Spatial Distribution Patterns for Identifying Risk Areas Associated with False Smut Disease of Rice in Southern India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Sampling
2.2. Estimation of Disease Severity
2.3. Statistical Analysis and Data Validation
2.4. Geostatistical Approaches
2.5. Point-Pattern-Optimized Cluster Analysis
2.6. Spatial Interpolation Techniques
2.7. Semivariance
3. Results
3.1. FSD Severity across the Studied Areas of South India
3.2. Spatial Point Patterns of FSD in Southern India
3.3. Spatial Distribution of FSD
3.3.1. IDW Surface Interpolation
3.3.2. Ordinary and Indicator Kriging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padwick, G.W. Manual of Rice Diseases; CAB Press: London, UK, 1950. [Google Scholar]
- Dodan, D.S.; Singh, R. False smut of rice present status. Agric. Res. 1996, 17, 227–240. [Google Scholar]
- Muniraju, K.M.; Pramesh, D.; Mallesh, S.B.; Mallikarjun, K.; Guruprasad, G.S. Disease severity and yield losses caused by false smut disease of rice in different rice ecosystems of Karnataka. Int. J. Microbiol. Res. 2017, 9, 955–958. [Google Scholar]
- Wang, W.M.; Fan, J.; Jeyakumar, J.M.J. Rice false smut: An increasing threat to grain yield and quality. In Protecting Rice Grains in the Post-Genomic Era; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef] [Green Version]
- Pramesh, D.; Prasannakumar, M.K.; Muniraju, K.M.; Mahesh, H.B.; Pushpa, H.D.; Manjunatha, C.; Saddamhusen, A.; Chidanandappa, E.; Yadav, M.K.; Kumara, M.K.; et al. Comparative genomics of rice false smut fungi Ustilaginoidea virens Uv-Gvt strain from India reveals genetic diversity and phylogenetic divergence. 3 Biotech 2020, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.C. Some extra-European fungi. Grevillea 1878, 7, 13–15. [Google Scholar]
- Singh, R.A.; Dube, K.S. Assessment of loss in seven rice cultivars due to false smut. Indian Phytopathol. 1978, 31, 186–188. [Google Scholar]
- Biswas, A. Field reaction of hybrid rice varieties to false smut and kernel smut disease in West Bengal India. Environ. Econ. 2001, 19, 229–230. [Google Scholar]
- Ladhalakshmi, D.; Laha, G.; Singh, R.; Karthikeyan, A.; Mangrauthia, S.; Sundaram, R.; Thukkaiyannan, P.; Viraktamath, B. Isolation and characterization of Ustilaginoidea virens and survey of false smut disease of rice in India. Phytoparasitica 2012, 40, 171. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, J. Evaluation of yield losses and management practices of false smut in rice (Oryza sativa). Indian Phytopathol. 2015, 68, 45–49. [Google Scholar]
- Amoghavarsha, C.; Pramesh, D.; Naik, G.R.; Naik, M.K.; Yadav, M.K.; Ngangkham, U.; Chidanandappa, E.; Raghunandana, A.; Sharanabasav, H.; Manjunatha, S.E. Morpho-molecular diversity and avirulence genes distribution among the diverse isolates of Magnaporthe oryzae from Southern India. J. Appl. Microbiol. 2022, 132, 1275–1289. [Google Scholar] [CrossRef]
- Guo, F.; Chen, X.; Lu, M.; Yang, L.; Wang, S.; Wu, B.M. Spatial analysis of rice blast in China at three different scales. Phytopathology 2018, 108, 1276–1286. [Google Scholar] [CrossRef] [Green Version]
- Turechek, W.W.; Mc Roberts, N. Considerations of scale in the analysis of spatial pattern of plant disease epidemics. Annu. Rev. Phytopathol. 2013, 51, 453–472. [Google Scholar] [CrossRef] [PubMed]
- Sharanabasav, H.; Pramesh, D.; Chidanandappa, E.; Saddamhusen, A.; Chittaragi, A.; Raghunandana, A.; Kumar, M.P.; Raghavendra, B.T.; Naik, R.H.; Mallesh, S.B.; et al. Field evaluation of fungicides against false smut disease of rice. J. Pharm. Phytochem. 2020, 9, 1453–1456. [Google Scholar] [CrossRef]
- Subbarao, N.V.; Mani, J.K.; Shrivastava, A.; Srinivas, K.; Varghese, A.O. Acreage estimation of kharif rice crop using Sentinel-1 temporal SAR data. Spat. Inf. Res. 2021, 29, 495–505. [Google Scholar] [CrossRef]
- Balanagouda, P.; Sridhara, S.; Shil, S.; Hegde, V.; Naik, M.K.; Narayanaswamy, H.; Balasundram, S.K. Assessment of the spatial distribution and risk associated with fruit rot disease in Areca catechu L. J. Fungi 2021, 7, 797. [Google Scholar] [CrossRef]
- Byamukama, E.; Eggenberger, S.K.; Coelho-Netto, R.A.; Robertson, A.E.; Nutter, F.W., Jr. Geospatial and temporal analyses of Bean pod mottle virus epidemics in soybean at three spatial scales. Phytopathology 2014, 104, 365–378. [Google Scholar] [CrossRef]
- Freitas, A.S.; Pozza, E.A.; Alves, M.C.; Coelho, G.; Rocha, H.S.; Pozza, A.A.A. Spatial distribution of yellow sigatoka leaf spot correlated with soil fertility and plant nutrition. Precis. Agric. 2016, 17, 93–107. [Google Scholar] [CrossRef]
- Savary, S.; Nelson, A.; Willocquet, L.; Pangga, I.; Aunario, J. Modeling and mapping potential epidemics of rice diseases globally. Crop Prot. 2012, 34, 6–17. [Google Scholar] [CrossRef]
- Yuen, J.; Mila, A. Landscape-scale disease risk quantification and prediction. Annu. Rev. Phytopathol. 2015, 53, 471–484. [Google Scholar] [CrossRef]
- Oro, Z.F.; Bonnot, F.; Ngo-Bieng, M.A.; Delaitre, E.; Dufour, P.B.; Ametefe, E.K.; Mississo, E.; Wegbe, K.; Muller, E.; Cilas, C. Spatiotemporal pattern analysis of cacao swollen shoot virus in experimental plots in Togo. Plant Pathol. 2012, 61, 1043–1051. [Google Scholar] [CrossRef]
- Viggiano, M.; Busetto, L.; Cimini, D.; Di Paola, F.; Geraldi, E.; Ranghetti, L.; Ricciardelli, E.; Romano, F. A new spatial modeling and interpolation approach for high-resolution temperature maps combining reanalysis data and ground measurements. Agric. For. Meteorol. 2019, 276, 107590. [Google Scholar] [CrossRef]
- Amoghavarsha, C.; Pramesh, D.; Sridhara, S.; Patil, B.; Shil, S.; Naik, G.R.; Naik, M.K.; Shokralla, S.; El-Sabrout, A.M.; Mahmoud, E.A.; et al. Spatial distribution and identification of potential risk regions to rice blast disease in different rice ecosystems of Karnataka. Sci. Rep. 2022, 12, 7403. [Google Scholar] [CrossRef]
- Sharanabasav, H.; Pramesh, D.; Prasannakumar, M.K.; Chidanandappa, E.; Yadav, M.K.; Ngangkham, U.; Parivallal, B.; Raghavendra, B.T.; Manjunatha, C.; Sharma, S.K.; et al. Morpho-molecular and mating-type locus diversity of Ustilaginoidea virens: An incitant of false smut of rice from Southern parts of India. J. Appl. Microbiol. 2021, 131, 2372–2386. [Google Scholar] [CrossRef]
- Alase, S.; Nagaraja, A.; Pramesh, D.; Prasanna Kumar, M.K. Influence of Weather Parameters on False Smut Disease Development in Rice. Mysore J. Agric. Sci. 2021, 55, 320–325. [Google Scholar]
- Mandhare, V.K.; Gawade, S.B.; Game, B.C.; Padule, D.N. Prevalence and incidence of bunt and false smut in paddy (Oryza sativa L.) seeds in Maharashtra. Agric. Sci. Digest 2008, 28, 292–294. [Google Scholar]
- Vannini, A.; Natili, G.; Anselmi, N.; Montaghi, A.; Vettraino, A.M. Distribution and gradient analysis of Ink disease in chestnut forests. For. Pathol. 2010, 40, 73–86. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Reynolds, K.M.; Madden, L.V. Analysis of epidemics using spatio-temporal autocorrelation. Phytopathology 1988, 78, 240–246. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Atenciano, S.; García-Ferrer, A.; Sánchez de la Orden, M.; García-Torres, L. Spatial variability of agricultural soil parameters in southern Spain. Plant Soil. 2002, 246, 97–105. [Google Scholar] [CrossRef]
- Larkin, R.P.; Gumpertz, M.L.; Ristaino, J.B. Geostatistical analysis of Phytophthora epidemic development in commercial bell pepper fields. Phytopathology 1995, 85, 191–202. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Gumpertz, M.L. New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annu. Rev. Phytopathol. 2000, 38, 541–576. [Google Scholar] [CrossRef] [Green Version]
- Ten Hoopen, G.M.; Sounigo, O.; Babin, R.; Dikwe, G.; Cilas, C. Spatial and temporal analysis of a Phytophthora megakarya epidemic in a plantation in the Centre of Cameroon. In Proceedings of the 16th International Cacao Research Conference, Bali, Indonesia, 16–21 November 2009; pp. 16–21. [Google Scholar]
- Koch, F.H.; Smith, W.D. Spatio-temporal analysis of Xyleborus glabratus (Coleoptera: Circulionidae: Scolytinae) invasion in Eastern S forests. Environ. Entomol. 2008, 37, 442–452. [Google Scholar] [CrossRef]
- Peng, W.; Liu, Y.; Wu, N.; Sun, T.; Yan, X.; Xiang, G.Y.; Wu, W. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015, 164, 340–356. [Google Scholar] [CrossRef] [PubMed]
- Muniraju, K.M.; Pramesh, D.; Mallesh, S.B.; Mallikarjun, K.; Guruprasad, G.S. Novel Fungicides for the Management of False Smut Disease of Rice Caused by Ustilaginoidea virens. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2664–2669. [Google Scholar] [CrossRef]
- Sun, W.; Fan, J.; Fang, A.; Li, Y.; Tariqjaveed, M.; Li, D.; Hu, D.; Wang, W.M. Ustilaginoidea virens: Insights into an emerging rice pathogen. Annu. Rev. Phytopathol. 2020, 58, 363–385. [Google Scholar] [CrossRef]
- Gent, D.H.; Farnsworth, J.L.; Johnson, D.A. Spatial analysis and incidence density relationships for downy mildew on hop. Plant Pathol. 2011, 61, 37–47. [Google Scholar] [CrossRef]
- Yong, M.; Deng, Q.; Fan, L.; Miao, J.; Lai, C.; Chen, H.; Yang, X.; Wang, S.; Chen, F.; Jin, L.; et al. The role of Ustilaginoidea virens sclerotia in increasing incidence of rice false smut disease in the subtropical zone in China. Eur. J. Plant Pathol. 2018, 150, 669–677. [Google Scholar] [CrossRef]
- Fan, J.; Yang, J.; Wang, Y.Q.; Li, G.B.; Li, Y.; Huang, F.; Wang, W.M. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Mol. Plant Pathol. 2016, 17, 1321–1330. [Google Scholar] [CrossRef]
State | Ecosystem | Districts | Important Varieties |
---|---|---|---|
Karnataka | Irrigated Bhadra | Shivamogga | Kempu Jyothi, Jaya, Sona Mahsoori, Supriya Hybrid, Jyothi, BPT-5204, Sona Mahsoori |
Davanagere | |||
Coastal | Udupi | Kempu Mukthi, Prateeksha, Mo-4 (Bhadra), Irga (318-11-6-9-2), BMR-US-1-24-2, Phalguna-2, Kaje Jaya, KCP-1, MTU-1001 MO-4, MO-4 | |
Uttara Kannada | |||
Transplanted ecosystems of TBP and UKP command | Raichur | Nandhyal Sona. Kavery Sona, Nellore Sona BPT-5204, Nellur Sona, BPT-5204, Cauvery Sona, Sanna Batta, IRRI-236, GNV-05-01, Gangavathi Emergency, BPT-5204, GPB-133, IR-28, Gvt-10-89, Gangavathi Sanna, Gangavathi Sona, Sona Mahsoori, Kavery Sona | |
Koppal | |||
Irrigated Kaveri | Mandya | Amogh, Jyothi, Jaya, BR2655, Tanu, Intan, Rajamudi, MC 13, MTU 1010, IR-64, KRH-2 and KRH-4 | |
Hilly Upland | Uttara Kannada | MTU-1001, Jaya | |
Andhra Pradesh | Godavari | West Godavari | BPT-5204, MTU-1064, PL, Godavari (MTU-1032), Swathi, Samba Sona, Arjal, MTU-1064, Arjal |
East Godavari | |||
Krishna river | Krishna | Deepthi (MTU-4870), Swarna (MTU-7029), Samba Mahsoori | |
Munneru river | Krishna | MTU-1064 | |
Thunga-Badhra | Kurnool | RNR-15048, Nandyal Sona | |
Telangana State | Pillallamarri Lake | Suryapet | Vijetha (MTU-1001) |
Krishna river | K.V.Rangareddy | Sriram Gold, Nellore Sona, Sriram Gold Nandhyal Sona | |
Gadwal | |||
Mahaboobnagar | |||
Palleru lake | Suryapet | Vedagiri (IET 14328), RNR 15048, Telangana Sona, Samba Sona, BPT-5204, RNR 15048 | |
Nalgonda | |||
Tamil Nadu | Bhavani Sagara Belt (BSB) | Erode | Ponni, IR-20, NLR-34449, BPT-5204, Delux Ponni, White Ponni, Delux Ponni, Ponni, Andhra Ponni, Co-45, BPT-5204, Athur Samba, BPT-2628 |
Namakkal | |||
Erode | |||
Karur | |||
Cauvery Belt | Thiruchirapalli | Delux Ponni, Andhra Ponni, Vella Ponni, Co-39, IR-64, IR-64, Co-37, Ponni, CO-43, IR-64, PMK-2 (IET13971), ADT-44 (IET 14099), CO-37 | |
Krishnagiri | |||
Pudukottai | |||
Madurai | |||
Thanjavur | |||
Thiruvallur | |||
Thanjavur | |||
Karur | |||
Coastal Belt | Thiruvarur | TKM (R) 12, Ponni, BPT-5204, White Ponni ADT-39, CO-43, CR-1009 SUB 1, CO-47 (IET-14298) |
Model | Range (in Degree) | Partial Sill (C + C0) | Nugget (C0) | MSE | RMSE | MAPE |
---|---|---|---|---|---|---|
Spherical | 1.137481 | 17.61387 | 0.5 | 15.952 | 3.994 | 0.4677 |
Exponential | 1.137481 | 17.61387 | 0.5 | 16.121 | 4.0151 | 0.4815 |
Gaussian | 1.137481 | 17.61387 | 0.5 | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huded, S.; Pramesh, D.; Chittaragi, A.; Sridhara, S.; Chidanandappa, E.; Prasannakumar, M.K.; Manjunatha, C.; Patil, B.; Shil, S.; Pushpa, H.D.; et al. Spatial Distribution Patterns for Identifying Risk Areas Associated with False Smut Disease of Rice in Southern India. Agronomy 2022, 12, 2947. https://doi.org/10.3390/agronomy12122947
Huded S, Pramesh D, Chittaragi A, Sridhara S, Chidanandappa E, Prasannakumar MK, Manjunatha C, Patil B, Shil S, Pushpa HD, et al. Spatial Distribution Patterns for Identifying Risk Areas Associated with False Smut Disease of Rice in Southern India. Agronomy. 2022; 12(12):2947. https://doi.org/10.3390/agronomy12122947
Chicago/Turabian StyleHuded, Sharanabasav, Devanna Pramesh, Amoghavarsha Chittaragi, Shankarappa Sridhara, Eranna Chidanandappa, Muthukapalli K. Prasannakumar, Channappa Manjunatha, Balanagouda Patil, Sandip Shil, Hanumanthappa Deeshappa Pushpa, and et al. 2022. "Spatial Distribution Patterns for Identifying Risk Areas Associated with False Smut Disease of Rice in Southern India" Agronomy 12, no. 12: 2947. https://doi.org/10.3390/agronomy12122947
APA StyleHuded, S., Pramesh, D., Chittaragi, A., Sridhara, S., Chidanandappa, E., Prasannakumar, M. K., Manjunatha, C., Patil, B., Shil, S., Pushpa, H. D., Raghunandana, A., Usha, I., Balasundram, S. K., & Shamshiri, R. R. (2022). Spatial Distribution Patterns for Identifying Risk Areas Associated with False Smut Disease of Rice in Southern India. Agronomy, 12(12), 2947. https://doi.org/10.3390/agronomy12122947