Agronomic Efficiency of Phosphorus Fertilisers Recovered from Milk Processing Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pyrolysis of MFS
2.3. Analytical Methods
2.4. Sequential P Extraction
2.5. Phosphorus-Limiting Plant Bioassays
3. Results
3.1. Pyrolysis Distribution Products and Physiochemical Properties of Biochars
3.2. Transformation of Phosphorus Fractions
3.3. Short Term P Limiting Plant Bioassay
3.4. Medium-Term P Limiting Plant Bioassay
4. Discussion
4.1. Impact of Pyrolysis on P Bioavailability from MFS
4.2. Agronomic Efficacy of Raw MFS and Biochar MFS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, W.; Healy, M.G.; Ashekuzzaman, S.M.; Daly, K.; Leahy, J.J.; Fenton, O. Dairy processing sludge and co-products: A review of present and future re-use pathways in agriculture. J. Clean. Prod. 2021, 314, 128035. [Google Scholar] [CrossRef]
- Ashekuzzaman, S.M.; Forrestal, P.; Richards, K.; Fenton, O. Dairy industry derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. J. Clean. Prod. 2019, 230, 1266–1275. [Google Scholar] [CrossRef]
- Arefin, M.A.; Nabi, M.N.; McIntosh, S. Harnessing energy from Australian dairy waste: Utilizing five methodologies. Biofuels Bioprod. Biorefining 2020, 14, 1180–1196. [Google Scholar] [CrossRef]
- Hu, Y.; Khomenko, O.; Shi, W.; Velasco-Sánchez, Á.; Ashekuzzaman, S.M.; Bennegadi-Laurent, N.; Daly, K.; Fenton, O.; Healy, M.G.; Leahy, J.J.; et al. Systematic Review of Dairy Processing Sludge and Secondary STRUBIAS Products Used in Agriculture. Front. Sustain. Food Syst. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Kwapinska, M.; Horvat, A.; Liu, Y.; Leahy, J.J. Pilot Scale Pyrolysis of Activated Sludge Waste from Milk Processing Factory. Waste Biomass Valorization 2020, 11, 2887–2903. [Google Scholar] [CrossRef]
- Akhtar, N.; Tayal, P.K.; Manderna, S.; Akhtar, M.N. Dairy effluent scum: A resourceful material for biogas. Int. J. Interdiscip. Res. 2017, 3, 1. [Google Scholar]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C., Jr. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv. Agron. 2017, 144, 143–233. [Google Scholar]
- Van de Velden, M.; Baeyens, J.; Brems, A.; Janssens, B.; Dewil, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energy 2010, 35, 232–242. [Google Scholar] [CrossRef]
- Carpenter, D.; Westover, T.L.; Czernik, S.; Jablonski, W. Biomass feedstocks for renewable fuel production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 2014, 16, 384–406. [Google Scholar] [CrossRef]
- Kwapinska, M.; Leahy, J.J. Pyrolysis—A way of recovering energy from wastewater sludge from milk processing factories. In Proceedings of the 5th international Conference on Sustainable Solid Waste Management, Athens, Greece, 21–24 June 2017. [Google Scholar]
- McIntosh, S.; Nabi, M.N.; Moghaddam, L.; Brooks, P.; Ghandehari, P.S.; Erler, D. Combined pyrolysis and sulphided NiMo/Al2O3 catalysed hydroprocessing in a multistage strategy for the production of biofuels from milk processing waste. Fuel 2021, 295, 120602. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; Lehmann, J.; Solomon, D. Recycling slaughterhouse waste into fertilizer: How do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J. Sci. Food Agric. 2015, 95, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Mackay, J.E.; Cavagnaro, T.R.; Jakobsen, I.; Macdonald, L.M.; Grønlund, M.; Thomsen, T.P.; Müller-Stöver, D.S. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat. Plant Soil 2017, 418, 307–317. [Google Scholar] [CrossRef]
- Christel, W.; Bruun, S.; Magid, J.; Kwapinski, W.; Jensen, L.S. Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes. Plant Soil 2016, 401, 93–107. [Google Scholar] [CrossRef]
- Adhikari, S.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef]
- Rose, T.J.; Schefe, C.; Weng, Z.; Rose, M.Y.; Van Zwieten, L.; Liu, L.; Rose, A.L. Phosphorus speciation and bioavailability in diverse biochars. Plant Soil 2019, 443, 233–244. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Shao, H.; Junna, S. Prolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Sci. Total Environ. 2016, 569–570, 65–72. [Google Scholar] [CrossRef]
- Roberts, D.A.; Cole, A.J.; Whelan, A.; de Nys, R.; Paul, N.A. Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching from biosolids. Waste Manag. 2017, 64, 133–139. [Google Scholar] [CrossRef]
- Australian Dairy Industry In Focus. Victoria, Australia. 2018, 1383. Available online: https://www.dairyaustralia.com.au/ja-jp/resource-repository/2020/07/09/australian-dairy-industry-in-focus-2018#.YzQK2ghMb7g.link (accessed on 5 September 2022).
- Rose, T.J.; Thompson-Brewster, E.; Cornish, P.S. Phosphorus constraints to potential land area cropped under organic and regenerative systems in Australia. Crop. Pasture Sci. 2022, 73, 263–272. [Google Scholar] [CrossRef]
- Rayment, G.E.; Llyons, D.J. Soil Chemical Methods; CSIRO Publishing: Collingwood, VIC, Australia, 2011. [Google Scholar]
- APHA. Standard Methods for the Examintion of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Zhang, H.; Chen, C.; Gray, E.M.; Boyd, S.E. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenerg. 2017, 105, 136–146. [Google Scholar] [CrossRef]
- Guppy, C.N.; Menzies, N.M.; Moody, P.W.; Compton, B.L.; Blamey, F.P.C. Analytical methods and quality assurance. Commun. Soil Sci. Plant Anal. 2000, 31, 1981–1991. [Google Scholar] [CrossRef]
- Isbbell, R.F. The Australian Soil Classification; CSIRO Publishing: Melbourne, VIC, Australia, 1996. [Google Scholar]
- Rose, T.J.; Rengel, Z.; Ma, Q.; Bowden, J.W. Differential accumulation patterns of phosphorus and potassium by canola cultivars compared to wheat. J. Plant. Nutr. Soil Sci. 2007, 170, 404–411. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Rose, T.; Herridge, D.; Kimber, S.; Rust, J.; Cowie, A.; Morris, S. Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: Dissection of causal mechanisms. Plant Soil 2015, 395, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Kratz, S.; Vogel, C.; Adam, C. Agronomic performance of P recycling fertilizers and methods to predict it: A review. Nutr. Cycl. Agroecosyst 2019, 115, 1–39. [Google Scholar] [CrossRef]
- Li, W.; Feng, X.; Song, W.; Guo, M. Transformation of Phosphorus in Speciation and Bioavailability During Converting Poultry Litter to Biochar. Front. Sustain. Food syst. 2018, 2, 20. [Google Scholar] [CrossRef]
- Buss, W.; Wurzer, C.; Manning, D.A.C.; Rohling, E.J.; Borevitz, J.; Masek, O. Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Commun. Earth Environ. 2022, 3, 67. [Google Scholar] [CrossRef]
- Tesfaye, F.; Liu, X.; Cheng, K.; Bian, R.; Zhang, X.; Li, L.; Drosos, M.; Joseph, S.; Pan, G. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. Environ. Sci. Pollut Res. 2021, 28, 34108–34120. [Google Scholar] [CrossRef]
- Glaser, B.; Lehr, V.I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef]
- Luutu, H.; Rose, M.T.; McIntosh, S.; Van Zwieten, L.; Rose, T. Plant growth responses to soil-applied hydrothermally-carbonised waste amendments: A meta-analysis. Plant Soil 2022, 472, 1–15. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, B.; Liu, G.; Cai, Z.; Zhang, C. Chapter 19—Potential Toxic Compounds in Biochar Knowledge Gaps Between Biochar Research and Safety. In Biochar from Biomass and Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 349–384. [Google Scholar]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
Component | Raw MFS | Pyrolysis Temp (°C) | ||
---|---|---|---|---|
450 | 550 | 650 | ||
TS (wt.%) a | 17.70 | 100.00 | 100.00 | 100.00 |
VS (wt.%) | 82.40 | 53.50 | 47.40 | 44.20 |
Ash (%) | 10.00 | 38.10 | 40.50 | 42.10 |
Volatile Fatty Acids (mg/kg) a | 3260.00 | |||
Oils and Grease (mg/kg) a | 9900.00 | |||
Protein (%) | 22.80 | |||
pH | 4.60 | 8.40 | 8.90 | 9.00 |
Electrical Conductivity (dS/m) | 0.90 | 0.70 | 0.40 | 0.30 |
Chloride Estimate (equiv. mg/kg) | 597.00 | 469.30 | 240.50 | 198.70 |
Total Organic Carbon (%) | 25.10 | 42.15 | 42.51 | 42.95 |
Carbon (%) | 55.60 | 40.80 | 41.27 | 41.60 |
Phosphorus (%) | 1.10 | 4.88 | 4.96 | 4.74 |
Nitrogen (%) | 3.64 | 5.26 | 5.21 | 4.76 |
Potassium (%) | 0.15 | 0.61 | 0.62 | 0.60 |
Zinc (mg/kg) | 208.87 | 590.44 | 720.10 | 782.20 |
Manganese (mg/kg) | 12.16 | 51.27 | 49.00 | 46.80 |
Iron (mg/kg) | 1149.60 | 3459.83 | 4383.8 | 4109.2 |
Copper (mg/kg) | 8.61 | 24.05 | 17.70 | 13.90 |
Boron (mg/kg) | <5 | <5 | <5 | <5 |
Molybdenum (mg/kg) | 1.46 | 4.20 | 4.00 | 3.50 |
Sodium (%) | 0.10 | 0.44 | 0.50 | 0.40 |
Sulphur (%) | 0.20 | 0.10 | 0.10 | 0.10 |
Magnesium (%) | 0.10 | 0.19 | 0.20 | 0.20 |
Calcium (%) | 0.10 | 0.56 | 0.60 | 0.60 |
Aluminium (g/kg) | 36.20 | 146.80 | 148.40 | 140.40 |
Soil Properties | Arenosol | Vertisol | Ferralsol |
---|---|---|---|
Total Carbon (%) | 0.30 | 3.17 | 3.69 |
Total Nitrogen (%) | 0.02 | 0.10 | 0.32 |
Carbon/Nitrogen Ratio | 12.39 | 30.78 | 11.42 |
Phosphorus (mg/kg) | <50 | 255.62 | 1056.01 |
pH (1:5 Water) | 7.25 | 8.66 | 5.33 |
Electrical Conductivity (dS m−1) | 0.07 | 0.16 | 0.14 |
Estimated Organic Matter (% OM) | 0.52 | 5.55 | 6.46 |
Chloride Estimate (equiv. ppm) | 47.74 | 101.23 | 89.48 |
Phosphorus (Bray 1) | 2.07 | <1 | 4.59 |
Phosphorus (Colwell) | 6.56 | 27.55 | 44.28 |
Phosphorus (Bray 2) | 2.29 | 16.23 | 13.06 |
KCl extractable (mg kg−1) | |||
Ammonium | 2.46 | 4.39 | 14.70 |
Nitrate | 7.85 | 16.97 | 45.17 |
Sulphur | 1.91 | 8.32 | 41.44 |
Effective Cation Exchange Capacity (cmol+ kg−1) | 0.82 | 24.14 | 4.93 |
Exchangeable cations (cmol+ kg−1) | |||
Calcium | 0.50 | 21.32 | 3.27 |
Magnesium | 0.21 | 1.45 | 0.60 |
Potassium | <0.12 | 1.24 | 0.42 |
Sodium | 0.07 | 0.11 | 0.14 |
Aluminium | <0.01 | 0.02 | 0.26 |
DTPA extractable micronutrients (mg kg−1) | |||
Zinc | <0.5 | <0.5 | 1.64 |
Manganese | 3.60 | 5.32 | 38.23 |
Iron | 30.80 | 6.47 | 42.22 |
Copper | <0.1 | 0.29 | 0.53 |
ICP elements and metals (mg kg−1) | |||
Aluminium | 594.08 | 8841.87 | 87,262.94 |
Arsenic | <2 | <2 | 2.67 |
Boron | <2 | 14.88 | 2.83 |
Calcium | 132.16 | 64,041.70 | 886.11 |
Cadmium | <0.5 | <0.5 | <0.5 |
Cobalt | 0.75 | 2.38 | 13.16 |
Chromium | <2 | 12.84 | 81.73 |
Copper | <1 | 6.77 | 11.95 |
Iron | 870.13 | 6789.09 | 11,0866.51 |
Lead | <1 | 3.17 | 15.89 |
Potassium | <50 | 2749.06 | 330.98 |
Magnesium | 52.40 | 5111.82 | 521.96 |
Manganese | 53.56 | 95.73 | 868.30 |
Mercury | <0.1 | <0.1 | 0.13 |
Molybdenum | <0.2 | 0.26 | 2.45 |
Nickel | <1 | 5.26 | 22.31 |
Selenium | <0.5 | <0.5 | 0.95 |
Silicon | 1073.54 | 1178.52 | 749.09 |
Silver | <1 | <1 | <1 |
Sodium | <50 | 144.74 | 89.02 |
Sulphur | <50 | 300.82 | 656.93 |
Zinc | 2.35 | 9.98 | 95.28 |
APFU (%) | NRPU (%) | ||||
---|---|---|---|---|---|
Days After Sowing | Raw MFS | Biochar MFS | +P (K2HPO4) | Raw MFS | Biochar MFS |
39 | 0 | 1.6 | 11 | 0.1 | 14.4 |
87 | 2.1 | 3.2 | 20.3 | 10.5 | 15.6 |
113 | 6.1 | 6 | 35.7 | 17.1 | 16.8 |
157 | 7.8 | 7.8 | 41.9 | 18.6 | 18.5 |
200 | 11.1 | 10.3 | 50.9 | 21.8 | 20.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McIntosh, S.; Rose, T.; Rose, A.; Kearney, L.; Erler, D. Agronomic Efficiency of Phosphorus Fertilisers Recovered from Milk Processing Waste. Agronomy 2022, 12, 2341. https://doi.org/10.3390/agronomy12102341
McIntosh S, Rose T, Rose A, Kearney L, Erler D. Agronomic Efficiency of Phosphorus Fertilisers Recovered from Milk Processing Waste. Agronomy. 2022; 12(10):2341. https://doi.org/10.3390/agronomy12102341
Chicago/Turabian StyleMcIntosh, Shane, Terry Rose, Andrew Rose, Lee Kearney, and Dirk Erler. 2022. "Agronomic Efficiency of Phosphorus Fertilisers Recovered from Milk Processing Waste" Agronomy 12, no. 10: 2341. https://doi.org/10.3390/agronomy12102341
APA StyleMcIntosh, S., Rose, T., Rose, A., Kearney, L., & Erler, D. (2022). Agronomic Efficiency of Phosphorus Fertilisers Recovered from Milk Processing Waste. Agronomy, 12(10), 2341. https://doi.org/10.3390/agronomy12102341