73 | 26.98 | |
Consumables Pots | Number of dashes (life span: 3 cycles) Number of 7 pots | 9.62 | 21.37 | 10.68 | 10.68 | 11.31 | 12.82 | 10.12 | 9.62 |
Number of Ø7 pots (life span: 3 cycles) | 1000 | 1111 | 1000 | 1000 | 1176 | 1000 | 1000 | 1000 | |
Number of Ø16 pots (life span: 1 cycle) | 1000 000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | |
Land occupation | Agricultural land (m2*year−1) | 24.66 | - | 24.66 | - | 32.88 | 32.88 | 49.32 | 32.88 |
Greenhouse (m2*year−1) | 1.02 | 51.87 | 1.98 | 11.95 | 2.35 | 2.04 | 1.96 | 1.99 | |
Chemical treatments | Rhizopon (mL) | 20.00 | 44.44 | 22.22 | 22.22 | 23.53 | 26.67 | 21.05 | 20.00 |
Omix (mL) | 67.86 | 167.46 | 98.81 | 47.62 | 122.69 | 114.29 | 129.70 | 110.71 | |
Radicifo (mL) | 67.86 | 167.46 | 98.81 | 47.62 | 122.69 | 114.29 | 129.70 | 110.71 | |
Azaka (mL) | 4.83 | 12.63 | 7.72 | 3.78 | 9.45 | 8.67 | 9.11 | 8.33 | |
Alias (mL) | 9.67 | 25.26 | 15.44 | 7.56 | 18.90 | 17.33 | 18.21 | 16.67 | |
Pindarus 25 WG (mL) | 2.42 | 6.31 | 3.86 | 1.89 | 4.73 | 4.33 | 4.55 | 4.17 | |
Triash (mL) | 9.67 | 25.26 | 15.44 | 7.56 | 18.90 | 17.33 | 18.21 | 16.67 |
Input (Unit) | Ornamental Species | ||||||||
---|---|---|---|---|---|---|---|---|---|
Abelia grandiflora | Bougainvillea cv Don Mario | Jasminum officinalis | Lantana camara cv Bandana rosa | Loropetalum chinense cv Black Pearl | Photinia fraseri cv Red Robin | Trachelospermum jasminoides | Viburnum lucidum | ||
Labor per cycle (hours) | 26.03 | 28.17 | 29.13 | 21.84 | 29.89 | 29.77 | 31.06 | 29.89 | |
Cultivation substrates | Peat (mc) | 2.04 | 2.07 | 2.04 | 2.04 | 2.09 | 2.04 | 2.04 | 2.04 |
Pumice(kg) | 373.07 | 378.69 | 373.07 | 373.07 | 381.99 | 373.07 | 373.07 | 373.07 | |
Perlite (kg) | 0.11 | 0.18 | 0.11 | 0.11 | 0.13 | 0.12 | 0.11 | 0.11 | |
Water Irrigation | Rooting (l) | 31.40 | 124.60 | 62.80 | 15.70 | 92.35 | 66.11 | 62.80 | 78.50 |
Growth (l) | 1470.00 | 3266.67 | 2940.00 | 1470.00 | 3458.82 | 2940.00 | 2940.00 | 2940.00 | |
Maturity (l) | 9045 | 18,090 | 9045 | 4020 | 12,060 | 12,060 | 18,090 | 12,060 | |
Energy Fuel | Diesel for heating and machinery (l) | 5.28 | 292.54 | 10.57 | 67.24 | 12.72 | 10.62 | 10.57 | 10.82 |
Electricity for water pumping and irrigation (Kwh) | 18.83 | 38.36 | 21.51 | 9.83 | 27.88 | 26.90 | 37.67 | 26.93 | |
Consumables Pots | Number of dashes (life span: 3 cycles) Number of 7 pots | 9.62 | 15.26 | 9.62 | 9.62 | 11.31 | 10.12 | 9.62 | 9.62 |
Number of Ø7 pots (life span: 3 cycles) | 1000 | 1111 | 1000 | 1000 | 1176 | 1000 | 1000 | 1000 | |
Number of Ø16 pots (life span: 1 cycle) | 1000 000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | |
Land occupation | Agricultural land (m2*year−1) | 24.66 | - | 24.66 | - | 32.88 | 32.88 | 49.32 | 32.88 |
Greenhouse (m2*year−1) | 0.93 | 51.54 | 1.86 | 11.85 | 2.24 | 1.87 | 1.86 | 1.91 | |
Chemical treatments | Rhizopon (ml) | 20.00 | 31.75 | 20.00 | 20.00 | 23.53 | 21.05 | 20.00 | 20.00 |
Omix (mL) | 60.71 | 140.25 | 89.29 | 39.29 | 114.29 | 100.75 | 121.43 | 103.57 | |
Radicifo (mL) | 60.71 | 140.25 | 89.29 | 39.29 | 114.29 | 100.75 | 121.43 | 103.57 | |
Azaka (mL) | 4.17 | 10.09 | 6.83 | 3.00 | 8.67 | 7.40 | 8.33 | 7.67 | |
Alias (mL) | 8.33 | 20.18 | 13.67 | 6.00 | 17.33 | 14.81 | 16.67 | 15.33 | |
Pindarus 25 WG (mL) | 2.08 | 5.04 | 3.42 | 1.50 | 4.33 | 3.70 | 4.17 | 3.83 | |
Triash (mL) | 8.33 | 20.18 | 13.67 | 6.00 | 12.33 | 14.81 | 16.67 | 15.33 |
Input Category | Ornamental Species | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Abelia grandiflora | Bougainvillea cv Don Mario | Lantana camara cv Bandana rosa | Jasminum officinalis | Photinia fraseri cv Red Robin | Loropetalum chinense cv Black Pearl | Viburnum lucidum | Trachelospermum jasminoides | |||
Pots | Dashes | 6.41 | 14.25 | 7.12 | 7.12 | 8.55 | 7.54 | 6.41 | 6.75 | 442.55 |
Ø7 pots | 33.33 | 37.04 | 33.33 | 33.33 | 33.33 | 33.33 | 33.33 | 33.33 | ||
Ø16 pots | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | ||
Total | 439.74 | 451.28 | 440.46 | 440.46 | 441.88 | 446.76 | 439.74 | 440.08 | ||
% | 44.42 | 32.32 | 43.29 | 42.60 | 42.23 | 42.11 | 42.14 | 41.48 | 41.32 | |
Energy | Diesel | 3.47 | 176.66 | 40.69 | 6.74 | 6.94 | 7.99 | 6.79 | 6.69 | 38.51 |
Electricity | 4.72 | 9.64 | 2.47 | 5.40 | 6.75 | 6.99 | 6.75 | 9.43 | ||
Total | 8.19 | 186.30 | 43.17 | 12.14 | 13.69 | 14.97 | 13.53 | 16.12 | ||
% | 0.83 | 13.34 | 4.24 | 1.17 | 1.31 | 1.41 | 1.30 | 1.52 | 3.14 | |
Substrates | Peat | 162.96 | 166.63 | 163.07 | 163.07 | 163.30 | 167.01 | 162.96 | 163.01 | |
Pumice | 89.54 | 90.88 | 89.54 | 89.54 | 89.54 | 91.68 | 89.54 | 89.54 | ||
Perlite | 1.26 | 2.80 | 1.40 | 1.40 | 1.68 | 1.48 | 1.26 | 1.33 | ||
Total | 253.76 | 260.32 | 254.01 | 254.01 | 254.51 | 260.17 | 253.76 | 253.88 | 255.55 | |
% | 25.63 | 18.64 | 24.96 | 24.57 | 24.32 | 24.52 | 24.32 | 23.93 | 23.86 | |
Chemicals | Chemicals | 7.59 | 18.56 | 6.32 | 10.68 | 12.32 | 12.79 | 11.33 | 12.72 | 11.54 |
% | 0.77 | 1.33 | 0.62 | 1.03 | 1.18 | 1.21 | 1.09 | 1.20 | 1.05 | |
Land Occupation | Greenhouse | 3.57 | 181.55 | 41.82 | 6.93 | 7.13 | 8.21 | 6.98 | 6.87 | |
Agricultural land | 1.40 | 0.00 | 0.00 | 1.40 | 1.87 | 1.87 | 1.87 | 2.81 | ||
Total | 4.97 | 181.55 | 41.82 | 8.33 | 9.00 | 10.08 | 8.85 | 9.68 | 34.28 | |
% | 0.50 | 13.00 | 4.11 | 0.81 | 0.86 | 0.95 | 0.85 | 0.91 | 2.75 | |
Labor | Labor | 275.70 | 298.20 | 231.75 | 308.25 | 315.00 | 316.20 | 316.20 | 328.50 | 298.73 |
% | 27.85 | 21.36 | 22.78 | 29.82 | 30.10 | 29.80 | 30.30 | 30.96 | 27.87 | |
Total costs | 989.95 | 1396.21 | 1017.52 | 1033.86 | 1046.41 | 1060.97 | 1043.41 | 1060.98 | 1081.16 | |
% | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Input Category | Ornamental Species | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Abelia grandiflora | Bougainvillea cv Don Mario | Lantana camara cv Bandana rosa | Jasminum officinalis | Photinia fraseri cv Red Robin | Loropetalum chinense cv Black Pearl | Viburnum lucidum | Trachelospermum jasminoides | |||
Pots | Dashes | 6.41 | 10.18 | 6.41 | 6.41 | 6.75 | 7.54 | 6.41 | 6.41 | |
Ø7 pots | 33.33 | 37.04 | 33.33 | 33,33 | 33.33 | 39.22 | 33.33 | 33.33 | ||
Ø16 pots | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 | ||
Total | 439.74 | 447.21 | 439.74 | 439.74 | 440.08 | 446.76 | 439.4 | 439.74 | 441.60 | |
% | 44.59 | 32.36 | 43.43 | 42.75 | 42.37 | 42.26 | 42.29 | 41.62 | 41.46 | |
Energy | Diesel | 3.17 | 175.52 | 40.34 | 6.34 | 6.37 | 7.63 | 6.49 | 6.34 | |
Electricity | 4.71 | 9.59 | 2.46 | 5.38 | 6.73 | 6.97 | 6.73 | 9.42 | ||
Total | 7.88 | 185.11 | 42.80 | 11.72 | 13.10 | 14.60 | 13.22 | 15.76 | 38.02 | |
% | 0.80 | 13.39 | 4.23 | 1.14 | 1.26 | 1.38 | 1.27 | 1.49 | 3.12 | |
Substrates | Peat | 162.96 | 165.99 | 162.96 | 162.96 | 163.01 | 167.01 | 162.96 | 162.96 | |
Pumice | 89.54 | 90.88 | 89.54 | 89.54 | 89.54 | 91.68 | 89.54 | 89.54 | ||
Perlite | 1.26 | 2.00 | 1.26 | 1.26 | 1.33 | 1.48 | 1.26 | 1.26 | ||
Total | 253.76 | 258.88 | 253.76 | 253.76 | 253.88 | 260.17 | 253.76 | 253.76 | 255.21 | |
% | 25.73 | 18.73 | 25.06 | 24.67 | 24.44 | 24.61 | 24.41 | 24.02 | 23.96 | |
Chemicals | Chemicals | 6.93 | 14.77 | 5.33 | 9.57 | 10.51 | 12.01 | 10.66 | 11.85 | 10.20 |
% | 0.70 | 1.07 | 0.53 | 0.93 | 1.01 | 1.14 | 1.03 | 1.12 | 0.94 | |
Land Occupation | Greenhouse | 3.26 | 180.38 | 41.46 | 6.52 | 6.55 | 7.85 | 6.67 | 6.52 | |
Agricultural land | 1.40 | 0.00 | 0.00 | 1.40 | 1.87 | 1.87 | 1.87 | 2.81 | ||
Total | 4.66 | 180.38 | 41.46 | 7.92 | 8.42 | 9.72 | 8.54 | 9.32 | 33.80 | |
% | 0.47 | 13.05 | 4.10 | 0.77 | 0.81 | 0.92 | 0.82 | 0.88 | 2.73 | |
Labor | Labor | 273.30 | 295.80 | 229.35 | 305.85 | 312.60 | 313.80 | 313.80 | 326.10 | 296.33 |
% | 27.71 | 21.40 | 22.65 | 29.74 | 30.10 | 29.69 | 30.18 | 30.87 | 27.79 | |
Total costs | 986.26 | 1382.15 | 1012.44 | 1028.56 | 1038.58 | 1057.06 | 1039.72 | 1056.53 | 1075.16 | |
% | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Impact | ALOP | |||
---|---|---|---|---|
Protocol | CM | NSM | ||
Species | Main input contributor | % | Main input contributor | % |
Abelia grandiflora | Diesel, burned in agricultural machinery | 17.72% | Diesel, burned in agricultural machinery | 16.49% |
Bougainvillea cv Don Mario | Diesel, burned in agricultural machinery | 84.95% | Diesel, burned in agricultural machinery | 84.95% |
Lantana camaracv Bandana rosa | Diesel, burned in agricultural machinery | 83.25% | Diesel, burned in agricultural machinery | 83.23% |
Jasminum officinalis | Diesel, burned in agricultural machinery | 28.76% | Diesel, burned in agricultural machinery | 27.61% |
Photinia frasericv Red Robin | Diesel, burned in agricultural machinery | 24.42% | Diesel, burned in agricultural machinery | 22.97% |
Loropetalum chinense cv Black Pearl | Diesel, burned in agricultural machinery | 26.91% | Diesel, burned in agricultural machinery | 26.09% |
Viburnum lucidum | Diesel, burned in agricultural machinery | 24.05% | Diesel, burned in agricultural machinery | 23.28% |
Trachelospermum jasminoides | Diesel, burned in agricultural machinery | 17.79% | Diesel, burned in agricultural machinery | 17.05% |
Impact | GWP100 | |||
Protocol | CM | NSM | ||
Species | Main input contributor | % | Main input contributor | % |
Abelia grandiflora | Peat moss production, horticultural use | 65.03% | Peat moss production, horticultural use | 65.45% |
Bougainvillea cv Don Mario | Diesel, burned in agricultural machinery | 79.27% | Diesel, burned in agricultural machinery | 79.28% |
Lantana camaracv Bandana rosa | Diesel, burned in agricultural machinery | 48.34% | Diesel, burned in agricultural machinery | 48.16% |
Jasminum officinalis | Peat moss production, horticultural use | 60.64% | Peat moss production, horticultural use | 61.15% |
Photinia frasericv Red Robin | Peat moss production, horticultural use | 60.01% | Peat moss production, horticultural use | 60.75% |
Loropetalum chinense cv Black Pearl | Peat moss production, horticultural use | 59.05% | Peat moss production, horticultural use | 59.44% |
Viburnum lucidum | Peat moss production, horticultural use | 60.26% | Peat moss production, horticultural use | 60.62% |
Trachelospermum jasminoides | Peat moss production, horticultural use | 59.70% | Peat moss production, horticultural use | 60.11% |
Impact | FDP | |||
Protocol | CM | NSM | ||
Species | Main input contributor | % | Main input contributor | % |
Abelia grandiflora | d16 pot production | 69.24% | d16 pot production | 69.90% |
Bougainvillea cv Don Mario | Diesel, burned in agricultural machinery | 85.18% | Diesel, burned in agricultural machinery | 85.24% |
Lantana camaracv Bandana rosa | Diesel, burned in agricultural machinery | 59.18% | Diesel, burned in agricultural machinery | 59.02% |
Jasminum officinalis | d16 pot production | 62.45% | d16 pot production | 63.27% |
Photinia frasericv Red Robin | d16 pot production | 61.35% | d16 pot production | 62.60% |
Loropetalum chinense cv Black Pearl | d16 pot production | 58.67% | d16 pot production | 59.23% |
Viburnum lucidum | d16 pot production | 61.90% | d16 pot production | 62.43% |
Trachelospermum jasminoides | d16 pot production | 60.96% | d16 pot production | 61.60% |
Impact | WDP | |||
Protocol | CM | NSM | ||
Species | Main input contributor | % | Main input contributor | % |
Abelia grandiflora | Pumice quarry operation | 8.65% | Pumice quarry operation | 8.67% |
Bougainvillea cv Don Mario | Diesel, burned in agricultural machinery | 8.35% | Diesel, burned in agricultural machinery | 8.34% |
Lantana camaracv Bandana rosa | Pumice quarry operation | 13.41% | Pumice quarry operation | 13.48% |
Jasminum officinalis | Pumice quarry operation | 7.72% | Pumice quarry operation | 7.74% |
Photinia frasericv Red Robin | Pumice quarry operation | 6.37% | Pumice quarry operation | 6.40% |
Loropetalum chinense cv Black Pearl | Pumice quarry operation | 6.31% | Pumice quarry operation | 6.33% |
Viburnum lucidum | Pumice quarry operation | 6.38% | Pumice quarry operation | 6.39% |
Trachelospermum jasminoides | Pumice quarry operation | 4.74% | Pumice quarry operation | 4.75% |
References
- Lazzerini, G.; Lucchetti, S.S.; Nicese, F.P. Analysis of greenhouse gas emissions from ornamental plant production: A nursery level approach. Urban For. Urban Green. 2014, 13, 517–525. [Google Scholar] [CrossRef]
- Lazzerini, G.; Lucchetti, S.; Nicese, F.P. Green House Gases (GHG) emissions from the ornamental plant nursery industry: A Life Cycle Assessment (LCA) approach in a nursery district in central Italy. J. Clean. Prod. 2016, 112, 4022–4030. [Google Scholar] [CrossRef]
- Bonaguro, J.E.; Coletto, L.; Samuele, B.; Zanin, G.; Sambo, P. Environmental impact in floriculture: LCA approach at farm level. Acta Hortic. 2016, 1112, 419–424. [Google Scholar] [CrossRef]
- NationMaster. Ornamental Plant and Flowers Production. Top Countries for Ornamental Plants and Flowers Production. Available online: https://www.nationmaster.com/nmx/ranking/ornamental-plants-and-flowers-production (accessed on 5 September 2022).
- Rani, A.; Donovan, N.J.; Mantri, N. The future of plant pathology diagnostics in a nursery production system. Biosens. Bioelectron. 2019, 145, 111631. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.M.; Raju, B.C.; Hung, H.Y.; Weisburg, W.G.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa gen. nov., sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bacteriol. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel on Plant Health. Update of the Xylella spp. host plant database-systemic literature search up to 30 June 2021. EFSA J. 2022, 20, e07356. [Google Scholar] [CrossRef]
- Bonaguro, J.E.; Coletto, L.; Sambo, P.; Nicoletto, C.; Zanin, G. Environmental analysis of sustainable production practices applied to Cyclamen and Zonal Geranium. Horticulturae 2021, 7, 8. [Google Scholar] [CrossRef]
- Morelli, M.; García-Madero, J.M.; Jos, Á.; Saldarelli, P.; Dongiovanni, C.; Kovacova, M.; Saponari, M.; Baños Arjona, A.; Hackl, E.; Webb, S.; et al. Xylella fastidiosa in Olive: A aeview of control attempts and current management. Microorganisms 2021, 9, 1771. [Google Scholar] [CrossRef]
- Frem, M.; Fucilli, V.; Nigro, F.; El Moujabber, M.; Abou Kubaa, R.; La Notte, P.; Bozzo, F.; Choueiri, E. The potential direct economic impact and private management costs of an invasive alien species: Xylella fastidiosa on Lebanese wine grapes. NeoBiota 2021, 70, 43–67. [Google Scholar] [CrossRef]
- Bozzo, F.; Frem, M.; Fucilli, V.; Cardone, G.; Garofoli, P.F.; Geronimo, S.; Petrontino, A. Landscape and vegetation patterns zoning is a methodological tool for management costs implications due to Xylella fastidiosa invasion. Land 2022, 11, 1105. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel on Plant Health. Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J. 2015, 13, 3989. [Google Scholar] [CrossRef]
- Frem, M.; Chapman, D.; Fucilli, V.; Choueiri, E.; Moujabber, M.E.; Notte, P.L.; Nigro, F. Xylella fastidiosa invasion of new countries in Europe, the Middle East, and North Africa: Ranking the potential exposure scenarios. NeoBiota 2020, 59, 77–97. [Google Scholar] [CrossRef]
- Rossa, Ü.B.; Winckler, P.R.; Winckler, P.R.F. Cuttings of Euphorbia phosphorea Mart and Euphorbia enterophora Drake at different concentrations of indole-butyric acid and analysis of economic viability. Ornam. Hortic. 2018, 25, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.; Buttol, P.; Tarantini, M. LCA (Life Cycle Assessment) of roses and cyclamens in greenhouse cultivation. Acta Hortic. 2008, 801, 359–366. [Google Scholar] [CrossRef]
- Blonk, H.; Kool, A.; Luske, B.; Ponsioen, T.; Scholten, J. Methodology for Assessing Carbon Footprints of Horticultural Products; Blonk Milieu Advies: Gouda, The Netherlands, 2010. [Google Scholar]
- Ingram, D.L. Life cycle assessment of a field-grown red maple tree to estimate its carbon footprint components. Int. J. Life Cycle Assess. 2012, 17, 453–462. [Google Scholar] [CrossRef]
- Beccaro, G.L.; Cerutti, A.K.; Vandecasteele, I.; Bonvegna, L.; Donno, D.; Bounous, G. Assessing environmental impacts of nursery production: Methodological issues and results from a case study in Italy. J. Clean. Prod. 2014, 80, 159–169. [Google Scholar] [CrossRef]
- Bisaglia, C.; Cutini, M.; Romano, E.; Fedrizzi, M.; Menesatti, P.; Santoro, G.; Frangi, P.; Minuto, G.; Tinivella, F.; Miccolis, V.; et al. Trends and perspectives for the optimal use of energy in ornamental plant production and distribution in Italy. Acta Hortic. 2008, 801, 795–802. [Google Scholar] [CrossRef]
- Vadiee, A.; Martin, V. Energy management in horticultural applications through the closed greenhouse concept, state of the art. Renew. Sustain. Energy Rev. 2012, 16, 5087–5100. [Google Scholar] [CrossRef]
- Takhur, A.; Singh, R.; Gahlot, A.; Kaviti, A.; Aseer, R. Advancements in solar technologies for sustainable development of agricultural sector in India: A comprehensive review on challenges and opportunities. Environ. Sci. Pollut. Res. 2022, 29, 43607–43634. [Google Scholar] [CrossRef]
- Mugnozza, G.S.; Russo, G.; De Lucia, B. LCA methodology application in flower protected cultivation. Acta Hortic. 2007, 761, 625–632. [Google Scholar] [CrossRef]
- Grigatti, M.; Giorgioni, M.E.; Ciavatta, C. Compost-based growing media: Influence on growth and nutrient use of bedding plants. Biores. Technol. 2007, 98, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
- Papafotiou, M.; Physhalou, M.; Kargas, G.; Chatzipavlidis, I.J.; Chronopoulos, J. Olive-mill wastes compost as growing medium component for the production of poinsettia. Sci. Hortic. 2004, 102, 167–175. [Google Scholar] [CrossRef]
- Tzavara, S.; Darras, A.; Assimakopoulou, A. Tobacco dust waste as an alternative medium to grow geranium (Pelargonium x hortorum) plants. Adv. Hortic. Sci. 2019, 33, 295–298. [Google Scholar] [CrossRef]
- De Lucia, B.; Cristiano, G.; Vecchietti, L.; Rea, E.; Russo, G. Nursery growing media: Agronomic and environmental quality assessment of sewage sludge-based compost. Appl. Environ. 2013, 10, 565139. [Google Scholar] [CrossRef] [Green Version]
- Darras, A. Overview of the dynamic role of specialty cut flowers in the international cut flower market. Horticulturae 2021, 7, 51. [Google Scholar] [CrossRef]
- Weiss, D. Introduction of new cut flowers: Domestication of new species and introduction of new traits not found in commercial varieties. In Breeding for Ornamentals: Classical and Molecular Approaches; Springer: Dordrecht, The Netherlands, 2002; pp. 129–137. [Google Scholar]
- De Pascale, S.; Romano, D. Potential use of wild plants in floriculture. Acta Hortic. 2019, 1240, 87–98. [Google Scholar] [CrossRef]
- Ingram, D.L.; Fernandez, R.T. Life cycle assessment: A tool for determining the environmental impact of horticultural crop production. HortTechnology 2012, 22, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Ingram, D.L.; Hall, C.R. Carbon footprint and related production costs of system components of a field grown Cercis canadensis L. ‘Forest Pansy’ using life cycle assessment. J. Environ. Hort. 2013, 31, 169–176. [Google Scholar] [CrossRef]
- Oguzcan, S.; Dvarioniene, J.; Tugnoli, A.; Kruopiene, K. Environmental impact assessment model for substitution of hazardous substances by using life cycle approach. Environ. Pollut. 2019, 254, 112945. [Google Scholar] [CrossRef]
- Salehpour, T.; Khanali, M.; Rajabipour, A. Environmental impact assessment for ornamental plant greenhouse: Life cycle assessment approach for primrose production. Environ. Pollut. 2020, 266, 3. [Google Scholar] [CrossRef]
- Bonilla-Gámez, N.; Toboso-Chavero, S.; Parada, F.; Civit, B.; Arena, A.P.; Rieradevall, J.; Durany, X.G. Environmental impact assessment of agro-services symbiosis in semiarid urban frontier territories. Case study of Mendoza (Argentina). Sci. Total Environ. 2021, 774, 145682. [Google Scholar] [CrossRef]
- Maesano, G.; Chinnici, G.; Falcone, G.; Bellia, C.; Raimondo, M.; D’Amico, M. Economic and environmental sustainability of olive production: A case study. Agronomy 2021, 11, 1753. [Google Scholar] [CrossRef]
- ISO 14044; International Standard Environmental Management—Life Cycle Assessment: Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Hall, C.; Ingram, D. Production costs of field grown Cercis canadensis L. ‘Forest Pansy’ identified during life cycle assessment analysis. HortScience 2014, 49, 6. [Google Scholar] [CrossRef] [Green Version]
- Valatin, G.; Price, C.; Green, S. Reducing disease risks to British forests: An exploration of costs and benefits of nursery best practices. Int. J. For. Res. 2022, 95, 477–491. [Google Scholar] [CrossRef]
- Baldo, G.L.; Mariono, M.; Rossi, S. Analisi del Ciclo di Vita LCA. Manuali di Progettazione Sostenibile; Edizioni Ambiente: Milan, Italy, 2008. [Google Scholar]
- Sahle, A.; Potting, J. Environmental life cycle assessment of Ethiopian rose cultivation. Sci. Total Environ. 2013, 443, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Vivai Capitanio Stefano. Eco-Sustainable Production. Available online: www.vivaicapitanio.it (accessed on 22 September 2022).
- Kendall, A.; McPherson, E.G. A life cycle greenhouse gas inventory of a tree production system. Int. J. Life Cycle Assess. 2012, 17, 444–452. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Vannière, H.; Grasselly, D.; Heitz, H.; Braun, A.; Payen, S.; Biard, Y. Environmental impacts of imported and locally grown fruits for the French market: A cradle-to-farm-gate LCA study. Fruits 2016, 71, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Bessou, C.; Basset-Mens, C.; Latunussa, C.; Vélu, A.; Heitz, H.; Vannière, H.; Caliman, J.P. Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. Int. J. Life Cycle Assess. 2016, 21, 297–310. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G. Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Wimmerova, L.; Keken, Z.; Solcova, O.; Bartos, L.; Spacilova, M. A comparative LCA of ceroponic, hydroponic, and soil cultivations of bioactive substance producing plants. Sustainability 2022, 14, 2421. [Google Scholar] [CrossRef]
- Oliva, R.D.P.; Huaman, J.; Vásquez-Lavin, F.; Barrientos, M.; Gelcich, S. Firms adaptation to climate change through product innovation. J. Clean. Prod. 2022, 350, 131436. [Google Scholar] [CrossRef]
- Chen, C.; Qu, L.; Tseng, M.L.; Li, L.; Chen, C.C.; Lim, M.K. Reducing fuel cost and enhancing the resource utilization rate in energy economic load dispatch problem. J. Clean. Prod. 2022, 364, 132709. [Google Scholar] [CrossRef]
- Yang, X.; Pu, Y.; Weng, S.; Hou, M.; Wang, Z. Review of agricultural water-saving policies and measures in recent years–a case study of Jiangsu province, China. Water Supply 2022, 22, 3951–3967. [Google Scholar] [CrossRef]
- Sistema Nazionale per la Protezione dell’Ambiente. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2022. Report SNPA 2022, 32. Available online: https://www.snpambiente.it/2022/07/06/consumo-di-suolo-dinamiche-territoriali-e-servizi-ecosistemici-edizione-2022/ (accessed on 9 September 2022).
- Banaeian, N.; Omid, M.; Ahmadi, H. Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Convers. Manag. 2001, 52, 1020–1025. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Mousazadeh, H. Environmental impact assessment of open field and greenhouse strawberry production. Eur. J. Agron. 2013, 50, 9–37. [Google Scholar] [CrossRef]
- Lopes, S.A. Scion substitution: A new strategy to control citrus variegated chlorosis disease. Plant Dis. 2020, 104, 239–245. [Google Scholar] [CrossRef]
- Barnard, E.L.; Ash, E.C.; Hopkins, D.L.; McGovern, R.J. Distribution of Xylella fastidiosa in Oaks in Florida and its association with growth decline in Quercus laevis. Plant Dis. 1998, 82, 569–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Ferrin, D.M.; Huang, Q. First Report of Xylella fastidiosa associated with Oleander Leaf Scorch in Louisiana. Plant Dis. 2010, 94, 274. [Google Scholar] [CrossRef] [PubMed]
- Li, W.B.; Pria, W.D., Jr.; Teixeira, D.C.; Miranda, V.S.; Ayres, A.J.; Franco, C.F.; Costa, M.G.; He, C.X.; Costa, P.I.; Hartung, J.S. Coffee Leaf Scorch caused by a strain of Xylella fastidiosa from citrus. Plant Dis. 2001, 85, 501–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou Kubaa, R.; Giampetruzzi, A.; Altamura, G.; Saponari, M.; Saldarelli, P. Infections of the Xylella fastidiosa subsp. pauca strain “De Donno” in Alfalfa (Medicago sativa) Elicits an Overactive Immune Response. Plants 2019, 8, 335. [Google Scholar] [CrossRef]
- Surano, A.; Abou Kubaa, R.; Nigro, F.; Altamura, G.; Losciale, P.; Saponari, M.; Saldarelli, P. Susceptible and resistant olive cultivars show differential physiological response to Xylella fastidiosa infections. Front. Plant Sci. 2022, 13, 968934. [Google Scholar] [CrossRef] [PubMed]
- El Handi, K.; Hafidi, M.; Sabri, M.; Frem, M.; El Moujabber, M.; Habbadi, K.; Haddad, N.; Benbouazza, A.; Abou Kubaa, R.; Achbani, E.H. Continuous pest surveillance and monitoring constitute a tool for sustainable agriculture: Case of Xylella fastidiosa in Morocco. Sustainability 2022, 14, 1485. [Google Scholar] [CrossRef]
- Cambria, D.; Pierangeli, D. A life cycle assessment case study for walnut tree (Juglans regia L.) seedlings production. Int. J. Life Cycle Assess. 2011, 16, 859. [Google Scholar] [CrossRef]
- Girgenti, V.; Peano, C.; Bounous, M.; Baudino, C. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy. Sci. Total Environ. 2013, 458–460, 414–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawera, T.; Tefera, B.; Sahu, O. Flower farms environmental performance evaluation in Ethiopia. J. Environ. Earth Sci. 2021, 3, 48–58. [Google Scholar] [CrossRef]
- Lan, Y.-C.; Tam, V.W.; Xing, W.; Datt, R.; Chan, Z. Life cycle environmental impacts of cut flowers: A review. J. Clean. Prod. 2014, 369, 133415. [Google Scholar] [CrossRef]
- Bartzas, G.; Zaharaki, D.; Komnitsas, K. Life cycle assessment of open field and greenhouse cultivation of lettuce and barley. Inf. Process. Agric. 2015, 2, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Legua, P.; Hernández, F.; Tozzi, F.; Martínez-Font, R.; Jorquera, D.; Jiménez, C.R.; Giordani, E.; Martínez-Nicolás, J.J.; Melgarejo, P. Application of LCA methodology to the production of strawberry on substrates with peat and sediments from ports. Sustainability 2021, 13, 6323. [Google Scholar] [CrossRef]
- Roychoudhry, S.; Kepinski, S. Auxin in root development. CSH Perspect Biol. 2022, 14, a039933. [Google Scholar] [CrossRef]
- Ruett, M.; Whitney, C.; Luedeling, E. Model-based evaluation of management options in ornamental plant nurseries. J. Clean. Prod. 2020, 12, 26–53. [Google Scholar] [CrossRef]
- Dennis, J.H.; Lopez, R.G.; Behe, B.K.; Hall, C.R.; Yue, C.; Campbell, B.L. Sustainable production practices adopted by greenhouse and nursery plant growers. HortScience 2010, 45, 1232–1237. [Google Scholar] [CrossRef] [Green Version]
- Behe, B.K.; Campbell, B.L.; Hall, C.R.; Khachatryan, H.; Dennis, J.H.; Yue, C. Consumer preferences for local and sustainable plant production characteristics. HortScience 2013, 48, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.; Khachatryan, H.; Behe, B.; Dennis, J.; Hall, C. Consumer perceptions of eco-friendly and sustainable terms. Agric. Res. Econ. Rev. 2015, 44, 21–34. [Google Scholar] [CrossRef]
- Berki-Kiss, D.; Menrad, K. Consumer preferences of sustainability labelled cut roses in Germany. Sustainability 2019, 11, 3358. [Google Scholar] [CrossRef]
Production Phase | Rooting | Growth | Commercial Maturity | ||||||
---|---|---|---|---|---|---|---|---|---|
Species | Duration (day) | Mortality (%) | Surface (m2) | Duration (day) | Mortality (%) | Surface (m2) | Duration in the greenhouse (day) | Duration in the open field (day) | Surface (m2) |
Abelia grandiflora | 40 | 0% | 1.60 | 60 | 0% | 5.13 | 0 | 90 | 100 |
Bougainvillea cv Don Mario | 70 | 50% | 3.56 | 120 | 10% | 5.70 | 180 | 0 | 100 |
Jasminum officinalis | 60 | 10% | 1.78 | 120 | 0% | 5.13 | 0 | 90 | 100 |
Lantana camara cv Bandana rosa | 30 | 10% | 1.78 | 60 | 0% | 5.13 | 40 | 0 | 100 |
Loropetalum chinense cv Black Pearl | 70 | 0% | 1.89 | 120 | 15% | 6.03 | 0 | 120 | 100 |
Photinia fraseri cv Red Robin | 60 | 25% | 2.14 | 120 | 0% | 5.13 | 0 | 120 | 100 |
Trachelospermum jasminoides | 60 | 5% | 1.69 | 120 | 0% | 5.13 | 0 | 180 | 100 |
Viburnum lucidum | 70 | 0% | 1.60 | 120 | 0% | 5.13 | 0 | 120 | 100 |
Production Phase | Rooting | Growth | Commercial Maturity | ||||||
---|---|---|---|---|---|---|---|---|---|
Species | Duration (day) | Mortality (%) | Surface (m2) | Duration (day) | Mortality (%) | Surface (m2) | Duration in the greenhouse (day) | Duration in the open field (day) | Surface (m2) |
Abelia grandiflora | 20 | 0% | 1.60 | 60 | 0% | 5.13 | 0 | 90 | 100 |
Bougainvillea cv Don Mario | 50 | 30% | 2.54 | 120 | 10% | 5.70 | 180 | 0 | 100 |
Jasminum officinalis | 40 | 0% | 1.60 | 120 | 0% | 5.13 | 0 | 90 | 100 |
Lantana camara cv Bandana rosa | 10 | 0% | 1.60 | 60 | 0% | 5.13 | 40 | 0 | 100 |
Loropetalum chinense cv Black Pearl | 50 | 0% | 1.89 | 120 | 15% | 6.03 | 0 | 120 | 100 |
Photinia fraseri cv Red Robin | 40 | 5% | 1.69 | 120 | 0% | 5.13 | 0 | 120 | 100 |
Trachelospermum jasminoides | 40 | 0% | 1.60 | 120 | 0% | 5.13 | 0 | 180 | 100 |
Viburnum lucidum | 50 | 0% | 1.60 | 120 | 0% | 5.13 | 0 | 120 | 100 |
Type of Variable | Difference | Importance or Consideration for | Justification | ||
---|---|---|---|---|---|
CM | NSM | LCA Analysis | Economic Analysis | ||
Period of the whole production cycle (overall average) | Requires more days | Requires fewer days | Least | Highest | See Note (1) |
57.5 days for the rooting phase | 37.5 days for the rooting phase | ||||
280 days for the whole production cycle | 260 days for the whole production cycle | ||||
Mortality rate during the rooting phase (overall average) | Relatively high (12.5%) | Relatively low (4.4%) | Medium | High | See Note (2) |
Raw propagation material (i.e., mother plants) | Internal supply The propagation is realized by using propagation materials from mother plants previously produced from the nursery itself that may not guarantee healthy ornamental landscape species | External supply (1rst year only) The mother plants are purchased from external certified/accredited sources (Research National Centre and University of Bari Aldo Moro), fulfilling the requirements of markets and phytosanitary regulations | Low | Medium | See Note (3) |
Cultivation substrates consumption, mainly related to the mortality rate | Relatively high | Relatively low | High | Low | See Note (4) |
Water consumption, mainly related to the mortality rate and the period of the cycle of production | Relatively high | Relatively low | High | Least | See Note (5) |
Energy/fuel, mainly related to the production cycle duration | Relatively high | Relatively low | Highest | High | See Note (6) |
Consumables/pots, mainly related to the mortality rate | Relatively high | Relatively low | High | Medium | See Note (7) |
Open-field occupation, mainly related to the mother plants’ growth and maintenance | Relatively low | Relatively high | Low | Low | See Note (8) |
Greenhouse occupation, mainly related to the production cycle duration | Relatively high | Relatively low | High | High | See Note (9) |
Chemical treatments in terms of the use of auxins | Relatively low | Relatively high | Least | Least | See Note (10) |
Chemical treatments in terms of the use of phytosanitary products | Relatively high (Massive application) | Relatively low (Low application) | High | High | See Note (11) |
Labor, mainly related to the production cycle duration | Relatively greater working hours | Relatively fewer working hours | Least | Highest | See Note (12) See Note (9) |
Labor, mainly related to the mother plants’ growth and maintenance | Relatively fewer working hours | Relatively greater working hours | Least | Highest |
Indicator | Formula | Comments and/or Interpretation |
---|---|---|
Annual total gross income (in EUR) | Number of plants × Plant unit price | Based on market prices. Year: 2021. |
Annual gross margin (in EUR) | Total gross income—Total variable costs | |
Net present value (NPV in EUR) | Rt: net cash flows—outflows during a single period. i: discount rate (here 5%). n: number of periods (here 10 years). NPV determines which production model is the most profitable. | |
Benefit–cost ratio (BCR in EUR) | CF: cash flows. i: discount rate (here 5%). n: number of periods (here 10 years). t: period that the cash flow occurs. BCR < 1: the model is destroying value. BCR = 1: the model will neither create nor destroy value. BCR > 1: the model will induce incremental value. |
Species | CM (in Days) | NSM (in Days) |
---|---|---|
Abelia grandiflora | 190 | 170 |
Bougainvillea cv Don Mario | 370 | 350 |
Jasminum officinalis | 270 | 250 |
Lantana camara cv Bandana rosa | 130 | 110 |
Loropetalum chinense cv Black Pearl | 310 | 290 |
Photinia fraseri cv Red Robin | 300 | 280 |
Trachelospermum jasminoides | 360 | 340 |
Viburnum lucidum | 310 | 290 |
Overall average | 280 | 260 |
Standard deviation | 82.3 | 82.3 |
Coefficient of variation (%) | 29 | 32 |
Species | ALOP (m2) | GWP100 (kg CO2-Eq) | FDP (kg oil-Eq) | WDP (m3) |
---|---|---|---|---|
Abelia grandiflora | 34.50 | 411.49 | 89.88 | 12.91 |
Bougainvillea cv Don Mario | 366.45 | 1935.49 | 582.27 | 26.15 |
Jasminum officinalis | 41.29 | 441.62 | 99.67 | 14.47 |
Lantana camara cv Bandana rosa | 86.14 | 731.05 | 193.06 | 8.32 |
Loropetalum chinense cv Black Pearl | 52.29 | 464.44 | 106.08 | 18.11 |
Photinia fraseri cv Red Robin | 50.07 | 446.83 | 101.45 | 17.52 |
Trachelospermum jasminoides | 66.25 | 448.41 | 102.10 | 23.53 |
Viburnum lucidum | 49.74 | 444.08 | 100.54 | 17.50 |
Species | ALOP (m2) | GWP100 (kg CO2-Eq) | FDP (kg oil-Eq) | WDP (m3) |
---|---|---|---|---|
Abelia grandiflora | 33.88 | 408.87 | 89.03 | 12.88 |
Bougainvillea cv Don Mario | 364.09 | 1922.75 | 578.11 | 26.01 |
Jasminum officinalis | 40.46 | 437.64 | 98.37 | 14.42 |
Lantana camara cv Bandana rosa | 85.42 | 727.51 | 191.91 | 8.28 |
Loropetalum chinense cv Black Pearl | 51.56 | 461.35 | 105.08 | 18.06 |
Photinia fraseri cv Red Robin | 48.89 | 440.64 | 99.43 | 17.45 |
Trachelospermum jasminoides | 65.53 | 445.15 | 101.43 | 23.49 |
Viburnum lucidum | 49.13 | 441.46 | 99.69 | 17.46 |
Species | ALOP (m2) | GWP100 (kg CO2-Eq) | FDP (kg oil-Eq) | WDP (m3) |
---|---|---|---|---|
Abelia grandiflora | 0.62 | 2.63 | 0.85 | 0.04 |
Bougainvillea cv Don Mario | 2.36 | 12.74 | 4.16 | 0.14 |
Jasminum officinalis | 0.83 | 3.98 | 1.29 | 0.05 |
Lantana camara cv Bandana rosa | 0.72 | 3.53 | 1.15 | 0.04 |
Loropetalum chinense cv Black Pearl | 0.73 | 3.08 | 1.00 | 0.04 |
Photinia fraseri cv Red Robin | 1.18 | 6.19 | 2.02 | 0.07 |
Trachelospermum jasminoides | 0.71 | 3.26 | 1.06 | 0.04 |
Viburnum lucidum | 0.61 | 2.62 | 0.85 | 0.04 |
Overall average | 0.97 | 1.55 | 1.55 | 0.06 |
Standard deviation | 0.59 | 1.12 | 1.12 | 0.03 |
Coefficient of variation (%) | 60.81 | 72.38 | 72.38 | 60.78 |
Species | Sales per Year (Plants) | ALOP (m2) | GWP100 (kg CO2-Eq) | FDP (kg oil-Eq) | WDP (m3) |
---|---|---|---|---|---|
Abelia grandiflora | 24,980 | 15.46 | 65.60 | 21.23 | 0.88 |
Bougainvillea cv Don Mario | 6000 | 14.15 | 76.44 | 24.96 | 0.85 |
Jasminum officinalis | 16,400 | 13.57 | 65.19 | 21.19 | 0.79 |
Lantana camara cv Bandana rosa | 9800 | 7.05 | 34.64 | 11.27 | 0.41 |
Loropetalum chinense cv Black Pearl | 4200 | 3.07 | 12.95 | 4.19 | 0.17 |
Photinia fraseri cv Red Robin | 22,950 | 27.04 | 142.01 | 46.33 | 1.60 |
Trachelospermum jasminoides | 16,900 | 12.07 | 0.04 | 0.00 | 0.00 |
Viburnum lucidum | 17,100 | 10.40 | 0.03 | 0.00 | 0.00 |
Overall average | 17,791.25 | 12.85 | 49.61 | 16.15 | 0.59 |
Standard deviation | 7.03 | 7.03 | 48.17 | 15.71 | 0.55 |
Coefficient of variation (%) | 50.92 | 54.72 | 97.08 | 97.31 | 93.60 |
Species | CM | SNM | ||
---|---|---|---|---|
Total Gross Income | Gross Margin | Total Gross Income | Gross Margin | |
Abelia grandiflora | 4994.74 | 3086.27 | 5582.35 | 3431.77 |
Bougainvillea cv Don Mario | 2959.46 | 1752.66 | 3128.57 | 1840.78 |
Jasminum officinalis | 4055.56 | 2653.09 | 4380.00 | 2865.56 |
Lantana camara cv Bandana rosa | 5053.85 | 2279.22 | 5972.73 | 2682.04 |
Loropetalum chinense cv Black Pearl | 4120.97 | 2871.30 | 4405.17 | 3048.93 |
Photinia fraseri cv Red Robin | 3163.33 | 1888.81 | 3389.29 | 2008.44 |
Trachelospermum jasminoides | 3041.67 | 1967.21 | 3220.59 | 2063.48 |
Viburnum lucidum | 2943.55 | 1713.11 | 3146.55 | 1810.74 |
Overall average | 3791.64 | 2276.46 | 4153.16 | 2468.97 |
Standard deviation | 893.45 | 533.06 | 1132.92 | 617.64 |
Coefficient of variation (%) | 23.56 | 23.42 | 27.28 | 25.02 |
Species | CM (in EUR) | NSM (in EUR) | Variation (in %) |
---|---|---|---|
Abelia grandiflora | 25,022.94 | 27,794.50 | 11.08 |
Bougainvillea cv Don Mario | 14,210.25 | 14,886.55 | 4.76 |
Jasminum officinalis | 21,510.75 | 23,051.56 | 7.16 |
Lantana camara cv Bandana rosa | 18,479.47 | 21,727.12 | 17.57 |
Loropetalum chinense cv Black Pearl | 23,279.97 | 24,687.47 | 6.05 |
Photinia fraseri cv Red Robin | 15,314.16 | 16,251.54 | 6.12 |
Trachelospermum jasminoides | 15,949.77 | 16,695.25 | 4.67 |
Viburnum lucidum | 13,889.56 | 14,648.56 | 5.46 |
Overall average | 18,457.11 | 19,967.82 | 7.86 |
Standard deviation | 4322.01 | 4996.73 | 4.42 |
Coefficient of variation (%) | 23.42 | 25.02 | 56.29 |
Species | CM (in EUR) | NSM (in EUR) | Variation (in %) |
---|---|---|---|
Abelia grandiflora | 2.62 | 2.60 | −0.82 |
Bougainvillea cv Don Mario | 2.45 | 2.43 | −0.93 |
Jasminum officinalis | 2.89 | 2.86 | −1.21 |
Lantana camara cv Bandana rosa | 1.82 | 1.81 | −0.35 |
Loropetalum chinense cv Black Pearl | 3.30 | 3.25 | −1.50 |
Photinia fraseri cv Red Robin | 2.48 | 2.45 | −1.11 |
Trachelospermum jasminoides | 2.83 | 2.78 | −1.68 |
Viburnum lucidum | 2.39 | 2.36 | −1.54 |
Overall average | 2.60 | 2.57 | −1.14 |
Standard deviation | 0.43 | 0.42 | 0.44 |
Coefficient of variation (%) | 16.69 | 16.33 | −38.54 |
In (EUR) | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 |
---|---|---|---|---|---|---|---|---|---|---|
Gross income | 4994.74 | 4994.74 | 4994.74 | 4994.74 | 4994.74 | 4994.74 | 4994.74 | 4994.74 | 4994.74 | 4994.74 |
Production cost | 1892.20 | 1892.20 | 1892.20 | 1892.20 | 1892.20 | 1892.20 | 1892.20 | 1892.20 | 1892.20 | 1892.20 |
Propagation plant material (i.e., mother plants) | 16.27 | 16.27 | 16.27 | 16.27 | 16.27 | 16.27 | 16.27 | 16.27 | 16.27 | 16.27 |
Cash flow (CF) | 3086.27 | 3086.27 | 3086.27 | 3086.27 | 3086.27 | 3086.27 | 3086.27 | 3086.27 | 3086.27 | 3086.27 |
Discounted CF (DCF) | 3086.27 | 2939.30 | 2799.34 | 2666.03 | 2539.08 | 2418.17 | 2303.02 | 2193.35 | 2088.91 | 1989.44 |
Accumulated DCF | 3086.27 | 6172 | 9259 | 12,345 | 15,431 | 18,518 | 21,604 | 24,690 | 27,776 | 30,863 |
In (EUR) | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 |
---|---|---|---|---|---|---|---|---|---|---|
Gross income | 5582.35 | 5582.35 | 5582.35 | 5582.35 | 5582.35 | 5582.35 | 5582.35 | 5582.35 | 5582.35 | 5582.35 |
Production cost | 2107.56 | 2107.56 | 2107.56 | 2107.56 | 2107.56 | 2107.56 | 2107.56 | 2107.56 | 2107.56 | 2107.56 |
Propagation plant material (i.e., mother plants) | 209.31 | 16.27 | 17.90 | 19.69 | 21.65 | 23.82 | 26.20 | 28.82 | 31.70 | 34.88 |
Cash flow (CF) | 3265.48 | 3458.52 | 3456.90 | 3455.11 | 3453.14 | 3450.97 | 3448.59 | 3445.97 | 3443.09 | 3439.92 |
Discounted CF (DCF) | 3265.48 | 3293.93 | 3135.51 | 2984.65 | 2840.91 | 2703.93 | 2573.39 | 2448.99 | 2330.42 | 2217.40 |
Accumulated DCF | 3265.48 | 6724.00 | 10,180.90 | 13,636.01 | 17,089.15 | 20,540.12 | 23,988.71 | 27,434.68 | 30,877.77 | 34,317.69 |
Variable Input | CM | NSM |
---|---|---|
Mother plants | 15.21 | 39.69 |
Pots | 442.55 | 441.46 |
Energy | 38.51 | 38.02 |
Substrates | 255.55 | 255.21 |
Chemicals | 11.54 | 10.20 |
Labor | 298.73 | 296.33 |
Total | 1062.09 | 1080.91 |
Overall average | 177.01 | 180.15 |
Standard deviation | 181.24 | 176.76 |
Coefficient of variation (%) | 102.4 | 98.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frem, M.; Fucilli, V.; Petrontino, A.; Acciani, C.; Bianchi, R.; Bozzo, F. Nursery Plant Production Models under Quarantine Pests’ Outbreak: Assessing the Environmental Implications and Economic Viability. Agronomy 2022, 12, 2964. https://doi.org/10.3390/agronomy12122964
Frem M, Fucilli V, Petrontino A, Acciani C, Bianchi R, Bozzo F. Nursery Plant Production Models under Quarantine Pests’ Outbreak: Assessing the Environmental Implications and Economic Viability. Agronomy. 2022; 12(12):2964. https://doi.org/10.3390/agronomy12122964
Chicago/Turabian StyleFrem, Michel, Vincenzo Fucilli, Alessandro Petrontino, Claudio Acciani, Rossella Bianchi, and Francesco Bozzo. 2022. "Nursery Plant Production Models under Quarantine Pests’ Outbreak: Assessing the Environmental Implications and Economic Viability" Agronomy 12, no. 12: 2964. https://doi.org/10.3390/agronomy12122964
APA StyleFrem, M., Fucilli, V., Petrontino, A., Acciani, C., Bianchi, R., & Bozzo, F. (2022). Nursery Plant Production Models under Quarantine Pests’ Outbreak: Assessing the Environmental Implications and Economic Viability. Agronomy, 12(12), 2964. https://doi.org/10.3390/agronomy12122964