The Lack of Knowledge on the Microbiome of Golf Turfgrasses Impedes the Development of Successful Microbial Products
Abstract
:1. Economic, Social, and Ecological Importance of Golf Courses
Environmental Impacts of Golf
2. Plant-Microbe Interactions
3. Lack of Comprehensive Data on the Microbiome of Golf Turfgrasses
4. Golf Course Management Changes Soil Properties
5. Endosphere Microorganisms
6. Microbial Products for Turfgrasses
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stackhouse, T.; Martinez-Espinoza, A.; Ali, M. Turfgrass disease diagnosis: Past, present, and future. Plants 2020, 9, 1544. [Google Scholar] [CrossRef] [PubMed]
- Reedich, L.; Millican, M.; Koch, P. Temperature impacts on soil microbial communities and potential implications for the biodegradation of turfgrass pesticides. J. Environ. Qual. 2017, 46, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, K.; Nauright, J. A global perspective on the environmental impact of golf. Sport Soc. 2006, 9, 427–443. [Google Scholar] [CrossRef]
- Gelernter, W.D.; Stowell, L.J.; Johnson, M.E.; Brown, C.D. Documenting trends in land-use characteristics and environmental stewardship programs on us golf courses. Crop Forage Turfgrass Manag. 2017, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Beard, J.; Green, R. The role of turfgrasses in environmental-protection and their benefits to humans. J. Environ. Qual. 1994, 23, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Gössling, S.; Hall, C.M.; Scott, D. Tourism and Water; Channel View Publications: Bristol, UK, 2015. [Google Scholar] [CrossRef]
- Kenna, M.; Snow, J.; Clark, J. The us golf association turfgrass and environmental research program overview. Fate Manag. Turfgrass Chem. 2000, 743, 2–35. [Google Scholar]
- Throssell, C.S.; Lyman, G.T.; Johnson, M.E.; Stacey, G.A.; Brown, C.D. Golf course environmental profile measures water use, source, cost, quality, management and conservation strategies. Appl. Turfgrass Sci. 2009, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gossling, S.; Peeters, P.; Hall, C.; Ceron, J.; Dubois, G.; Lehmann, L.; Scott, D. Tourism and water use: Supply, demand, and security. An international review. Tour. Manag. 2012, 33, 1–15. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Zhang, K.; Gong, W.; Yu, E.; Tian, J.; Xie, J.; Yu, D. Epizootic ulcerative syndrome causes cutaneous dysbacteriosis in hybrid snakehead (channa maculata female x channa argus male). PEERJ 2019, 7, e6674. [Google Scholar] [CrossRef] [Green Version]
- Jespersen, D.; Schwartz, B. Drought avoidance traits in a collection of zoysiagrasses. Hortscience 2018, 53, 1579–1585. [Google Scholar] [CrossRef] [Green Version]
- Jespersen, D.; Leclerc, M.; Zhang, G.; Raymer, P. Drought performance and physiological responses of bermudagrass and seashore paspalum. Crop Sci. 2019, 59, 778–786. [Google Scholar] [CrossRef]
- Schwartz, B.; Hanna, W.; Baxter, L.; Raymer, P.; Waltz, F.; Kowalewski, A.; Chandra, A.; Genovesi, A.; Wherley, B.; Miller, G.; et al. ‘dt-1’, a drought-tolerant triploid turf bermudagrass. Hortscience 2018, 53, 1711–1714. [Google Scholar] [CrossRef]
- Schiavon, M.; Leinauer, B.; Serena, M.; Maier, B.; Sallenave, R. Plant growth regulator and soil surfactants’ effects on saline and deficit irrigated warm-season grasses: I. Turf quality and soil moisture. Crop Sci. 2014, 54, 2815–2826. [Google Scholar] [CrossRef] [Green Version]
- Xiang, M.; Schiavon, M.; Orlinski, P.; Forconi, A.; Baird, J. Identification of wetting agents for water conservation on deficit-irrigated hybrid bermudagrass fairways. Agron. J. 2021, 113, 3846–3856. [Google Scholar] [CrossRef]
- Schiavon, M.; Baird, J. Evaluation of products to alleviate irrigation salinity stress on bermudagrass turf. Agron. J. 2018, 110, 2136–2141. [Google Scholar] [CrossRef] [Green Version]
- Minoli, D.; Smith, M. An exploration of golf and voluntary environmental programmes. J. Environ. Plan. Manag. 2011, 54, 871–889. [Google Scholar] [CrossRef]
- Knopper, L.; Lean, D. Carcinogenic and genotoxic potential of turf pesticides commonly used on golf courses. J. Toxicol. Environ. Health-Part B-Crit. Rev. 2004, 7, 267–279. [Google Scholar] [CrossRef]
- Bekken, M.; Schimenti, C.; Soldat, D.; Rossi, F. A novel framework for estimating and analyzing pesticide risk on golf courses. Sci. Total Environ. 2021, 783, 146840. [Google Scholar] [CrossRef]
- Petrovic, A. The fate of nitrogenous fertilizers applied to turfgrass. J. Environ. Qual. 1990, 19, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Platt, A.E. Toxic Green. Available online: https://www.thefreelibrary.com/Toxic+green%3B+the+trouble+with+golf.-a015475523 (accessed on 12 February 2021).
- European Parliamentary Research Service, E.P.R. Directive 2009/128/ec on the Sustainable Use of Pesticides. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2018/627113/EPRS_STU(2018)627113_EN.pdf (accessed on 12 February 2021).
- Nelson, E.; Craft, C.; Clark, J.; Kenna, M. Microbial strategies for the biological control of turfgrass diseases. Fate Manag. Turfgrass Chem. 2000, 743, 342–352. [Google Scholar]
- Jones, S. A snapshot of the microbiome field. Nat. Biotechnol. 2013, 31, 282–283. [Google Scholar] [CrossRef]
- DunhamTrimmer Biocontrol Global Market Report. Available online: https://dunhamtrimmer.com/products/biocontrol-global-market-report/ (accessed on 12 February 2021).
- Margulis, L.; Fester, R. Bellagio conference and book. Symbiosis as source of evolutionary innovation: Speciation and morphogenesis. Symbiosis 1991, 11, 93–101. [Google Scholar]
- Bordenstein, S.R.; Theis, K.R. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol. 2015, 13, e1002226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Canizares, C.; Jorrin, B.; Poole, P.; Tkacz, A. Understanding the holobiont: The interdependence of plants and their microbiome. Curr. Opin. Microbiol. 2017, 38, 188–196. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Verges, M.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.; Stingl, U. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol. Adv. 2015, 33, 1755–1773. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, Y. The rice microbiome: A model platform for crop holobiome. Phytobiomes J. 2020, 4, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Sudheer, S.; Usmani, Z.; Rani, R.; Gupta, P. Deciphering the omics of plant-microbe interaction: Perspectives and new insights. Curr. Genom. 2020, 21, 343–362. [Google Scholar] [CrossRef]
- Xia, Q.; Rufty, T.; Shi, W. Predominant microbial colonizers in the root endosphere and rhizosphere of turfgrass systems: Pseudomonas veronii, Janthinobacterium lividum, and Pseudogymnoascus spp. Front. Microbiol. 2021, 12, 643904. [Google Scholar] [CrossRef]
- Allan-Perkins, E.; Manter, D.; Jung, G. Soil microbial communities on roughs, fairways, and putting greens of cool-season golf courses. Crop Sci. 2019, 59, 1753–1767. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, M.; James, I.; Harris, J.; Ritz, K. Interactions between microbial community structure and the soil environment found on golf courses. Soil Biol. Biochem. 2007, 39, 1533–1541. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, T. Soil microbiota variation in perennial ryegrass turf and festuca elata turf using illumina sequencing. Res. J. Biotechnol. 2017, 12, 60–68. [Google Scholar]
- Xia, Q.; Chen, H.; Yang, T.; Miller, G.; Shi, W. Defoliation management and grass growth habits modulated the soil microbial community of turfgrass systems. PLoS ONE 2019, 14, e0218967. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ai, D.; Zhang, W. Difference of soil microbiota in perennial ryegrass turf before and after turning green using high-throughput sequencing technology. Res. J. Biotechnol. 2017, 12, 50–60. [Google Scholar]
- Ban, L.; Li, J.; Yan, M.; Gao, Y.; Zhang, J.; Moural, T.; Zhu, F.; Wang, X. Illumina sequencing of 18s/16s rrna reveals microbial community composition, diversity, and potential pathogens in 17 turfgrass seeds. Plant Dis. 2021, 105, 1328–1338. [Google Scholar] [CrossRef]
- Chen, Q.; Meyer, W.; Zhang, Q.; White, J. 16s rrna metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. PEERJ 2020, 8, e8417. [Google Scholar] [CrossRef]
- Koske, R.; Gemma, J.; Jackson, N. Mycorrhizal fungi associated with three species of turfgrass. Can. J. Bot. Rev. Can. Bot. 1997, 75, 320–332. [Google Scholar] [CrossRef]
- Lundberg, D.; Lebeis, S.; Paredes, S.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; del Rio, T.; et al. Defining the core arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; van Themaat, E.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing structure and assembly cues for arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95. [Google Scholar] [CrossRef]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moenne-Loccoz, Y. Let the core microbiota be functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef]
- Pereira, E.; de Aldana, B.; San Emeterio, L.; Zabalgogeazcoa, I. A survey of culturable fungal endophytes from festuca rubra subsp. Pruinosa, a grass from marine cliffs, reveals a core microbiome. Front. Microbiol. 2019, 9, 3321. [Google Scholar] [CrossRef] [PubMed]
- Agler, M.; Ruhe, J.; Kroll, S.; Morhenn, C.; Kim, S.; Weigel, D.; Kemen, E. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016, 14, e1002352. [Google Scholar] [CrossRef] [Green Version]
- Pangesti, N.; Pineda, A.; Hannula, S.; Bezemer, T. Soil inoculation alters the endosphere microbiome of chrysanthemum roots and leaves. Plant Soil 2020, 455, 107–119. [Google Scholar] [CrossRef]
- Zhalnina, K.; Dias, R.; de Quadros, P.; Davis-Richardson, A.; Camargo, F.; Clark, I.; McGrath, S.; Hirsch, P.; Triplett, E. Soil ph determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2015, 69, 395–406. [Google Scholar] [CrossRef]
- Wemheuer, B.; Thomas, T.; Wemheuer, F. Fungal endophyte communities of three agricultural important grass species differ in their response towards management regimes. Microorganisms 2019, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wemheuer, F.; Kaiser, K.; Karlovsky, P.; Daniel, R.; Vidal, S.; Wemheuer, B. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 2017, 7, 40914. [Google Scholar] [CrossRef]
- Wemheuer, F.; Wemheuer, B.; Kretzschmar, D.; Pfeiffer, B.; Herzog, S.; Daniel, R.; Vidal, S. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species. Lett. Appl. Microbiol. 2016, 62, 323–329. [Google Scholar] [CrossRef]
- Diera, A.; Raymer, P.; Martinez-Espinoza, A.; Bauske, E.; Habteselassie, M. Evaluating the impact of turf-care products on soil biological health. J. Environ. Qual. 2020, 49, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Steinegger, D.; Shearman, R.; Riordan, T.; Kinbacher, E. Mower blade sharpness effects on turf. Agron. J. 1983, 75, 479–480. [Google Scholar] [CrossRef]
- Beard, J.B. Turfgrass: Science and Culture; Prentice-Hall: Englewood Cliffs, NJ, USA, 1972. [Google Scholar]
- Juska, F.V.; Hanson, A.A. Effects of interval and height of mowing on growth of merion and common kentucky bluegrass (poa pratensis l). Agron. J. 1961, 53, 385–388. [Google Scholar] [CrossRef]
- Shaddox, T.; Unruh, J.; Kruse, J.; Restuccia, N. Solubility of iron, manganese, and magnesium sulfates and glucoheptonates in two alkaline soils. Soil Sci. Soc. Am. J. 2016, 80, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Shaddox, T.; Fu, H.; Gardner, D.; Goss, R.; Guertal, E.; Kreuser, W.; Miller, G.; Stewart, B.; Tang, K.; Unruh, J. Solubility of ten iron fertilizers in eleven north american soils. Agron. J. 2019, 111, 1498–1505. [Google Scholar] [CrossRef]
- Thompson, D.; Clarke, B.; Heckman, J. Nitrogen form and rate of nitrogen and chloride application for the control of summer patch in kentucky bluegrass. Plant Dis. 1995, 79, 51–56. [Google Scholar] [CrossRef]
- Serena, M.; Leinauer, B.; Schiavon, M.; Maier, B.; Sallenave, R. Establishment and rooting response of bermudagrass propagated with saline water and subsurface irrigation. Crop Sci. 2014, 54, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, M.; Leinauer, B.; Serena, M.; Sallenave, R.; Maier, B. Bermudagrass and seashore paspalum establishment from seed using differing irrigation methods and water qualities. Agron. J. 2012, 104, 706–714. [Google Scholar] [CrossRef]
- Gan, H.; Wickings, K. Soil ecological responses to pest management in golf turf vary with management intensity, pesticide identity, and application program. Agric. Ecosyst. Environ. 2017, 246, 66–77. [Google Scholar] [CrossRef]
- Smiley, R.; Craven, M. Fungicides in kentucky bluegrass turf—Effects on thatch and pH. Agron. J. 1978, 70, 1013–1019. [Google Scholar] [CrossRef]
- Atkinson, J.; McCarty, L.; Bridges, W. Effect of core aerification frequency, area impacted, and topdressing rate on turf quality and soil physical properties. Agron. J. 2012, 104, 1710–1715. [Google Scholar] [CrossRef]
- Craft, J.; Baldwin, C.; Philley, W.; McCurdy, J.; Stewart, B.; Tomaso-Peterson, M.; Blythe, E. Impact of dry-injection cultivation to maintain soil physical properties for an ultradwarf bermudagrass putting green. Hortscience 2016, 51, 1171–1175. [Google Scholar] [CrossRef] [Green Version]
- Rowland, J.; Cisar, J.; Snyder, G.; Sartain, J.; Wright, A. Usga ultradwarf bermudagrass putting green properties as affected by cultural practices. Agron. J. 2009, 101, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Serena, M.; Schiavon, M.; Sallenave, R.; Leinauer, B. Drought avoidance of warm-season turfgrasses affected by irrigation system, soil surfactant revolution, and plant growth regulator trinexapac-ethyl. Crop Sci. 2020, 60, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Serena, M.; Schiavon, M.; Sallenave, R.; Leinauer, B. Nitrogen fertilization of warm-season turfgrasses irrigated with saline water from varying irrigation systems. 1. Quality, spring green-up and fall colour retention. J. Agron. Crop Sci. 2018, 204, 252–264. [Google Scholar] [CrossRef]
- Schiavon, M.; Orlinski, P.; Petelewicz, P.; Pudzianowska, M.; Baird, J. Effects of trinexapac-ethyl, surfactant, and nitrogen fertilization on bermudagrass water use. Agron. J. 2019, 111, 3057–3066. [Google Scholar] [CrossRef]
- Rana, K.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Yadav, N.; Dhaliwal, H.; Saxena, A. Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2020, 113, 1075–1107. [Google Scholar] [CrossRef] [PubMed]
- Hardoim, P.; van Overbeek, L.; Berg, G.; Pirttila, A.; Compant, S.; Campisano, A.; Doring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Bacon, C.; Glenn, A.; Yates, I. Fusarium verticillioides: Managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev. 2008, 27, 411–446. [Google Scholar] [CrossRef]
- Brader, G.; Compant, S.; Vescio, K.; Mitter, B.; Trognitz, F.; Ma, L.; Sessitsch, A.; Leach, J.; Lindow, S. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 2017, 55, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A.; Jonkers, W.; Kistler, H.; May, G. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: An endophyte, a pathogen, and their shared plant host. Fungal Genet. Biol. 2012, 49, 578–587. [Google Scholar] [CrossRef]
- Singer, E.; Bonnette, J.; Woyke, T.; Juenger, T. Conservation of endophyte bacterial community structure across two panicum grass species. Front. Microbiol. 2019, 10, 2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundel, P.; Perez, L.; Helander, M.; Saikkonen, K. Symbiotically modified organisms: Nontoxic fungal endophytes in grasses. Trends Plant Sci. 2013, 18, 425–432. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, R.; Clarke, B.; Belanger, F. An epichole festucae endophyte antifungal protein with activity against the dollar spot pathogen. Phytopathology 2017, 107, 12. [Google Scholar]
- Schardl, C.; Leuchtmann, A.; Spiering, M. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 2004, 55, 315–340. [Google Scholar] [CrossRef]
- Xia, C.; Li, N.; Zhang, Y.; Li, C.; Zhang, X.; Nan, Z. Role of epichloe endophytes in defense responses of cool-season grasses to pathogens: A review. Plant Dis. 2018, 102, 2061–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikkonen, K.; Gundel, P.; Helander, M. Chemical ecology mediated by fungal endophytes in grasses. J. Chem. Ecol. 2013, 39, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Card, S.; Bastias, D.; Caradus, J. Antagonism to plant pathogens by epichloe fungal endophytes—A review. Plants 2021, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Kallenbach, R. Bill e. Kunkle interdisciplinary beef symposium: Coping with tall fescue toxicosis: Solutions and realities. J. Anim. Sci. 2015, 93, 5487–5495. [Google Scholar] [CrossRef] [PubMed]
- Poole, R.; Brown, A.; Poore, M.; Pickworth, C.; Poole, D. Effects of endophyte-infected tall fescue seed and protein supplementation on stocker steers: Ii. Adaptive and innate immune function. J. Anim. Sci. 2019, 97, 4160–4170. [Google Scholar] [CrossRef] [PubMed]
- Poole, R.; Womble, C.; Poore, M.; Poole, D.; Pickworth, C. Effects of endophyte-infected tall fescue seed and protein supplementation on stocker steers: I. Growth performance and hemodynamic responses. J. Anim. Sci. 2019, 97, 3776–3785. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, M.; Saikkonen, K.; Helander, M.; Pirttila, A.; Wali, P. Epichloe grass endophytes in sustainable agriculture. Nat. Plants 2016, 2, 15224. [Google Scholar] [CrossRef] [PubMed]
- Caradus, J.; Johnson, L. Epichloe fungal endophytes-from a biological curiosity in wild grasses to an essential component of resilient high performing ryegrass and fescue pastures. J. Fungi 2020, 6, 322. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Clement, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Bamisile, B.S.; Akutse, K.S.; Siddiqui, J.A.; Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: Prospects, challenges, and insights for next-generation sustainable agriculture. Front. Plant Sci. 2021, 12, 741804. [Google Scholar] [CrossRef]
- Batista, B.; Singh, B. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 2021, 14, 1258–1268. [Google Scholar] [CrossRef]
- Parnell, J.; Berka, R.; Young, H.; Sturino, J.; Kang, Y.; Barnhart, D.; DiLeo, M. From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Front. Plant Sci. 2016, 7, 1110. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Siddiqui, J.A.; Akutse, K.S.; Ramos Aguila, L.C.; Xu, Y. General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants 2021, 10, 2119. [Google Scholar] [CrossRef] [PubMed]
- Aamlid, T.; Espevig, T.; Tronsmo, A. Microbiological products for control of microdochium nivale on golf greens. Crop Sci. 2017, 57, 559–566. [Google Scholar] [CrossRef]
- Aamlid, T.; Andersen, T.; Kvalbein, A.; Pettersen, T.; Jensen, A. Composted garden waste as organic amendment to the usga-rootzone and topdressing sand on red fescue (Festuca rubra) greens. Eur. J. Hortic. Sci. 2014, 79, 87–96. [Google Scholar]
- Azeem, M.; Hale, L.; Montgomery, J.; Crowley, D.; McGiffen, M. Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils. PLoS ONE 2020, 15, e0242209. [Google Scholar] [CrossRef]
- Boulter, J.; Boland, G.; Trevors, J. Assessment of compost for suppression of fusarium patch (microdochium nivale) and typhula blight (Typhula ishikariensis) snow molds of turfgrass. Biol. Control 2002, 25, 162–172. [Google Scholar] [CrossRef]
- Boulter, J.; Boland, G.; Trevors, J. Evaluation of composts for suppression of dollar spot (Sclerotinia homoeocarpa) of turfgrass. Plant Dis. 2002, 86, 405–410. [Google Scholar] [CrossRef]
- Boulter, J.; Trevors, J.; Boland, G. Microbial studies of compost: Bacterial identification, and their potential for turfgrass pathogen suppression. World J. Microbiol. Biotechnol. 2002, 18, 661–671. [Google Scholar] [CrossRef]
- Boulter, J.; Boland, G.; Trevors, J. Compost: A study of the development process and end-product potential for suppression of turfgrass disease. World J. Microbiol. Biotechnol. 2000, 16, 115–134. [Google Scholar] [CrossRef]
- Coelho, L.; Reis, M.; Guerrero, C.; Dionisio, L. Use of organic composts to suppress bentgrass diseases in agrostis stolonifera. Biol. Control 2020, 141, 104154. [Google Scholar] [CrossRef]
- Stacey, N.; Lewis, R.; Davenport, J.; Sullivan, T. Composted biosolids for golf course turfgrass management: Impacts on the soil microbiome and nutrient cycling. Appl. Soil Ecol. 2019, 144, 31–41. [Google Scholar] [CrossRef]
- Noble, R. Risks and benefits of soil amendment with composts in relation to plant pathogens. Australas. Plant Pathol. 2011, 40, 157–167. [Google Scholar] [CrossRef]
- Meyer, S.L. United states department of agriculture-agricultural research service research programs on microbes for management of plant-parasitic nematodes. Pest Manag. Sci. 2003, 59, 665–670. [Google Scholar] [CrossRef]
- Harding, D.P.; Raizada, M.N. Controlling weeds with fungi, bacteria and viruses: A review. Front. Plant Sci. 2015, 6, 659. [Google Scholar] [CrossRef] [Green Version]
- Pozo, M.; Zabalgogeazcoa, I.; de Aldana, B.; Martinez-Medina, A. Untapping the potential of plant mycobiomes for applications in agriculture. Curr. Opin. Plant Biol. 2021, 60, 102034. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, M.; Silva, S.S.E. Recent food applications of microbial surfactants. Crit. Rev. Food Sci. Nutr. 2018, 58, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Kannadan, S.; Rudgers, J. Endophyte symbiosis benefits a rare grass under low water availability. Funct. Ecol. 2008, 22, 706–713. [Google Scholar] [CrossRef]
Management Practice | Impact on Soil Properties | References |
---|---|---|
Mowing | Reduces root density Increases disease susceptibility | [56,57,58] |
Fertilization | Change of nutrients Change of soil pH | [59,60,61] |
Irrigation | Changes soil chemistry Change of soil nutrient balance | [14,16,62,63] |
Pesticide applications | Microbial community structure, enzyme activities, soil invertebrate communities Change in soil pH | [64,65] |
Core aerification, dry injection | Bulk density, surface hardness Water content/infiltration | [66,67] |
Verticutting | Increases root weight and organic matter concentration in soil | [68] |
Use of wetting agents | Improves soil water distribution through the soil profile May enhance soil water content | [14,15,69,70,71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stingl, U.; Choi, C.J.; Dhillon, B.; Schiavon, M. The Lack of Knowledge on the Microbiome of Golf Turfgrasses Impedes the Development of Successful Microbial Products. Agronomy 2022, 12, 71. https://doi.org/10.3390/agronomy12010071
Stingl U, Choi CJ, Dhillon B, Schiavon M. The Lack of Knowledge on the Microbiome of Golf Turfgrasses Impedes the Development of Successful Microbial Products. Agronomy. 2022; 12(1):71. https://doi.org/10.3390/agronomy12010071
Chicago/Turabian StyleStingl, Uli, Chang Jae Choi, Braham Dhillon, and Marco Schiavon. 2022. "The Lack of Knowledge on the Microbiome of Golf Turfgrasses Impedes the Development of Successful Microbial Products" Agronomy 12, no. 1: 71. https://doi.org/10.3390/agronomy12010071
APA StyleStingl, U., Choi, C. J., Dhillon, B., & Schiavon, M. (2022). The Lack of Knowledge on the Microbiome of Golf Turfgrasses Impedes the Development of Successful Microbial Products. Agronomy, 12(1), 71. https://doi.org/10.3390/agronomy12010071