Growth, Leaf Pigment Content, and Antioxidant Potential of Ferns Grown in Peat Substrate Amended with Camelina Press Cake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Set-Up and Applications
2.2. Determination of the Content of Photosynthetic Pigments
2.3. Determination of Total Polyphenols and Total Flavonoids
2.4. Determination of Antioxidant Activity by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) and the Ferric-Reducing Antioxidant Power (FRAP) Methods
2.5. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Westerman, P.W.; Bicudo, J.R. Management considerations for organic waste use in agriculture. Bioresour. Technol. 2005, 96, 215–221. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.-W.; Luhar, I. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Compos. Part B Eng. 2019, 175, 107076. [Google Scholar] [CrossRef]
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Rosemarin, A.; Macura, B.; Carolus, J.; Barquet, K.; Ek, F.; Järnberg, L.; Lorick, D.; Johannesdottir, S.; Pedersen, S.M.; Koskiaho, J.; et al. Circular nutrient solutions for agriculture and wastewater—A review of technologies and practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil cakes and their biotechnological applications—A review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Elhussein, E.A.A. Assessment of sesame (Sesamum indicum L.) cake as a source of high-added value substances: From waste to health. Phytochem. Rev. 2018, 17, 691–700. [Google Scholar] [CrossRef]
- Jingura, R.M.; Kamusoko, R. Technical options for valorisation of jatropha press-cake: A review. Waste Biomass Valor. 2018, 9, 701–713. [Google Scholar] [CrossRef]
- Drozłowska, E.; Łopusiewicz, Ł.; Mężyńska, M.; Bartkowiak, A. Valorization of flaxseed oil cake residual from cold-press oil production as a material for preparation of spray-dried functional powders for food applications as emulsion stabilizers. Biomolecules 2020, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Schöne, F.; Kirchheim, U.; Schumann, W.; Lüdke, H. Apparent digestibility of high-fat rapeseed press cake in growing pigs and effects on feed intake, growth and weight of thyroid and liver. Anim. Feed Sci. Technol. 1996, 62, 97–110. [Google Scholar] [CrossRef]
- Zapata, N.; Vargas, M.; Reyes, J.F.; Belmar, G. Quality of biodiesel and press cake obtained from Euphorbia lathyris, Brassica napus and Ricinus communis. Ind. Crops Prod. 2012, 38, 1–5. [Google Scholar] [CrossRef]
- Laufenberg, G.; Rosato, P.; Kunz, B. Adding value to vegetable waste: Oil press cakes as substrates for microbial decalactone production. Eur. J. Lipid Sci. Technol. 2004, 106, 207–217. [Google Scholar] [CrossRef]
- Goswami, B.K.; Pandey, R.K.; Rathour, K.S.; Bhattacharya, C.; Singh, L. Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on meloidogyne incognita infecting tomato plants. J. Zhejiang Univ. Sci. B 2006, 7, 873–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, D.P.; de Carvalho, D.F.; Pinto, M.F.; Valença, D.D.C.; Medici, L.O. Growth and production of tomato fertilized with ash and castor cake and under varying water depths, cultivated in organic potponics. Acta Sci. Agron. 2017, 39, 201. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.A.; Saxena, S.K. Integrated management of root knot nematode meloidogyne javanica infecting tomato using organic materials and Paecilomyces lilacinus. Bioresour. Technol. 1997, 61, 247–250. [Google Scholar] [CrossRef]
- Shukla, P.K.; Haseeb, A. Effectiveness of some nematicides and oil cakes in the management of Pratylenchus thornei on Mentha citrata, M. piperita and M. Spicata. Bioresour. Technol. 1996, 57, 307–310. [Google Scholar] [CrossRef]
- Kumar, K.V.; Patra, D.D. Alteration in yield and chemical composition of essential oil of Mentha piperita L. Plant: Effect of fly ash amendments and organic wastes. Ecol. Eng. 2012, 47, 237–241. [Google Scholar] [CrossRef]
- Di Lonardo, S.; Cacini, S.; Becucci, L.; Lenzi, A.; Orsenigo, S.; Zubani, L.; Rossi, G.; Zaccheo, P.; Massa, D. Testing new peat-free substrate mixtures for the cultivation of perennial herbaceous species: A case study on Leucanthemum vulgare Lam. Sci. Hortic. 2021, 289, 110472. [Google Scholar] [CrossRef]
- Wei, X.; Khachatryan, H.; Rihn, A. Production costs and profitability for selected greenhouse grown annual and perennial crops: Partial enterprise budgeting and sensitivity analysis. HortScience 2020, 55, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Gabellini, S.; Scaramuzzi, S. Evolving consumption trends, marketing strategies, and governance settings in ornamental horticulture: A grey literature review. Horticulturae 2022, 8, 234. [Google Scholar] [CrossRef]
- Rihn, A.L.; Hall, C.R.; Peterson, B.J.; Torres, A.P.; Palma, M.A.; Khachatryan, H. Changes in production practices by green industry growers from 2009 to 2019. J. Environ. Hortic. 2021, 39, 123–130. [Google Scholar] [CrossRef]
- Salachna, P.; Piechocki, R. Salinity tolerance of four hardy ferns from the genus Dryopteris adans. grown under different light conditions. Agronomy 2021, 11, 49. [Google Scholar] [CrossRef]
- Fain, G.B.; Gilliam, C.H.; Keever, G.J. Tolerance of hardy ferns to selected preemergence herbicides. HortTechnology 2006, 16, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Mannan, M.; Maridass, M.; Victor, B. A Review on the potential uses of ferns. Ethnobot. Leafl. 2008, 2008, 281–285. [Google Scholar]
- Liu, Y.; Wujisguleng, W.; Long, C. Food uses of ferns in China: A review. Acta Soc. Bot. Pol. 2012, 81, 263–270. [Google Scholar] [CrossRef]
- Minarchenko, V.M.; Tymchenko, I.; Dvirna, T.; Makhynia, L. A Review of the medicinal ferns of Ukraine. Scr. Sci. Pharm. 2017, 4, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Langhansova, L.; Pumprova, K.; Haisel, D.; Ekrt, L.; Pavicic, A.; Zajíčková, M.; Vanek, T.; Dvorakova, M. European ferns as rich sources of antioxidants in the human diet. Food Chem. 2021, 356, 129637. [Google Scholar] [CrossRef]
- Lee, C.H.; Shin, S.L. Functional Activities of Ferns for Human Health. In Working with Ferns: Issues and Applications; Kumar, A., Fernández, H., Revilla, M.A., Eds.; Springer: New York, NY, USA, 2010; pp. 347–359. ISBN 978-1-4419-7162-3. [Google Scholar]
- Dvorakova, M.; Pumprova, K.; Antonínová, Ž.; Rezek, J.; Haisel, D.; Ekrt, L.; Vanek, T.; Langhansova, L. Nutritional and Antioxidant Potential of Fiddleheads from European Ferns. Foods 2021, 10, 460. [Google Scholar] [CrossRef]
- Shin, S.L.; Lee, C.H. Antioxidant effects of the methanol extracts obtained from aerial part and rhizomes of ferns native to Korea. Korean J. Plant Resour. 2010, 23, 38–46. [Google Scholar]
- García-Caparrós, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: A Review. Bot. Rev. 2021, 87, 421–466. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tomar, N.S.; Tittal, M.; Argal, S.; Agarwal, R.M. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Taparia, T.; Hendrix, E.; Nijhuis, E.; de Boer, W.; van der Wolf, J. Circular alternatives to peat in growing media: A microbiome perspective. J. Clean. Prod. 2021, 327, 129375. [Google Scholar] [CrossRef]
- Zawadzińska, A.; Salachna, P.; Nowak, J.S.; Kowalczyk, W. Response of Interspecific Geraniums to Waste Wood Fiber Substrates and Additional Fertilization. Agriculture 2021, 11, 119. [Google Scholar] [CrossRef]
- Greco, C.; Comparetti, A.; Fascella, G.; Febo, P.; La Placa, G.; Saiano, F.; Mammano, M.M.; Orlando, S.; Laudicina, V.A. Effects of Vermicompost, Compost and Digestate as Commercial Alternative Peat-Based Substrates on Qualitative Parameters of Salvia officinalis. Agronomy 2021, 11, 98. [Google Scholar] [CrossRef]
- Salachna, P.; Łopusiewicz, Ł.; Wesołowska, A.; Meller, E.; Piechocki, R. Mushroom waste biomass alters the yield, total phenolic content, antioxidant activity and essential oil composition of Tagetes patula L. Ind. Crops Prod. 2021, 171, 113961. [Google Scholar] [CrossRef]
- Dede, Ö.H.; Köseoğlu, G.; Özdemir, S.; Celebi, A. Effects of organic waste substrates on the growth of impatiens. Turk. J. Agric. For. 2006, 30, 375–381. [Google Scholar]
- Hussain, N.; Abbasi, S.A. Efficacy of the Vermicomposts of Different Organic Wastes as “Clean” Fertilizers: State-of-the-Art. Sustainability 2018, 10, 1205. [Google Scholar] [CrossRef] [Green Version]
- Odlare, M.; Arthurson, V.; Pell, M.; Svensson, K.; Nehrenheim, E.; Abubaker, J. Land application of organic waste—Effects on the soil ecosystem. Appl. Energy 2011, 88, 2210–2218. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; Mourinha, C.; Farto, M.; Dôres, J.; Patanita, M.; Cunha-Queda, C.; Natal-da-Luz, T.; Renaud, M.; Sousa, J.P. Recycling organic wastes to agricultural land as a way to improve its quality: A field study to evaluate benefits and risks. Waste Manag. 2017, 61, 582–592. [Google Scholar] [CrossRef]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Grzeszczuk, M.; Salachna, P.; Meller, E. Changes in photosynthetic pigments, total phenolic content, and antioxidant activity of Salvia coccinea Buc’hoz ex Etl. Induced by exogenous salicylic acid and soil salinity. Molecules 2018, 23, 1296. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Liu, Y.-J.; Kang, J.; Zhang, C.-M.; Kang, S.-G. Antioxidant activity and main chemical components of a novel fermented tea. Molecules 2019, 24, 2917. [Google Scholar] [CrossRef] [Green Version]
- Salachna, P.; Pietrak, A.; Łopusiewicz, Ł. Antioxidant Potential of Flower Extracts from Centaurea spp. Depends on Their Content of Phenolics, Flavonoids and Free Amino Acids. Molecules 2021, 26, 7465. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Waszkowiak, K.; Polanowska, K.; Mikołajczak, B.; Śmietana, N.; Hrebień-Filisińska, A.; Sadowska, J.; Mazurkiewicz-Zapałowicz, K.; Drozłowska, E. The Effect of Yogurt and Kefir Starter Cultures on Bioactivity of Fermented Industrial By-Product from Cannabis sativa Production—Hemp Press Cake. Fermentation 2022, 8, 490. [Google Scholar] [CrossRef]
- Osboutn, D.F.; Beever, D.E.; Thomson, D.J. The Influence of physical processing on the intake, digestion and utilization of dried herbage. Proc. Nutr. Soc. 1976, 35, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ucar, E.; Ozyigit, Y.; Demirbas, A.; Guven, D.Y.; Turgut, K. Effect of different nitrogen doses on dry matter ratio, chlorophyll and macro/micro nutrient content in sweet herb (Stevia rebaudiana Bertoni). Commun. Soil Sci. Plant Anal. 2017, 48, 1231–1239. [Google Scholar] [CrossRef]
- Sousa, C. Anthocyanins, Carotenoids and Chlorophylls in Edible Plant Leaves Unveiled by Tandem Mass Spectrometry. Foods 2022, 11, 1924. [Google Scholar] [CrossRef]
- Fassett, R.G.; Coombes, J.S. Astaxanthin: A potential therapeutic agent in cardiovascular disease. Mar. Drugs 2011, 9, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Abadía, J.; Morales, F.; Abadía, A. Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 1999, 215, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Black, J.R.; Yin, Q.Z.; Casey, W.H. An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis. Geochim. Cosmochim. Acta 2006, 70, 4072–4079. [Google Scholar] [CrossRef] [Green Version]
- Cazzonelli, C.I. Carotenoids in nature: Insights from plants and beyond. Funct. Plant Biol. 2011, 38, 833–847. [Google Scholar] [CrossRef] [Green Version]
- Stachowiak, B.; Szulc, P. Astaxanthin for the Food Industry. Molecules 2021, 26, 2666. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Free Radicals, Oxidative Stress, and Antioxidants in Human Health and Disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef]
- Li, C.; Cui, X.; Chen, Y.; Liao, C.; Ma, L.Q. Synthetic Phenolic Antioxidants and Their Major Metabolites in Human Fingernail. Environ. Res. 2019, 169, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, M.; Cao, J.; Wu, Y.; Xiao, J.; Wang, Q. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China). Ind. Crops Prod. 2017, 97, 137–145. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; He, X.; Li, Y.; Zhang, Y.; Chen, W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ. 2020, 8, e8354. [Google Scholar] [CrossRef]
- Kiselova, Y.; Ivanova, D.; Chervenkov, T.; Gerova, D.; Galunska, B.; Yankova, T. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006, 20, 961–965. [Google Scholar] [CrossRef]
- Heimler, D.; Romani, A.; Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: A review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Zrcková, M.; Capouchová, I.; Paznocht, L.; Eliášová, M.; Dvořák, P.; Konvalina, P.; Bečková, L. Variation of the total content of polyphenols and phenolic acids in einkorn, emmer, spelt and common wheat grain as a function of genotype, wheat species and crop year. Plant Soil Environ. 2019, 65, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
Component | Value |
---|---|
Solids Content | 92.59% |
Ash Content | 5.39% |
Protein Content | 34.95% |
Fat Content | 14.12% |
Carbohydrates | 24.51% |
Fibre | 13.62% |
K | 8186 µg/g |
P | 68,284 µg/g |
Na | 11.32 µg/g |
Ca | 1613 µg/g |
Mg | 3357 µg/g |
Zn | 49.99 µg/g |
Fe | 72.01 µg/g |
Mn | 0.082 µg/g |
Cu | 6.196 µg/g |
Species | Treatments | Plant Height (cm) | Plant Width (cm) | Leaf DM (%) |
---|---|---|---|---|
O. sensibilis | Control | 8.05 ± 1.38 a | 15.13 ± 2.17 b | 16.32 ± 0.21 b |
1 g/L camelina cake | 6.33 ± 0.63 b | 18.45 ± 4.18 a | 18.84 ± 0.32 a | |
5 g/L camelina cake | 6.50 ± 0.22 b | 18.33 ± 1.04 a | 19.110 ± 68 a | |
F | 4.284 | 35.62 | 54.95 | |
p | 0.049 | 0.000 | 0.000 | |
P. vulgare | Control | 3.40 ± 0.14 b | 9.43 ± 1.11 a | 19.53 ± 0.87 a |
1 g/L camelina cake | 3.75 ± 0.21 a | 10.33 ± 1.03 a | 20.13 ± 0.96 a | |
5 g/L camelina cake | 3.73 ± 0.26 a | 9.80 ± 0.36 a | 19.95 ± 0.67 a | |
F | 4.720 | 1.019 | 0.635 | |
p | 0.040 | 0.399 | 0.552 | |
P. polyblepharum | Control | 3.53 ± 0.46 b | 11.08 ± 0.53 b | 16.65 ± 0.61 b |
1 g/L camelina cake | 5.58 ± 0.88 a | 13.90 ± 0.44 a | 25.89 ± 0.50 a | |
5 g/L camelina cake | 6.93 ± 0.98 a | 13.78 ± 1.19 a | 23.25 ± 0.45 a | |
F | 11.934 | 30.08 | 122.6 | |
p | 0.003 | 0.000 | 0.000 |
Species | Treatments | Total Chlorophyll (mg/g DM) | Total Carotenoids (mg/100 g DM) |
---|---|---|---|
O. sensibilis | Control | 1.94 ± 0.10 b | 165.83 ± 1.75 c |
1 g/L camelina cake | 2.38 ± 0.17 a | 205.68 ± 7.33 a | |
5 g/L camelina cake | 2.41 ± 0.13 a | 184.69 ± 2.38 b | |
F | 49.23 | 38.15 | |
p | 0.005 | 0.007 | |
P. vulgare | Control | 3.07 ± 0.12 b | 78.03 ± 0.79 c |
1 g/L camelina cake | 3.79 ± 0.05 a | 156.66 ± 4.80 a | |
5 g/L camelina cake | 3.98 ± 0.02 a | 106.63 ± 6.06 b | |
F | 56.27 | 157.4 | |
p | 0.004 | 0.001 | |
P. polyblepharum | Control | 2.92 ± 0.15 b | 88.65 ± 6.75 b |
1 g/L camelina cake | 3.84 ± 0.15 a | 123.29 ± 1.93 a | |
5 g/L camelina cake | 3.90 ± 0.03 a | 127.83 ± 6.27 a | |
F | 31.09 | 6.195 | |
p | 0.010 | 0.035 |
Species | Treatments | Total Polyphenols (mg GAE/g DM) | Total Flavonoids (mg QE/g DM) |
---|---|---|---|
O. sensibilis | Control | 48.86 ± 1.30 a | 284.01 ± 5.24 a |
1 g/L camelina cake | 49.61 ± 0.70 a | 246.78 ± 6.99 b | |
5 g/L camelina cake | 41.49 ± 2.63 b | 191.37 ± 9.97 c | |
F | 13.30 | 39.35 | |
p | 0.032 | 0.007 | |
P. vulgare | Control | 38.30 ± 3.32 a | 323.88 ± 2.25 b |
1 g/L camelina cake | 30.09 ± 3.45 b | 339.59 ± 4.00 a | |
5 g/L camelina cake | 24.88 ± 1.79 c | 186.43 ± 3.50 c | |
F | 10.50 | 8048 | |
p | 0.044 | 0.000 | |
P. polyblepharum | Control | 44.90 ± 0.11 b | 128.91 ± 4.00 b |
1 g/L camelina cake | 48.27 ± 1.06 a | 324.94 ± 2.71 a | |
5 g/L camelina cake | 42.91 ± 2.63 b | 334.12 ± 3.24 a | |
F | 11.14 | 153.2 | |
p | 0.022 | 0.001 |
Species | Treatments | DPPH (µmol TE/g DM) | FRAP (mg AAE/g DM) |
---|---|---|---|
O. sensibilis | Control | 3.21 ± 0.12 a | 9.19 ± 0.33 a |
1 g/L camelina cake | 2.93 ± 0.24 b | 9.28 ± 0.02 a | |
5 g/L camelina cake | 2.90 ± 0.09 b | 8.90 ± 0.34 a | |
F | 24.83 | 2.331 | |
p | 0.001 | 0.178 | |
P. vulgare | Control | 3.54 ± 0.04 a | 8.25 ± 0.06 a |
1 g/L camelina cake | 3.58 ± 0.07 a | 8.08 ± 0.12 a | |
5 g/L camelina cake | 3.64 ± 0.04 a | 7.93 ± 0.09 a | |
F | 3.049 | 3.064 | |
p | 0.121 | 0.188 | |
P. polyblepharum | Control | 3.36 ± 0.14 b | 9.16 ± 0.06 c |
1 g/L camelina cake | 3.65 ± 0.06 a | 9.71 ± 0.07 b | |
5 g/L camelina cake | 3.70 ± 0.01 a | 9.90 ± 0.09 a | |
F | 12.11 | 92.46 | |
p | 0.008 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrak, A.; Łopusiewicz, Ł.; Salachna, P. Growth, Leaf Pigment Content, and Antioxidant Potential of Ferns Grown in Peat Substrate Amended with Camelina Press Cake. Agronomy 2022, 12, 3100. https://doi.org/10.3390/agronomy12123100
Pietrak A, Łopusiewicz Ł, Salachna P. Growth, Leaf Pigment Content, and Antioxidant Potential of Ferns Grown in Peat Substrate Amended with Camelina Press Cake. Agronomy. 2022; 12(12):3100. https://doi.org/10.3390/agronomy12123100
Chicago/Turabian StylePietrak, Anna, Łukasz Łopusiewicz, and Piotr Salachna. 2022. "Growth, Leaf Pigment Content, and Antioxidant Potential of Ferns Grown in Peat Substrate Amended with Camelina Press Cake" Agronomy 12, no. 12: 3100. https://doi.org/10.3390/agronomy12123100
APA StylePietrak, A., Łopusiewicz, Ł., & Salachna, P. (2022). Growth, Leaf Pigment Content, and Antioxidant Potential of Ferns Grown in Peat Substrate Amended with Camelina Press Cake. Agronomy, 12(12), 3100. https://doi.org/10.3390/agronomy12123100