Does Belt Uniform Sowing Improve Winter Wheat Yield under High Sowing Density?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Measurements
2.2. Statistics Analysis
3. Results
3.1. Yield and Yield Components
3.2. Allometric and Correlated Analysis
4. Discussion
4.1. Yield Components and Grain Yield
4.2. Dry Matter Accumulation and Partition and Yield Formation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Porkka, M.; Kummu, M.; Siebert, S.; Varis, O. From food insufficiency towards trade dependency: A historical analysis of global food availability. PLoS ONE 2013, 8, e82714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Sadras, V.O.; Xu, J.A.; Hu, C.L.; Yang, X.Y.; Zhang, S.L. Genetic improvement of crop yield, grain protein and nitrogen use efficiency of wheat, rice and maize in china. Adv. Agron. 2021, 168, 203–252. [Google Scholar]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Global Change Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Liu, X.; Zhang, Y.; Shen, J.; Han, W.; Zhang, W.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, R.J.; Wittkop, B.; Chen, T.W.; Stahl1, A. Crop adaptation to climate change as a consequence of long-term breeding. Theor. Appl. Genet. 2021, 134, 1613–1623. [Google Scholar] [CrossRef]
- Langridge, P.; Reynolds, M. Breeding for drought and heat tolerance in wheat. Theor. Appl. Genet. 2021, 134, 1753–1769. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, Y.H.; Dong, R.; Ren, M.J.; He, J.; Li, F.M. Belt uniform sowing pattern boosts yield of different winter wheat cultivars in southwest China. Agriculture 2021, 11, 1077. [Google Scholar] [CrossRef]
- Jiao, F.; Hong, S.Z.; Liu, C.Y.; Ma, Y.Z.; Zhang, M.M.; Li, Q.Q. Wide-precision planting pattern under different tillage methods affects photosynthesis and yield of winter wheat. Arch. Agron. Soil Sci. 2022, 68, 1352–1368. [Google Scholar] [CrossRef]
- Li, D.X.; Zhang, D.; Wang, H.G.; Li, H.R.; Fang, Q.; Li, H.Y.; Li, Q.Q. Optimized planting density maintains high wheat yield under limiting irrigation in North China Plain. Int. J. Plant Prod. 2020, 14, 107–117. [Google Scholar] [CrossRef]
- Wang, Z.; Khan, S.; Sun, M.; Ren, A.X.; Lin, W.; Ding, P.C.; Noor, H.; Yu, S.B.; Feng, Y.; Wang, Q.; et al. Optimizing the wheat seeding rate for wide-space sowing to improve yield and water and nitrogen utilization. Int. J. Plant Prod. 2021, 15, 553–562. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Luo, Y.; Wang, X.; Huang, G. Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes. Agri. Water Manag. 2011, 198, 483–492. [Google Scholar] [CrossRef]
- Asim, M.; Khan, M.I.; Rab, A. Productivity and the qualitative response of sorghum to different planting patterns and various cultivars. J. Soil Plant Environ. 2022, 1, 89–101. [Google Scholar] [CrossRef]
- Abdelhadi, A.W.; El, A.; Bashir, M.A.; Hata, T. Evaluation of wheat bed planting system in irrigated vertisols of Sudan. Agric. Mech. Asia Afr. Lat. Am. 2006, 37, 62–67. [Google Scholar]
- Choudhury, B.U.; Bouman, B.; Singh, A.K. Yield and water productivity of rice—Wheat on raised beds at New Delhi, India. Field Crops Res. 2007, 100, 229–239. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Duan, A.; Wang, J.; Shen, X.; Liu, X. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agri. Water Manag. 2007, 92, 41–47. [Google Scholar] [CrossRef]
- Li, Q.Q.; Zhou, X.B.; Chen, Y.H.; Yu, S.L. Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime. Agri. Water Manag. 2012, 105, 8–12. [Google Scholar]
- Li, Q.; Bian, C.; Liu, X.; Ma, C.; Liu, Q. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agri. Water Manag. 2015, 153, 71–76. [Google Scholar] [CrossRef]
- Bian, C.Y.; Ma, C.J.; Liu, X.H.; Gao, C.; Liu, Q.R.; Yan, Z.X.; Ren, Y.J.; Li, Q.Q. Responses of winter wheat yield and water use efficiency to irrigation frequency and planting pattern. PLoS ONE 2016, 11, e0154673. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Jia, Y.; Zhang, J.; Sun, P.; Li, J.; Li, P.; Shi, S. Effects of sowing patterns and irrigation amount on dry matter and yield of spring wheat. J. Triticeae Crops 2019, 39, 728–737. [Google Scholar]
- Ali, S.; Xu, Y.; Ma, X.; Jia, Q.; Jia, Z. Farming practices and deficit irrigation management improve winter wheat crop water productivity and biomass through mitigated greenhouse gas intensity under semi-arid regions. Environ. Sci. Pollut. Res. 2021, 28, 27666–27680. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.L.; Weiner, J.; Qi, L.; Xiong, Y.C.; Li, F.M. Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum aestivum L.). Field Crops Res. 2013, 144, 162–166. [Google Scholar] [CrossRef]
- He, J.; Du, Y.L.; Wang, T.; Turner, N.C.; Xi, Y.; Li, F.M. Old and new cultivars of soya bean (Glycine max L.) subjected to soil drying differ in abscisic acid accumulation, water relations characteristics and yield. J. Agron Crop. Sci 2016, 202, 372–383. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, B.C.; Turner, N.C.; Li, F.M. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning. Eur. J. Agron. 2010, 33, 257–266. [Google Scholar] [CrossRef]
- Dai, X.L.; Zhou, X.H.; Jia, D.Y.; Xiao, L.L.; Kong, H.B.; He, M.G. Managing the seeding rate to improve nitrogen–use efficiency of winter wheat. Field Crops Res. 2013, 154, 100–109. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Khan, U.D.; Shah, S.H.H.; Shahid, M.A.; Arsalan, M. Effect of sowing methods and seed rates on wheat yield and water productivity. Qual. Assur. Saf. Crops 2016, 8, 267–272. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Ma, S.K.; Chang, X.H.; Wang, D.; Wang, Y.J.; Yang, Y.S.; Zhao, G.C.; Yang, J.C. Effects of tridimensional uniform sowing on water consumption, nitrogen use, and yield in winter wheat. Crop J. 2019, 7, 480–493. [Google Scholar] [CrossRef]
- Kiss, T.; Balla, K.; Banyai, J.; Veisz, O.; Karsai, I. Associations between plant density and yield components using different sowing times in wheat (Triticum aestivum L.). Cereal Res. Commun. 2018, 46, 211–220. [Google Scholar] [CrossRef]
- Hiltbrunner, J.; Streit, B.; Liedgens, M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Res. 2007, 102, 163–171. [Google Scholar] [CrossRef]
- Roques, S.E.; Berry, P.M. The yield response of oilseed rape to plant population density. J. Agr. Sci. 2016, 154, 305–320. [Google Scholar] [CrossRef]
- Zhang, D.S.; Zhang, L.Z.; Liu, J.G.; Han, S.; Wang, Q.; Evers, J.; Liu, J.; van der Werf, W.; Li, L. Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Res. 2014, 169, 132–139. [Google Scholar] [CrossRef]
- He, J.; Jin, Y.; Du, Y.L.; Wang, T.; Turner, N.C.; Yang, R.P.; Siddique, K.H.M.; Li, F.M. Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front. Plant. Sci. 2017, 8, 1499. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Jin, Y.; Turner, N.C.; Chen, Z.; Liu, H.Y.; Wang, X.L.; Siddique, K.H.M.; Li, F.M. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environ. Exp. Bot 2019, 166, 103816. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Palta, J.A.; Lu, P.; Ren, M.J.; Zhu, X.T.; He, J. Traditional soybean (Glycine max) breeding increases seed yield but reduces yield stability under non-phosphorus supply. Funct. Plant Biol. 2022, 49, 132–144. [Google Scholar] [CrossRef]
- Yang, J.X.; Richards, R.A.; Jin, Y.; He, J. Both biomass accumulation and harvest index drive the yield improvements in soybean at high and low phosphorus in south-west China. Field Crops Res. 2022, 277, 108426. [Google Scholar] [CrossRef]
- Borrás, L.; Maddonni, G.A.; Otegui, M.E. Leaf senescence in maize hybrids: Plant population: Row spacing and kernel set effects. Field Crops Res. 2003, 82, 13–26. [Google Scholar] [CrossRef]
- Echarte, L.; Luque, S.; Andrade, F.H.; Sadras, V.O.; Cirilo, A.; Otegui, M.E.; Vega, C.R.C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Res. 2000, 68, 1–8. [Google Scholar] [CrossRef]
- Jia, Q.M.; Sun, L.F.; Mou, H.Y.; Ali, S.; Liu, D.H.; Zhang, Y.; Zhang, P.; Ren, X.L.; Jia, Z.K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agri. Water Manag. 2018, 201, 287–298. [Google Scholar] [CrossRef]
- Du, X.B.; Wang, Z.; Xi, M.; Wu, W.G.; Wei, Z.; Xu, Y.Z.; Zhou, Y.J.; Lei, W.X.; Kong, L.C. A novel planting pattern increases the grain yield of wheat after rice cultivation by improving radiation resource utilization. Agr. Forest Meteorol. 2021, 310, 108625. [Google Scholar] [CrossRef]
- Wang, T.; Du, Y.L.; He, J.; Turner, N.C.; Wang, B.R.; Zhang, C.; Cui, T.; Li, F.M. Recently-released genotypes of naked oat (Avena nuda L.) out-yield early releases under water-limited conditions by greater reproductive allocation and desiccation tolerance. Field Crops Res. 2017, 204, 169–179. [Google Scholar] [CrossRef]
- Jin, Y.; He, J.; Turner, N.C.; Du, Y.L.; Li, F.M. Water-conserving and biomass-allocation traits are associated with higher yields in modern cultivars compared to landraces of soybean [Glycine max (L.) Merr.] in rainfed water-limited environments. Environ. Exp. Bot 2019, 168, 103883. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Zhu, Y.-H.; Ren, M.-J.; Jiang, L.; He, J.; Dong, R. Does Belt Uniform Sowing Improve Winter Wheat Yield under High Sowing Density? Agronomy 2022, 12, 2936. https://doi.org/10.3390/agronomy12122936
Chen M, Zhu Y-H, Ren M-J, Jiang L, He J, Dong R. Does Belt Uniform Sowing Improve Winter Wheat Yield under High Sowing Density? Agronomy. 2022; 12(12):2936. https://doi.org/10.3390/agronomy12122936
Chicago/Turabian StyleChen, Mei, Yong-He Zhu, Ming-Jian Ren, Long Jiang, Jin He, and Rui Dong. 2022. "Does Belt Uniform Sowing Improve Winter Wheat Yield under High Sowing Density?" Agronomy 12, no. 12: 2936. https://doi.org/10.3390/agronomy12122936
APA StyleChen, M., Zhu, Y.-H., Ren, M.-J., Jiang, L., He, J., & Dong, R. (2022). Does Belt Uniform Sowing Improve Winter Wheat Yield under High Sowing Density? Agronomy, 12(12), 2936. https://doi.org/10.3390/agronomy12122936