Salicylic Acid Spraying Affects Secondary Metabolites and Radical Scavenging Capacity of Drought-Stressed Eriocephalus africanus L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Chemicals and Solvents
2.3. Extraction of Plant Material
2.4. Measurement of Total Flavonoid and Total Polyphenol Contents (TFC and TPC)
2.5. Evaluation of DPPH Radical Scavenging Activity
2.6. Identification of Metabolites in Alcoholic Extracts via UPLC-ESI-MS/MS
2.7. Isolation of Essential Oils
2.8. Analysis of Essential Oil Composition via GC-MS
2.9. Statistical Analyses
3. Results
3.1. Effects of Drought Stress and SA Spraying on Fresh Weight, Dry Weight, TFC, TPC, Radical Scavenging Activity, and Oil Yield (Table 1)
Treatment | Fresh Weight * (g) | Dry Weight * (g) | TFC ** (mg RE/g Dry Weight) | TPC ** (mg GAE/g Dry Weight) | Radical Scavenging Activity ** (IC50 μg/mL) | Essential Oil Yield ** (% v/w) |
---|---|---|---|---|---|---|
F1S0 *** | 22.5 ± 1.6 a | 9.1 ± 1.0 a | 109.3 ± 0.4 a | 181.4 ± 0.7 a | 28.9 ± 0.4 a | 0.86 ± 0.12 a |
F1S1 | 23.8 ± 1.8 a | 9.6 ± 1.0 a | 111.3 ± 0.3 a | 184.6 ± 0.6 a | 25.2 ± 0.9 b | 0.96 ± 0.07 b |
F1S2 | 27.8 ± 0.9 b | 9.9 ± 1.1 a | 114.8 ± 0.1 b | 188.0 ± 0.9 a | 24.7 ± 0.5 b | 0.99 ± 0.02 b |
F1S3 | 26.2 ± 0.8 b | 8.8 ± 0.7 b | 117.8 ± 0.2 b | 191.4 ± 0.9 b | 24.1 ± 0.5 b | 0.97 ± 0.01 b |
F2S0 | 21.5 ± 0.9 a | 8.5 ± 0.8 b | 126.2 ± 0.3 b | 194.9 ± 0.3 b | 23.8 ± 1.0 b | 0.91 ± 0.07 b |
F2S1 | 22.8 ± 0.8 a | 9.2 ± 0.7 a | 130.8 ± 0.3 b | 198.1 ± 0.7 b | 22.2 ± 0.9 b | 1.00 ± 0.07 b |
F2S2 | 26.6 ± 1.0 b | 9.3 ± 0.9 a | 139.7 ± 0.3 b | 202.9 ± 0.3 b | 20.4 ± 0.6 b | 1.02 ± 0.10 b |
F2S3 | 26.0 ± 0.8 b | 8.3 ± 0.8 b | 142.1 ± 0.1 b | 206.9 ± 0.7 b | 18.6 ± 0.4 b | 1.00 ± 0.01 b |
F3S0 | 19.8 ± 1.5 b | 7.9 ± 0.9 b | 149.9 ± 0.1 b | 214.8 ± 0.9 b | 17.8 ± 0.2 b | 0.91 ± 0.02 b |
F3S1 | 21.0 ± 1.0 a | 8.7 ± 0.4 b | 151.4 ± 0.3 b | 217.0 ± 0.7 b | 16.2 ± 0.8 b | 1.02 ± 0.20 b |
F3S2 | 23.5 ± 1.1 b | 8.9 ± 0.9 b | 155.8 ± 0.2 b | 222.4 ± 0.9 b | 15.6 ± 0.7 b | 1.04 ± 0.02 b |
F3S3 | 22.1 ± 1.0 a | 8.0 ± 0.6 b | 159.4 ± 0.2 b | 225.9 ± 0.7 b | 15.1 ± 0.4 b | 1.00 ± 0.04 b |
F4S0 | 16.7 ± 1.6 b | 6.8 ± 0.7 b | 160.3 ± 0.2 b | 230.3 ± 0.3 b | 14.6 ± 0.6 b | 0.95 ± 0.02 b |
F4S1 | 18.3 ± 0.8 b | 7.5 ± 0.8 b | 162.3 ± 0.1 b | 234.5 ± 1.2 b | 14.5 ± 0.7 b | 1.03 ± 0.05 b |
F4S2 | 19.6 ± 0.8 b | 8.0 ± 0.7 b | 163.7 ± 0.3 b | 238.9 ± 0.6 b | 13.9 ± 0.4 b | 1.04 ± 0.02 b |
F4S3 | 17.0 ± 0.7 b | 7.0 ± 0.6 b | 167.7 ± 0.3 b | 243.4 ± 0.7 b | 12.1 ± 0.4 b | 1.05 ± 0.03 b |
3.2. UPLC-ESI-MS/MS Metabolic Profile of Alcoholic Extracts
3.3. Effects of Drought Stress and SA Spraying on Essential Oil Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmincke, K.H. Medicinal Plants for Forest Conservation and Health Care; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997; Volume 11. [Google Scholar]
- Guo, H.B.; Song, Z.P.; Liang, Z.S.; Zhang, Y. Domestic cultivation may abate the contradiction between sustainable utilization and genetic diversity conservation of medicinal plants. J. Med. Plants Res. 2009, 3, 1184–1187. [Google Scholar]
- Merle, H.; Verdeguer, M.; Blazquez, M.A.; Boira, H. Chemical composition of the essential oils from Eriocephalus africanus L. var. africanus populations growing in Spain. Flavour Fragr. J. 2007, 22, 461–464. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Saraiva, S.C.; Sobral, A.J.F.N.; Cardoso, S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2015, 11, 62–69. [Google Scholar] [CrossRef]
- van Deventer-Terblanche, H. Cape Winelands Cuisine; NB Publishers: Cape Town, South Africa, 2011. [Google Scholar]
- Njenga, E.W.; Viljoen, A.M. In vitro 5-lipoxygenase inhibition and antioxidant activity of Eriocephalus L. (Asteraceae) species. S. Afr. J. Bot. 2006, 72, 637–641. [Google Scholar] [CrossRef]
- Amabeoku, G.J.; Green, I.; Eagles, P.; Benjeddou, M. Effects of Tarchonanthus camphoratus and Eriocephalus africanus on nociception in mice and pyrexia in rats. Phytomedicine 2000, 7, 517–522. [Google Scholar] [CrossRef]
- Charles, O.; Joly, R.; Simon, J. Effect of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry 1994, 29, 2837–2840. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Nouraei, S.; Rahimmalek, M.; Saeidi, G. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress. Sci. Hortic. 2018, 233, 378–385. [Google Scholar] [CrossRef]
- Ding, C.K.; Wang, C.Y.; Gross, K.C.; Smith, D.L. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 2002, 214, 895–901. [Google Scholar] [CrossRef]
- Raskin, I. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43, 439–463. [Google Scholar] [CrossRef]
- Wang, L.J.; Li, S.H. Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul. 2006, 48, 137–144. [Google Scholar] [CrossRef]
- Cao, X.; Yin, T.; Miao, Q.; Li, C.; Ju, X.; Sun, Y.; Jiang, J. Molecular characterization and expression analysis of a gene encoding for farnesyl diphosphate synthase from Euphorbia pekinensis Rupr. Mol. Biol. Rep. 2012, 39, 1487–1492. [Google Scholar] [CrossRef]
- Chen, J.; Wen, P.; Kong, W.; Pan, Q.; Zhan, J.; Li, J.; Wan, S.; Huang, W. Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol. Technol. 2006, 40, 64–72. [Google Scholar] [CrossRef]
- Khalil, N.; Fekry, M.; Bishr, M.; El-Zalabani, S.; Salama, O. Foliar spraying of salicylic acid-induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water-stressed Thymus vulgaris L. Plant Physiol. Biochem. 2018, 123C, 65–74. [Google Scholar] [CrossRef] [PubMed]
- War, A.; Paulraj, M.; War, M.; Ignacimuthu, S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal. Behav. 2011, 6, 1787–1792. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, F.H.; Hood, J.S. A method of maintaining fractions of field capacity in pot experiments. New Phytol. 1966, 65, 240–244. [Google Scholar] [CrossRef]
- Zhishen, J.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 65, 555–559. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 1, p. 456. [Google Scholar]
- Bohm, B.A.; Stuessy, T.F. Flavonoids of the Sunflower Family (Asteraceae); Springer: Vienna, Austria, 2001. [Google Scholar]
- Abou Dahab, T.; Habib, A.; ELzefzafy, M.; Dawoud, G.; Soliman, A. In vitro culture and evaluation of some phytochemical compounds of Eriocephalis africanus plant. Eur. J. Pharm. Med. Res. 2017, 4, 46–56. [Google Scholar]
- Zdero, C.; Bohlmann, F.; Müller, M. Sesquiterpene lactones and other constituents from Eriocephalus species. Phytochemistry 1987, 26, 2763–2775. [Google Scholar] [CrossRef]
- Swanepoel, D.P. The Medicinal Value of the South African Asteraceae. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 1997. [Google Scholar]
- Rieseberg, T.P.; Dadras, A.; Fürst-Jansen, J.M.R.; Dhabalia Ashok, A.; Darienko, T.; de Vries, S.; Irisarri, I.; de Vries, J. Crossroads in the evolution of plant specialized metabolism. Semin. Cell Dev. Biol. 2022. [Google Scholar] [CrossRef] [PubMed]
- He, Y.L.; Liu, Y.L.; Cao, W.X.; Huai, M.F.; Xu, B.G.; Huang, B.G. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci. 2005, 45, 988–995. [Google Scholar] [CrossRef]
- de Vries, S.; Fürst-Jansen, J.M.R.; Irisarri, I.; Dhabalia Ashok, A.; Ischebeck, T.; Feussner, K.; Abreu, I.N.; Petersen, M.; Feussner, I.; de Vries, J. The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. Plant. J. 2021, 107, 975–1002. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, J.; Li, X.; Zhang, Y. Salicylic Acid: Biosynthesis and Signaling. Annu. Rev. Plant Biol. 2021, 72, 761–791. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Knorzer, O.C.; Lederer, B.; Durner, J.; Boger, P. Antioxidative defense activation in soybean cells. Physiol. Plant 1999, 107, 294–302. [Google Scholar] [CrossRef]
- Tounekti, T.; Hernandez, I.; Munne-Bosch, S. Salicylic Acid. Plant Growth and Development; Hayat, S., Ahmad, A., Alyemeni, M.N., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 141–154. [Google Scholar]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Mardani, H.; Bayat, H.; Saeidnejad, A.H.; Rezaie, E. Assessment of Salicylic Acid Impacts on Seedling Characteristic of Cucumber (Cucumis sativus L.) under Water Stress. Not. Sci. Biol. 2012, 4, 112–115. [Google Scholar] [CrossRef]
- Bayat, H.; Alirezaie, M.; Neamati, H. Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. J. Stress Physiol. Biochem. 2012, 8, 258–267. [Google Scholar]
- Hodaei, M.; Rahimmalek, M.; Arzani, A.; Talebi, M. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind. Crop. Prod. 2018, 120, 295–304. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- El-Hady, N.A.A.A.; ElSayed, A.I.; El-saadany, S.S.; Deligios, P.A.; Ledda, L. Exogenous Application of Foliar Salicylic Acid and Propolis Enhances Antioxidant Defenses and Growth Parameters in Tomato Plants. Plants 2021, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Kim, J.; Lee, Y.; Lee, H.; Shim, H.; Lee, J.; Kim, S.; Ham, K.; Moon, J. Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L.) and Their Antioxidative Activity. Molecules 2016, 21, 1097. [Google Scholar] [CrossRef] [Green Version]
- Takemura, T.; Urushisaki, T.; Fukuoka, M.; Hosokawa-Muto, J.; Hata, T.; Okuda, Y.; Hori, S.; Tazawa, S.; Araki, Y.; Kuwata, K. 3,4-Dicaffeoylquinic Acid, a Major Constituent of Brazilian Propolis, Increases TRAIL Expression and Extends the Lifetimes of Mice Infected with the Influenza A Virus. Evid.-Based Complement. Altern. Med. 2012, 2012, 946867. [Google Scholar] [CrossRef]
- Gharibi, S.; Tabatabaei, B.E.; Saeidi, G.; Goli, S.A. Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea Species. Appl. Biochem. Biotechnol. 2016, 178, 796–809. [Google Scholar] [CrossRef]
- El-Esawi, M.; Elansary, H.; El-Shanhorey, N.; Abdel-Hamid, A.; Ali, H.; Elshikh, M. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Front. Physiol. 2017, 8, 716. [Google Scholar] [CrossRef]
- Ghassemia, S.; Ghassemi-Golezania, K.; Zehtab-Salmasia, S.; Alizadeh-Salteh, S. Improving essential oil content and yield of ajowan organs under water stress by application of salicylic acid and abscisic acid. Int. J. Plant Prod. 2017, 11, 425–436. [Google Scholar]
- Simon, J.E.; Reiss-Bubenheim, D.; Joly, R.J.; Charles, D.J. Water Stress-Induced Alterations in Essential Oil Content and Composition of Sweet Basil. J. Essent. Oil Res. 1992, 4, 71–75. [Google Scholar] [CrossRef]
Peak No | Rt | Compound Name | [M-H]- | Formula | MS/MS | Rel.% * | References | |
---|---|---|---|---|---|---|---|---|
F1S0 ** | F4S3 *** | |||||||
1 | 0.79 | Quinic acid | 191 | C7H12O6 | MS2[191]: 173 | 6.63 | 4.74 | [23] |
2 | 0.88 | 1-Caffeoylquinic acid | 353 | C16H18O9 | MS2[353]: 191, 173, 109 | 1.53 | 0.00 | [4] |
3 | 5.12 | 3-Caffeoylquinic acid | 353 | C16H18O9 | MS2 [353]: 191, 179, 135, 173 | 9.85 | 10.07 | [24] |
4 | 5.77 | 5-Caffeoylquinic acid | 353 | C16H18O9 | MS2[353]: 191, 179 | 0.26 | 0.48 | [4] |
5 | 6.76 | Ivangustin | 247 | C15H20O3 | MS2[247]: 231 | 0.00 | 0.35 | [25,26] |
6 | 6.97 | Chlorogenic acid methyl ester | 367 | C17H20O9 | MS2[367]: 191, 17, 135 | 0.00 | 0.24 | [4] |
7 | 7.80 | Quercetin | 301 | C15H10O7 | MS2[301]: 273, 179, 151 | 1.60 | 1.60 | [24] |
8 | 8.26 | Eriodictyol 7-glucuronide | 463 | C21H20O12 | MS2[463]: 287, 107 | 6.30 | 8.85 | [4] |
9 | 8.83 | Catechin | 289 | C15H14O6 | MS2[289]: 166, 124, 115, 76 | 2.16 | 4.00 | [24] |
10 | 9.12 | 3,4-Dicaffeoylquinic acid | 515 | C25H24O12 | MS2[515]: 353, 173, 179, 191, 135 | 19.29 | 23.37 | [4] |
11 | 9.82 | Hesperetin | 301 | C16H14O6 | MS2[609]: 301, 286, 213 | 2.27 | 1.98 | [4] |
12 | 10.61 | 3,5-Dicaffeoylquinic acid | 515 | C25H24O12 | MS2[515]: 353, 191,173, 127 | 10.90 | 12.06 | [4] |
13 | 10.79 | Eriodictyol | 287 | C15H12O6 | MS2[287]: 151 | 6.13 | 4.75 | [4] |
14 | 11.39 | 1,4-Dicaffeoylquinic acid | 515 | C25H24O12 | MS2[515]: 353, 203, 299, 255, 173, 179 | 0.00 | 0.52 | [4] |
15 | 11.72 | 4,5-Dicaffeoylquinic acid | 515 | C25H24O12 | MS2 [515]: 471, 337, 163 | 2.92 | 4.48 | [4] |
16 | 12.24 | Isorhamnetin | 315 | C16H12O7 | MS2[315]: 164, 151 | 3.09 | 3.77 | [23] |
17 | 13.33 | Jaceosidin | 329 | C17H14O7 | MS2[330]: 315 | 3.01 | 3.47 | [23] |
18 | 14.29 | Eupatilin | 343 | C18H16O7 | MS2[343]: 330, 168 | 2.15 | 1.34 | [23] |
19 | 15.75 | Gallic acid | 169 | C7H6O5 | MS2[169]: 125 | 0.47 | 0.21 | [24] |
20 | 19.72 | Caftaric acid | 311 | C13H12O9 | MS2[311]: 179, 149 | 0.25 | 0.15 | [23] |
21 | 20.09 | Kaempferol | 285 | C15H10O6 | MS2[285]: 239, 187, 143 | 0.00 | 1.51 | [23,24] |
22 | 20.36 | Dehydrofalcarinone | 239 | C17H20O | MS2[239]: 55, 41 | 0.26 | 0.00 | [25] |
23 | 20.47 | Dehydrofalcarinol | 241 | C17H22O | MS2[241]: 140, 139, 95 | 0.78 | 0.00 | [25] |
24 | 20.51 | Caffeic acid | 179 | C9H8O4 | MS2[179]: 163, 145, 135 | 0.85 | 0.60 | [24] |
25 | 21.04 | Apigenin-7-glucuronide | 446 | C21H18O11 | MS2[445]: 296, 175 | 0.00 | 0.32 | [23] |
26 | 21.45 | Ferulic acid | 193 | C10H10O4 | MS2[193]: 173, 133 | 0.59 | 0.00 | [4] |
27 | 22.20 | Apigenin | 269 | C15H10O5 | MS2[269]: 151, 107 | 0.00 | 0.30 | [23] |
28 | 22.39 | 14-Hydroxydexoxyivangustin | 279 | C15H20O5 | MS2[279]: 162, 262, 246, 167 | 0.52 | 0.74 | [20,21] |
29 | 22.63 | Luteolin | 285 | C15H10O6 | MS2[285]: 151, 133 | 0.96 | 0.82 | [23] |
30 | 23.00 | Pectolinarigenin | 313 | C17H14O6 | MS2[313]: 299, 271 | 0.00 | 1.27 | [23] |
31 | 23.53 | 11-Hydroxy-4,5-secoeudesmane-4,5-dione | 253 | C15H26O3 | MS2[253]: 196, 170, 52, 111, 82 | 2.54 | 1.63 | [25,26] |
32 | 24.02 | Naringenin | 271 | C15H12O5 | MS2[271]: 151, 119, 107, 93 | 0.39 | 1.80 | [23] |
Total% of identified constituents | 85.92 | 97.56 |
Rt (min.) | Compound | RI * | 0 mM SA | 1 mM SA | 2 mM SA | 3 mM SA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | |||
Relative abundance% | ||||||||||||||||||
Monoterpene hydrocarbons | ||||||||||||||||||
9.18 | α-Pinene | 931 | 0.55 | 0.54 | 0.45 | 0.44 | 0.56 | 0.54 | 0.46 | 0.45 | 0.56 | 0.50 | 0.41 | 0.40 | 0.61 | 0.75 | 0.55 | 0.46 |
Oxygenated monoterpenes | ||||||||||||||||||
11.34 | Yomogi alcohol | 991 | 2.35 | 2.29 | 2.20 | 2.19 | 2.45 | 2.39 | 2.39 | 2.25 | 2.49 | 2.43 | 2.42 | 2.30 | 2.79 | 2.78 | 2.60 | 2.33 |
12.79 | 1,8-Cineol | 1026 | 1.82 | 1.79 | 1.79 | 1.66 | 1.85 | 1.80 | 1.80 | 1.76 | 1.96 | 1.93 | 1.89 | 1.88 | 2.71 | 2.64 | 2.30 | 1.99 |
13.34 | Artemisia ketone | 1058 | 39.00 | 38.39 | 38.35 | 38.01 | 41.89 | 41.81 | 41.63 | 41.25 | 42.71 | 42.65 | 42.18 | 42.00 | 32.55 | 31.68 | 31.46 | 31.45 |
14.02 | Artemisia alcohol | 1075 | 0.69 | 0.68 | 0.68 | 0.66 | 0.77 | 0.78 | 0.77 | 0.76 | 0.83 | 0.79 | 0.76 | 0.76 | 0.98 | 0.96 | 0.89 | 0.80 |
16.55 | Pinocarvone | 1159 | 0.35 | 0.43 | 0.44 | 0.50 | 0.42 | 0.44 | 0.45 | 0.56 | 0.46 | 0.42 | 0.48 | 0.49 | 0.49 | 0.58 | 0.58 | 0.59 |
17.59 | Myrtenol | 1192 | 0.15 | 0.59 | 0.16 | 0.45 | 0.19 | 0.17 | 0.20 | 0.24 | 0.06 | 0.17 | 0.19 | 0.19 | 0.21 | 0.24 | 0.29 | 0.40 |
% Oxygenated monoterpenes | 44.36 | 44.17 | 43.62 | 43.47 | 47.57 | 47.39 | 47.24 | 46.82 | 48.51 | 48.39 | 47.92 | 47.62 | 39.73 | 38.88 | 38.12 | 37.56 | ||
Sesquiterpene hydrocarbons | ||||||||||||||||||
22.98 | α-Copaene | 1301 | 0.97 | 0.92 | 0.88 | 0.81 | 0.98 | 0.93 | 0.92 | 0.85 | 1.05 | 1.04 | 0.96 | 0.94 | 0.93 | 0.99 | 0.96 | 0.72 |
23.96 | β-Caryophyllene | 1308 | 1.76 | 1.70 | 1.65 | 1.65 | 1.78 | 1.79 | 1.79 | 1.72 | 1.82 | 1.83 | 1.80 | 1.74 | 2.21 | 2.21 | 2.10 | 1.82 |
25.63 | α-Humulene | 1450 | 0.65 | 0.59 | 0.59 | 0.58 | 0.76 | 0.69 | 0.60 | 0.60 | 0.76 | 0.70 | 0.63 | 0.62 | 0.93 | 0.92 | 0.90 | 0.71 |
25.91 | Aromadendrene | 1458 | 0.55 | 0.54 | 0.54 | 0.52 | 0.56 | 0.54 | 0.55 | 0.55 | 0.67 | 0.63 | 0.61 | 0.61 | 0.83 | 0.79 | 0.78 | 0.66 |
25.97 | Bicyclogermacrene | 1494 | 1.17 | 0.99 | 0.93 | 0.84 | 1.19 | 1.12 | 0.96 | 0.91 | 1.44 | 1.43 | 1.40 | 0.96 | 1.30 | 1.24 | 1.16 | 0.96 |
27.55 | α-Selinene | 1516 | __ | __ | ___ | 1.77 | 0.55 | __ | 0.83 | 1.79 | 0.10 | 0.49 | 0.59 | 0.49 | 0.61 | 2.24 | 2.06 | 2.74 |
29.71 | δ-Cadinene | 1403 | 0.67 | 0.63 | 0.71 | __ | 0.58 | 0.47 | 0.60 | 0.49 | 0.10 | 0.58 | 0.78 | 0.41 | 0.44 | 0.69 | 0.17 | 0.99 |
% Sesquiterpene hydrocarbons | 5.77 | 5.37 | 5.30 | 6.17 | 6.40 | 5.54 | 6.25 | 6.91 | 5.94 | 6.70 | 6.77 | 5.77 | 7.25 | 9.08 | 8.13 | 8.60 | ||
Oxygenated sesquiterpenes | ||||||||||||||||||
26.89 | α-Cedrol | 1486 | 2.57 | 2.55 | 2.54 | 2.36 | 2.59 | 2.56 | 2.54 | 2.45 | 2.66 | 2.58 | 2.53 | 2.18 | 2.84 | 2.69 | 2.66 | 2.62 |
27.39 | β-Caryophyllene epoxide | 1526 | 0.53 | 1.89 | 0.53 | 0.52 | 0.53 | 0.43 | 0.53 | 0.54 | 0.43 | 0.56 | 0.55 | 0.59 | 0.57 | 0.64 | 0.62 | 0.54 |
28.02 | Spathulenol | 1475 | 1.48 | 1.19 | 1.13 | 1.09 | 1.93 | 1.29 | 1.21 | 1.16 | 1.95 | 1.40 | 1.40 | 1.11 | 1.22 | 1.20 | 1.14 | 1.10 |
28.18 | Caryophyllene oxide | 1450 | 1.35 | 1.27 | 1.27 | 1.17 | 1.45 | 1.43 | 1.42 | 1.46 | 1.78 | 1.56 | 1.51 | 1.49 | 2.59 | 2.04 | 1.93 | 1.53 |
28.51 | Gauiol | 1595 | 0.59 | 0.87 | 0.94 | 0.94 | 0.49 | 0.44 | 0.84 | 0.91 | 0.49 | 0.51 | 0.73 | 0.54 | 0.32 | 0.95 | 0.65 | 1.71 |
28.71 | Epi-γ-eudesmol | 1619 | 6.19 | 5.46 | 4.92 | 4.74 | 6.24 | 5.41 | 4.99 | 4.81 | 6.33 | 5.47 | 5.12 | 4.88 | 7.24 | 6.36 | 6.86 | 5.68 |
29.28 | γ-Eudesmol | 1630 | 0.95 | 0.93 | 0.91 | 0.60 | 0.99 | 0.95 | 0.75 | 0.61 | 1.02 | 1.10 | 0.83 | 0.75 | 1.01 | 0.91 | 0.67 | 0.71 |
29.45 | Aromadendrene epoxide | 1639 | 2.45 | 2.44 | 2.39 | 2.34 | 2.49 | 2.45 | 2.40 | 2.33 | 2.67 | 2.51 | 2.50 | 2.41 | 2.54 | 2.49 | 2.43 | 2.16 |
29.37 | β-Eudesmol | 1644 | 3.37 | 3.33 | 2.83 | 2.74 | 3.42 | 3.35 | 2.99 | 2.81 | 3.67 | 3.47 | 3.12 | 2.89 | 3.22 | 3.48 | 2.99 | 2.54 |
29.85 | α-Eudesmol | 1650 | 0.95 | 0.88 | 0.84 | 0.79 | 0.98 | 0.91 | 0.88 | 0.78 | 1.17 | 0.96 | 0.91 | 0.91 | 1.37 | 1.24 | 1.24 | 1.02 |
29.89 | α-Cadinol | 1652 | 0.94 | 0.92 | 0.85 | 0.77 | 0.45 | 0.41 | 0.89 | 0.89 | 0.44 | 0.41 | 0.90 | 0.48 | 0.49 | 0.96 | 1.03 | 1.89 |
30.03 | Junipor camphor | 1661 | 17.88 | 17.02 | 16.86 | 16.40 | 18.89 | 17.50 | 17.14 | 16.56 | 19.48 | 17.61 | 17.02 | 16.99 | 18.66 | 17.00 | 16.77 | 15.56 |
30.21 | β-Bisabolol | 1668 | 0.72 | 0.74 | 0.63 | 0.69 | 0.65 | 0.43 | 0.70 | 0.63 | 0.24 | 0.45 | 0.80 | 0.51 | 0.44 | 0.78 | 0.79 | 1.22 |
32.70 | α-Bisabolol | 1681 | 0.65 | 0.90 | 0.79 | 0.69 | 0.40 | 0.76 | 0.63 | 0.53 | 0.28 | 0.25 | 0.55 | 1.03 | 0.85 | 0.78 | 0.43 | 1.16 |
34.64 | Isobicyclogermacre-nal | 1730 | 0.64 | 0.73 | 0.77 | 0.68 | 0.22 | 0.76 | 0.66 | 0.54 | 0.06 | 0.24 | 0.55 | 0.79 | 0.84 | 0.74 | 0.45 | 1.28 |
% Oxygenated Sesquiterpenes | 41.26 | 41.12 | 38.20 | 36.52 | 41.72 | 39.08 | 38.57 | 37.01 | 42.67 | 39.08 | 39.02 | 37.55 | 44.20 | 42.26 | 40.66 | 40.72 | ||
% Total identified constituents | 91.94 | 91.20 | 87.57 | 86.60 | 96.25 | 92.55 | 92.52 | 91.19 | 97.68 | 94.67 | 94.12 | 91.34 | 91.79 | 90.97 | 87.46 | 87.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, N.; Elhady, S.S.; Diri, R.M.; Fekry, M.I.; Bishr, M.; Salama, O.; El-Zalabani, S.M. Salicylic Acid Spraying Affects Secondary Metabolites and Radical Scavenging Capacity of Drought-Stressed Eriocephalus africanus L. Agronomy 2022, 12, 2278. https://doi.org/10.3390/agronomy12102278
Khalil N, Elhady SS, Diri RM, Fekry MI, Bishr M, Salama O, El-Zalabani SM. Salicylic Acid Spraying Affects Secondary Metabolites and Radical Scavenging Capacity of Drought-Stressed Eriocephalus africanus L. Agronomy. 2022; 12(10):2278. https://doi.org/10.3390/agronomy12102278
Chicago/Turabian StyleKhalil, Noha, Sameh S. Elhady, Reem M. Diri, Mostafa I. Fekry, Mokhtar Bishr, Osama Salama, and Soheir M. El-Zalabani. 2022. "Salicylic Acid Spraying Affects Secondary Metabolites and Radical Scavenging Capacity of Drought-Stressed Eriocephalus africanus L." Agronomy 12, no. 10: 2278. https://doi.org/10.3390/agronomy12102278
APA StyleKhalil, N., Elhady, S. S., Diri, R. M., Fekry, M. I., Bishr, M., Salama, O., & El-Zalabani, S. M. (2022). Salicylic Acid Spraying Affects Secondary Metabolites and Radical Scavenging Capacity of Drought-Stressed Eriocephalus africanus L. Agronomy, 12(10), 2278. https://doi.org/10.3390/agronomy12102278