Water Saving Using Thermal Imagery-Based Thresholds for Timing Irrigation in Potatoes under Drip and Furrow Irrigation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description and Experimental Conditions
2.2. Experimental Design and Water Management
2.3. Agronomic, Environmental and Economic Indicators for Potato Production
2.4. Integrated Index
2.5. Data Analysis and Statistics
3. Results
3.1. Timing Schedule Watering Treatments and Irrigation Systems Effects on Assessed Indicators
3.2. Interaction of the Indicators and Treatments Valuation Based on the Integrated Index
4. Discussion
4.1. High-Tech Irrigation Allowed to Save Water but with Higher Monetary Cost
4.2. Irrigation Timing Based on Thermal Imagery Improved Most Indicators under Furrow Irrigation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, J.K.; Fesenmyer, K.A.; Grantham, T.E.; Viers, J.H.; Ode, P.R.; Moyle, P.B.; Kupferburg, S.J.; Furnish, J.L.; Rehn, A.; Slusark, J.; et al. A freshwater conservation blueprint for California: Prioritizing watersheds for freshwater biodiversity. Fresh. Sci. 2018, 37, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Shtull-Trauring, E.; Cohen, A.; Ben-Hur, M.; Tanny, J.; Bernstein, N. Reducing salinity of treated waste water with large scale desalination. Water Res. 2020, 186, 116322. [Google Scholar] [CrossRef] [PubMed]
- Graham, N.T.; Hejazi, M.I.; Kim, S.H.; Davies, E.G.; Edmonds, J.A.; Miralles-Wilhelm, F. Future changes in the trading of virtual water. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Elshaikh, A.E.; Yang, S.H.; Jiao, X.; Elbashier, M.M. Impacts of Legal and Institutional Changes on Irrigation Management Performance: A Case of the Gezira Irrigation Scheme, Sudan. Water 2018, 10, 1579. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, Y.A. Complex adaptive system approach for improved irrigation management: The case of the Gezira scheme in Sudan. Irrig. Drain. 2020, 69, 1072–1081. [Google Scholar] [CrossRef]
- Goelnitz, A.; Al-Saidi, M. Too big to handle, too important to abandon: Reforming Sudan’s Gezira scheme. Agric. Water Manag. 2020, 241, 106396. [Google Scholar] [CrossRef]
- An, P.; Ren, W.; Liu, X.; Song, M.; Li, X. Adjustment and optimization of the cropping systems under water constraint. Sustainability 2016, 8, 1207. [Google Scholar] [CrossRef] [Green Version]
- OECD. Water Risk Hotspots for Agriculture; OECD Studies on Water; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- Faostat. Available online: http://www.fao.org/faostat/en/ (accessed on 24 December 2020).
- DeFauw, S.L.; He, Z.; Larkin, R.P.; Mansour, S.A. Sustainable potato production and global food security. In Sustainable Potato Production: Global Case Studies; He, Z., Larkin, R., Honeycutt, W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–19. [Google Scholar] [CrossRef]
- Renault, D.; Wallender, W.W. Nutritional water productivity and diets. Agric. Water Manag. 2000, 45, 275–296. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- Yactayo, W.; Ramírez, D.A.; Gutiérrez, R.; Mares, V.; Posadas, A.; Quiroz, R. Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agric. Water Manag. 2013, 123, 65–70. [Google Scholar] [CrossRef]
- Saeed, H.; Grove, I.G.; Kettlewell, P.S.; Hall, N.W. Potential of partial rootzone drying as an alternative irrigation technique for potatoes (Solanum tuberosum). Ann. Appl. Biol. 2008, 152, 71–80. [Google Scholar] [CrossRef]
- Qin, J.; Ramírez, D.A.; Xie, K.; Li, W.; Yactayo, W.; Jin, L.; Quiroz, R. Is partial root-zone drying more appropriate than drip irrigation to save water in China? A preliminary comparative analysis for potato cultivation. Potato Res. 2018, 61, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water? A Review of the Evidence; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 2017; Volume 42, pp. 33–35. Available online: https://www.fao.org/3/I7090EN/i7090en.pdf (accessed on 1 March 2021).
- Kjelgaard, J.F.; Stockle, C.O.; Evans, R.G. Accuracy of canopy temperature energy balance for determining daily evapotranspiration. Irr. Sci. 1996, 16, 149–157. [Google Scholar] [CrossRef]
- Ninanya, J.; Ramírez, D.A.; Rinza, J.; Silva-Díaz, C.; Cervantes, M.; García, J.; Quiroz, R. Canopy Temperature as a Key Physiological Trait to Improve Yield Prediction under Water Restrictions in Potato. Agronomy 2021, 11, 1436. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Yactayo, W.; Gutiérrez, R.; Mares, V.; De Mendiburu, F.; Posadas, A.; Quiroz, R. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hortic. 2014, 168, 202–209. [Google Scholar] [CrossRef]
- Rinza, J.; Ramírez, D.A.; García, J.; de Mendiburu, F.; Yactayo, W.; Barreda, C.; Velasquez, T.; Mejía, A.; Quiroz, R. Infrared Radiometry as a Tool for Early Water Deficit Detection: Insights into Its Use for Establishing Irrigation Calendars for Potatoes Under Humid Conditions. Potato Res. 2019, 62, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Cucho-Padin, G.; Rinza, J.; Ninanya, J.; Loayza, H.; Quiroz, R.; Ramírez, D.A. Development of an open-source thermal image processing software for improving irrigation management in potato crops (Solanum Tuberosum L.). Sensors 2020, 20, 472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashar, A.; Yildiz, J.; McNicol, J.W.; Bryan, G.J.; Jones, H.G. Infra-red thermography for high throughput field phenotyping in (Solanum tuberosum). PLoS ONE 2013, 8, e65816. [Google Scholar] [CrossRef]
- Rud, R.; Cohen, Y.; Alchanatis, V.; Levi, A.; Brikman, R.; Shenderey, C.; Heuer, B.; Markovitch, T.; Dar, Z.; Rosen, S.; et al. Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precis. Agric. 2014, 15, 273–289. [Google Scholar] [CrossRef]
- Silva-Díaz, C.; Ramírez, D.A.; Rodríguez-Delfín, A.; de Mendiburu, F.; Rinza, J.; Ninanya, J.; Loayza, H.; Quiroz, R. Unraveling Ecophysiological Mechanisms in Potatoes under Different Irrigation Methods: A Preliminary Field Evaluation. Agronomy 2020, 10, 827. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M. Carbon Footprint Estimation in the Agriculture Sector. In Assessment of Carbon Footprint in Different Industrial Sectors, Volume 1; Muthu, S.S., Ed.; EcoProduction; Springer: Singapore, 2014; pp. 25–47. [Google Scholar]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerdà, A. A Review of Soil Carbon Dynamics Resulting from Agricultural Practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Six, J.; Komatsu, S.; Snapp, S.; Rosenstock, T.; Arouna, A.; Cole, S.; Taulya, G.; Vanlauwe, B. Agronomic gain: Definition, approach, and application. Field Crop. Res. 2021, 270, 108193. [Google Scholar] [CrossRef]
- Servicio Nacional de Meteorología e Hidrología (SENAMHI). Available online: https://www.senamhi.gob.pe/ (accessed on 1 February 2021).
- Gutiérrez-Rosales, R.O.; Espinoza-Trelles, J.A.; Bonierbale, M. UNICA: Variedad Peruana para mercado fresco y papa frita con tolerancia y resistencia para condiciones climáticas adversas. Rev. ALAP 2007, 14, 45–50. [Google Scholar] [CrossRef]
- Cool Farm Alliance. Version 2. Available online: https://app.coolfarmtool.org/account/login/ (accessed on 15 February 2022).
- Haverkort, A.J.; Hillier, J.G. Cool farm tool–potato: Model description and performance of four production systems. Potato Res. 2011, 54, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.B.; Saha, N.K.; Kadian, M.S.; Quiroz, R.; Llangantileke, S. Improving the livelihood of farmers by intensifying the rice-potato-rice system through double-transplanting of rice in West Bengal, India. International Potato Center (CIP), West Bengal. 2014. Available online: http://cipotato.org/wp-content/uploads/publication%20files/working%20papers/003830.pdf (accessed on 5 July 2022).
- SAS Institute Inc. SAS/STAT® 14.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- R Core Team. R Software. Version, 5.6.1. Available online: https://www.r-project.org/ (accessed on 20 July 2022).
- Kumar, S.; Asrey, R.; Mandal, G.; Singh, R. Microsprinkler, drip and furrow irrigation for potato (Solanum tuberosum) cultivation in a semi-arid environment. Indian J. Agric. Sci. 2009, 79, 165–169. Available online: https://krishi.icar.gov.in/jspui/bitstream/123456789/25589/1/IJASc2009.pdf (accessed on 1 July 2022).
- Ati, A.S.; Iyada, A.D.; Najim, S.M. Water Use Efficiency of Potato (Solanum tuberosum L.) under Different Irrigation Methods and Potassium Fertilizer Rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Sharma, I.P.; Spehia, R.S.; Kumar, P. Influence of Irrigation Methods and Fertilizer Levels on Productivity of Potato (Solanum tuberosum). Indian J. Agric. Sci. 2012, 82, 117–121. Available online: https://www.researchgate.net/publication/290629108_Influence_of_irrigation_methods_and_fertilizer_levels_on_productivity_of_potato_Solanum_tuberosum (accessed on 15 October 2021).
- Shi, Y.; Qi, X.; Li, P.; Qiao, D.; Huang, Z. Improving Water and Nutrient Use Efficiency of Potato by Partial Root-Zone Drying Irrigation in a Semi-Arid Area in China: A Field Experimental Study. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 19.1–19.7. [Google Scholar] [CrossRef]
- Jha, G.; Choudhary, O.P.; Sharda, R. Comparative Effects of Saline Water on Yield and Quality of Potato under Drip and Furrow Irrigation. Cogent. Food Agric. 2017, 3, 1369345. [Google Scholar] [CrossRef]
- Amali, S.; Rolston, D.E.; Fulton, A.E.; Hanson, B.R.; Phene, C.J.; Oster, J.D. Soil water variability under subsurface drip and furrow irrigation. Irrig. Sci. 1997, 17, 151–155. [Google Scholar] [CrossRef]
- Monneveux, P.; Ramírez, D.A.; Pino, M.-T. Drought Tolerance in Potato (S. Tuberosum L.): Can We Learn Drought Tolerance Research in Cereals. Plant Sci. 2013, 205, 76–86. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, C.; Steduto, P.; Allen, R.G.; Burt, C.M. Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agric. Water Manag. 2009, 105, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Röös, E.; Sundberg, C.; Hansson, P.-A. Uncertainties in the Carbon Footprint of Food Products: A Case Study on Table Potatoes. Int. J. Life Cycle Assess. 2010, 15, 478–488. [Google Scholar] [CrossRef]
- van Evert, F.K.; de Ruijter, F.J.; Conijn, J.G.; Rutgers, B.; Haverkort, A.J. Worldwide Sustainability Hotspots in Potato Cultivation. 2. Areas with Improvement Opportunities. Potato Res. 2013, 56, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Haverkort, A.J.; Sandaña, P.; Kalazich, J. Yield Gaps and Ecological Footprints of Potato Production Systems in Chile. Potato Res. 2014, 57, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Sandaña, P.; Kalazich, J. Attainable CO2 Emission of Ware Potatoes Under High Yield Conditions in Southern Chile. Am. J. Potato Res. 2015, 92, 318–325. [Google Scholar] [CrossRef]
- Steyn, J.M.; Franke, A.C.; van der Waals, J.E.; Haverkort, A.J. Resource Use Efficiencies as Indicators of Ecological Sus-tainability in Potato Production: A South African Case Study. Field Crop. Res. 2016, 199, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Svubure, O.; Struik, P.; Haverkort, A.; Steyn, J. Carbon Footprinting of Potato (Solanum Tuberosum L.) Production Systems in Zimbabwe. Outlook Agric. 2018, 47, 3–10. [Google Scholar] [CrossRef]
- Sharma, J.; Chaukhande, P.; Dua, V.K.; Kumar, S.; Chakrabarti, S.K. Carbon Footprint and Energy Consumption Analysis of Potato Production in Himachal Pradesh. Potato J. 2018, 45, 116–122. Available online: https://www.cabdirect.org/cabdirect/abstract/20193196926 (accessed on 2 February 2022).
- Qin, S.; Li, L.; Wang, D.; Zhang, J.; Pu, Y. Effects of Limited Supplemental Irrigation with Catchment Rainfall on Rain-Fed Potato in Semi-Arid Areas on the Western Loess Plateau, China. Am. J. Potato Res. 2013, 90, 33–42. [Google Scholar] [CrossRef]
- Tang, C.; Lu, Y.; Jiang, B.; Chen, J.; Mo, X.; Yang, Y.; Wang, Z. Energy, Economic, and Environmental Assessment of Sweet Potato Production on Plantations of Various Sizes in South China. Agronomy 2022, 12, 1290. [Google Scholar] [CrossRef]
- Subedi, S.; Ghimire, Y.N.; Gautam, S.; Poudel, H.K.; Shrestha, J. Economics of potato (Solanum tuberosum L.) production in terai region of Nepal. AAES 2019, 4, 57–62. [Google Scholar] [CrossRef]
- Onder, S.; Caliskan, M.E.; Onder, D.; Caliskan, S. Different irrigation methods and water stress effects on potato yield and yield components. Agric. Water Manag. 2005, 73, 73–86. [Google Scholar] [CrossRef]
- Gatto, M.; Petsakos, A.; Hareau, G. Sustainable intensification of rice-based systems with potato in Eastern Indo-Gangetic plains. Am. J. Potato Res. 2020, 97, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Zangeneh, M.; Omid, M.; Akram, A. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy J. 2010, 35, 2927–2933. [Google Scholar] [CrossRef]
- Patel, N.; Rajput, T.B.S. Effect of drip tape placement depth and irrigation level on yield of potato. Agric. Water Manag. 2007, 88, 209–223. [Google Scholar] [CrossRef]
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Gachene, C.K.; Karanja, N.N.; Schulte-Geldermann, E. Increasing potato equivalent yield increases returns to investment under potato-legume intercropping systems. Open Agric. 2019, 4, 623–629. [Google Scholar] [CrossRef]
- Mosquera, V.B.; Delgado, J.A.; Alwang, J.R.; López, L.E.; Ayala, Y.C.; Andrade, J.D.; D’adamo, R. Conservation agriculture increases yields and economic returns of potato, forage, and grain systems of the Andes. J. Agron. 2019, 111, 2747–2753. [Google Scholar] [CrossRef] [Green Version]
- Tirado-Malaver, R.H.; Mendoza-Saenz, J.; Tirado-Lara, R.; Tirado-Malaver, R. Multivariate analyzes to characterize and typify potato production farms (Solanum tuberosum L.) in Cutervo, Cajamarca, Peru. Trop. Subtrop. Agroecosyst. 2021, 24. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3744/1677 (accessed on 5 August 2022). [CrossRef]
- Scuderi, A.; Cammarata, M.; Branca, F.; Timpanaro, G. Agricultural production trends towards carbon neutrality in response to 397 the EU 2030 Green Deal: Economic and environmental analysis in horticulture. J. Agric. Econ. 2021, 67, 435–444. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Vafabakhsh, J.; Mahdavi Damghani, A.; Deihimfard, R. Assessing environmental impacts of major vegetable crop production systems of East Azerbaijan province in Iran. Arch. Agron. Soil Sci. 2018, 64, 967–982. [Google Scholar] [CrossRef]
- Franke, A.C.; Steyn, J.M.; Machakaire, A.T.B.; Haverkort, A.J. Resource use efficiencies in potato production. Water Wheel 2018, 17, 18–21. [Google Scholar]
- Shi, X.; Batchelor, W.D.; Liang, H.; Li, S.; Li, B.; Hu, K. Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach. Agric. Water Manag. 2020, 234, 106110. [Google Scholar] [CrossRef]
- Carozzi, M.; Bregaglio, S.; Scaglia, B.; Bernardoni, E.; Acutis, M.; Confalonieri, R. The development of a methodology using fuzzy logic to assess the performance of cropping systems based on a case study of maize in the Po Valley. Soil Use Manag. 2013, 29, 576–585. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Fang, Q.; Wang, E.; Yin, H.; Pan, X. Optimizing Planting Date and Supplemental Irrigation for Potato across the Agro-Pastoral Ecotone in North China. Eur. J. Agron. 2018, 98, 82–94. [Google Scholar] [CrossRef]
- Satognon, F.; Owido, S.F.O.; Lelei, J.J. Effects of Supplemental Irrigation on Yield, Water Use Efficiency and Nitrogen Use Efficiency of Potato Grown in Mollic Andosols. Environ. Syst. Res. 2021, 10, 38. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; Wang, X.-X.; Zhang, R.; Gong, X.; Zhang, S.; Mares, V.; Gavilán, C.; Posadas, A.; Quiroz, R. Partial Root-Zone Drying Irrigation and Water Utilization Efficiency by the Potato Crop in Semi-Arid Regions in China. Sci. Hortic. 2012, 134, 20–25. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Salman, S.R.; Gruda, N. Yield and Water Use Relationships of Potato under Different Timing and Severity of Water Stress. Agric. Water Manag. 2022, 271, 107793. [Google Scholar] [CrossRef]
- Yactayo, W.; Ramírez, D.A.; German, T.; Worku, A.; Abeb, A.; Harahagazwe, D.; Quiroz, R. Improving potato cultivation using siphons for partial root-zone drying irrigation: A case study in the Blue Nile river basin, Ethiopia. Open Agric. 2017, 2, 255–259. [Google Scholar] [CrossRef]
- CPAD. (18 October 2020). Developing Digital Tools to Optimize Water Use in Agriculture. International Potato Center. Available online: https://cipotato.org/blog/developing-digital-tools-optimize-water-use-agriculture/ (accessed on 5 July 2022).
- Cucho-Padin, G.; Rinza, J.; Ninanya, J.; Ramírez, D. Thermal Images Processor for Android Phones TIPCIP V1.0; International Potato Center (CIP): Lima, Peru, 2019. [Google Scholar] [CrossRef]
- Jones, H.G.; Hutchinson, P.A.; May, T.; Jamali, H.; Deery, D.M. A practical method using a network of fixed infrared sensors for estimating crop canopy conductance and evaporation rate. Biosyst. Eng. 2018, 165, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Meron, M.; Tsipris, J.; Orlov, V.; Alchanatis, V.; Cohen, Y. Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis. Agric. 2010, 11, 148–162. [Google Scholar] [CrossRef]
- Shi, X.; Han, W.; Zhao, T.; Tang, J. Decision support system for variable rate irrigation based on UAV multispectral remote sensing. Sensors 2019, 19, 2880. [Google Scholar] [CrossRef] [Green Version]
- Veysi, S.; Naseri, A.A.; Hamzeh, S.; Bartholomeus, H. A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agric. Water Manag. 2017, 189, 70–86. [Google Scholar] [CrossRef]
- Rinza, J.; Ramírez, D.A.; Ninanya, J.; Yactayo, W. Dataset for: Meteorological data at La Molina 2 CIP experimental station from 2013 to 2020. Int. Potato Cent. 2021, V1. [Google Scholar] [CrossRef]
- Rinza, J.; Ninanya, J.; Ramírez, D.A. Dataset for: Estimating carbon footprint in potato trials 4 under drip and furrow irrigation. Int. Potato Cent. 2021, V1. [Google Scholar] [CrossRef]
Source | DF | FTY | IW | TE | PC |
---|---|---|---|---|---|
Irrigation Systems (IS) | 1 | 0.34 ns | 421.01 ** | 0.75 ns | 14812.8 ** |
Irrigation Timing Treatments (IT) | 2 | 44.97 ** | 304.89 ** | 33.36 ** | 256.86 ** |
IS × IT | 2 | 0.52 ns | 25.72 ** | 3.14 * | 32.96 ** |
Source | TE (kg -eq t Fresh ) | TE (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DI-T1 | DI-T2 | DI-T3 | FI-T1 | FI-T2 | FI-T3 | DI-T1 | DI-T2 | DI-T3 | FI-T1 | FI-T2 | FI-T3 | |
Seed production | 38.8 | 60.5 | 157.1 | 44.3 | 61.6 | 252.7 | 24.1 | 28.7 | 40.1 | 23.6 | 27.4 | 43.4 |
Fertilizers * | 70.4 | 87.8 | 139.9 | 79.4 | 93.7 | 196.4 | 43.7 | 41.7 | 35.7 | 42.4 | 41.7 | 33.7 |
Crop protection | 11.5 | 14.3 | 22.8 | 12.4 | 14.6 | 30.7 | 7.1 | 6.8 | 5.9 | 6.6 | 6.5 | 5.3 |
Energy use (field) | 39.8 | 47.2 | 70.9 | 50.6 | 53.7 | 100.9 | 24.7 | 22.4 | 18.1 | 27.0 | 23.9 | 17.3 |
Off-farm transport | 0.6 | 0.7 | 1.1 | 0.7 | 0.8 | 1.7 | 0.4 | 0.3 | 0.3 | 0.4 | 0.4 | 0.3 |
Total | 161.0 | 210.4 | 391.8 | 187.4 | 224.5 | 582.4 | 100 | 100 | 100 | 100 | 100 | 100 |
Indicator | PComp1 | PComp2 |
---|---|---|
FTY | 0.65 | −0.17 |
IW | 0.02 | 0.76 |
TE | −0.65 | −0.17 |
PC | −0.39 | −0.61 |
Eigenvalue | 2.16 | 1.64 |
TCV (%) | 53.9 | 94.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinza, J.; Ramírez, D.A.; Ninanya, J.; de Mendiburu, F.; García, J.; Quiroz, R. Water Saving Using Thermal Imagery-Based Thresholds for Timing Irrigation in Potatoes under Drip and Furrow Irrigation Systems. Agronomy 2022, 12, 2921. https://doi.org/10.3390/agronomy12122921
Rinza J, Ramírez DA, Ninanya J, de Mendiburu F, García J, Quiroz R. Water Saving Using Thermal Imagery-Based Thresholds for Timing Irrigation in Potatoes under Drip and Furrow Irrigation Systems. Agronomy. 2022; 12(12):2921. https://doi.org/10.3390/agronomy12122921
Chicago/Turabian StyleRinza, Javier, David A. Ramírez, Johan Ninanya, Felipe de Mendiburu, Jerónimo García, and Roberto Quiroz. 2022. "Water Saving Using Thermal Imagery-Based Thresholds for Timing Irrigation in Potatoes under Drip and Furrow Irrigation Systems" Agronomy 12, no. 12: 2921. https://doi.org/10.3390/agronomy12122921