Performance of New Muchamiel Tomato Lines with Virus Resistance Genes Grafted onto Two Commercial Rootstocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Experiments
2.3. Agronomic Traits
2.4. Analysis of Fruit Quality Parameters
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Agronomic and Basic Quality Traits
3.2. Organic Acids and Sugars
3.3. Sensory Analysis
4. Discussion
4.1. Yield Traits
4.2. Quality Traits
4.3. Sensory Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brugarolas, M.; Martínez-Carrasco, L.; Martínez-Poveda, A.; Ruiz, J.J. A competitive strategy for vegetable products: Traditional varieties of tomato in the local market. Span. J. Agric. Res. 2009, 7, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Cebolla-Cornejo, J.; Soler, S.; Nuez, F. Genetic erosion of traditional varieties of vegetable crops in Europe: Tomato cultivation in Valencia (Spain) as a case Study. Int. J. Plant Prod. 2007, 1, 113–128. [Google Scholar] [CrossRef]
- Figàs, M.R.; Martín, A.; Casanova, C.; Soler, E.; Prohens, J.; Soler, S. Millora genètica de la Tomata ‘Valenciana d’El Perelló’ per a resistència al virus del mosaic de la tomata (Tomato Mosaic Virus, ToMV). In I Congrés de la Tomaca Valenciana: La Tomaca Valenciana d’El Perelló, El Perelló Spain; Soler, S., Figàs, M.R., Prohens, J., Eds.; Universitat Politècnica de València: El Perelló, Spain, 2017; pp. 115–127. [Google Scholar]
- Ruiz, J.; García-Martínez, S. Tomato varieties ‘Muchamiel’ and ‘De la pera’ from the southeast of Spain: Genetic improvement to promote on-farm conservation. Biodivers. Tech. Bull. 2009, 15, 171–176. [Google Scholar]
- Picó, B.; Herraiz, J.; Ruiz, J.J.; Nuez, F. Widening the genetic basis of virus resistance in tomato. Sci. Hortic. 2002, 94, 73–89. [Google Scholar] [CrossRef]
- Roselló, S.; Díez, M.J.; Nuez, F. Viral diseases causing the greatest economic losses to the tomato crop. I. The tomato spotted wilt virus—A review. Sci. Hortic. 1996, 67, 117–150. [Google Scholar] [CrossRef]
- Picó, B.; Díez, M.J.; Nuez, F. Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus—A review. Sci. Hortic. 1996, 67, 151–196. [Google Scholar] [CrossRef]
- Carbonell, P.; Alonso, A.; Grau, A.; Salinas, J.; García-Martínez, S.; Ruiz, J. Twenty Years of Tomato Breeding at EPSO-UMH: Transfer Resistance from Wild Types to Local Landraces—From the First Molecular Markers to Genotyping by Sequencing (GBS). Diversity 2018, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Carbonell Cerda, P. Programa de Mejora Genética de Tomate Tradicional umh: Nuevas Técnicas Moleculares, Registro de Líneas y Agricultura de Resiliencia. Ph.D. Thesis, Universidad Miguel Hernández, Elche, Spain, 2021. [Google Scholar]
- Schouten, H.J.; Tikunov, Y.; Verkerke, W.; Finkers, R.; Bovy, A.; Bai, Y.; Visser, R.G.F. Breeding Has Increased the Diversity of Cultivated Tomato in The Netherlands. Front. Plant Sci. 2019, 10, 1606. [Google Scholar] [CrossRef]
- Rivard, C.L.; Louws, F.J. Grafting to manage soilborne diseases in heirloom tomato production. HortScience 2008, 43, 2104–2111. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.E.; Zhao, X.; Mcsorley, R. Grafting for Root-knot Nematode Control and Yield Improvement in Organic Heirloom Tomato Production. HortScience 2012, 47, 614–620. [Google Scholar] [CrossRef] [Green Version]
- di Gioia, F.; Serio, F.; Buttaro, D.; Ayala, O.; Santamaria, P. Influence of rootstock on vegetative growth, fruit yield and quality in ‘Cuore di Bue’, an heirloom tomato. J. Hortic. Sci. Biotechnol. 2010, 85, 477–482. [Google Scholar] [CrossRef]
- Lang, K.M.; Nair, A. Effect of tomato rootstock on hybrid and heirloom tomato performance in a midwest high tunnel production system. HortScience 2019, 54, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Grieneisen, M.L.; Aegerter, B.J.; Stoddard, C.S.; Zhang, M.; Yield, M.Z.; Stoddard, C.S. Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 29. [Google Scholar] [CrossRef] [Green Version]
- Casals, J.; Rull, A.; Bernal, M.; González, R.; del Castillo, R.R.; Simó, J. Impact of grafting on sensory profile of tomato landraces in conventional and organic management systems. Hortic. Environ. Biotechnol. 2018, 59, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.M.; Villena, J.; González-Mora, S.; Moreno, C. Response of healthy local tomato (Solanum lycopersicum L.) populations to grafting in organic farming. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, P.; Chaudhari, S.; Edelstein, M. Tomato Grafting: A Global Perspective. HortScience 2017, 52, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
- Riga, P. Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Hortic. Environ. Biotechnol. 2015, 56, 626–638. [Google Scholar] [CrossRef]
- Turhan, A.; Ozmen, N.; Serbeci, M.S.; Seniz, V. Effects of grafting on different rootstocks on tomato fruit yield and quality. Hortic. Sci. 2011, 38, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Krumbein, A.; Schwarz, D. Grafting: A possibility to enhance health-promoting and flavour compounds in tomato fruits of shaded plants? Sci. Hortic. 2013, 149, 97–107. [Google Scholar] [CrossRef]
- García-Martínez, S.; Grau, A.; Alonso, A.; Rubio, F.; Valero, M.; Ruiz, J.J. UMH 1200, a breeding line within the Muchamiel tomato type resistant to three viruses. HortScience 2011, 46, 1054–1055. [Google Scholar] [CrossRef] [Green Version]
- Cebolla-Cornejo, J.; Valcárcel, M.; Herrero-Martínez, J.M.; Roselló, S.; Nuez, F. High efficiency joint CZE determination of sugars and acids in vegetables and fruits. Electrophoresis 2012, 33, 2416–2423. [Google Scholar] [CrossRef]
- Martí, R.; Sánchez, G.; Valcárcel, M.; Roselló, S.; Cebolla-Cornejo, J. High throughput FT-MIR indirect analysis of sugars and acids in watermelon. Food Chem. 2019, 300, 125227. [Google Scholar] [CrossRef]
- Hongsoongnern, P.; Chambers, E., IV. A lexicon for texture and flavor characteristics of fresh and processed tomatoes. J. Sens. Stud. 2008, 23, 583–599. [Google Scholar] [CrossRef]
- Flores, F.B.; Sanchez-Bel, P.; Estañ, M.T.; Martinez-Rodriguez, M.M.; Moyano, E.; Morales, B.; Campos, J.F.; Garcia-Abellán, J.O.; Egea, M.I.; Fernández-Garcia, N.; et al. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 2010, 125, 211–217. [Google Scholar] [CrossRef]
- López-Pérez, J.A.; Le Strange, M.; Kaloshian, I.; Ploeg, A.T. Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Prot. 2006, 25, 382–388. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
- Martinez-Rodriguez, M.M.; Estañ, M.T.; Moyano, E.; Garcia-Abellan, J.O.; Flores, F.B.; Campos, J.F.; Al-Azzawi, M.J.; Flowers, T.J.; Bolarín, M.C. The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environ. Exp. Bot. 2008, 63, 392–401. [Google Scholar] [CrossRef]
- Djidonou, D.; Zhao, X.; Simonne, E.H.; Koch, K.E.; Erickson, J.E. Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience 2013, 48, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Djidonou, D.; Zhao, X.; Brecht, J.K.; Cordasco, K.M. Influence of interspecific hybrid rootstocks on tomato growth, nutrient accumulation, yield, and fruit composition under greenhouse conditions. Horttechnology 2017, 27, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Kacjan-Maršić, N.; Osvald, J. The influence of grafting on yield of two tomato cultivars (Lycopersicon esculentum Mill.) grown in a plastic house. Acta Agric. Slov. 2004, 2, 243–249. [Google Scholar]
- Cortés-Olmos, C.; Vilanova, S.; Pascual, L.; Roselló, J.; Cebolla-Cornejo, J. SNP markers applied to the characterization of Spanish tomato (Solanum lycopersicum L.) landraces. Sci. Hortic. 2015, 194, 100–110. [Google Scholar] [CrossRef]
- Rubio, F.; Alonso, A.; García-Martínez, S.; Ruiz, J.J. Introgression of virus-resistance genes into traditional Spanish tomato cultivars (Solanum lycopersicum L.): Effects on yield and quality. Sci. Hortic. 2016, 198, 183–190. [Google Scholar] [CrossRef]
- Carbonell, P.; Salinas, J.F.; Alonso, A.; Grau, A.; Cabrera, J.A.; García-Martínez, S.; Ruiz-Martínez, J.J. Effect of low inputs and salinity on yield and quality—A 3 year study in virus-resistant tomato (Solanum lycopersicum L.) breeding lines and hybrids. Sci. Hortic. 2020, 260, 108889. [Google Scholar] [CrossRef]
- Verlaan, M.G.; Szinay, D.; Hutton, S.F.; de Jong, H.; Kormelink, R.; Visser, R.G.F.; Scott, J.W.; Bai, Y. Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J. 2011, 68, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Pogonyi, Á.; Pék, Z.; Helyes, L.; Lugasi, A. Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Aliment. 2005, 34, 453–462. [Google Scholar] [CrossRef]
- Arthur, J.D.; Li, T.; Lalk, G.T.; Bi, G. High Tunnel Production of Containerized Hybrid and Heirloom Tomatoes Using Grafted Plants with Two Types of Rootstocks. Horticulturae 2021, 7, 319. [Google Scholar] [CrossRef]
- Barrett, C.E.; Zhao, X.; Sims, C.A.; Brecht, J.K.; Dreyer, E.Q.; Gao, Z. Fruit composition and sensory attributes of organic heirloom tomatoes as affected by grafting. Horttechnology 2012, 22, 804–809. [Google Scholar] [CrossRef] [Green Version]
Trait | Description | Scale |
---|---|---|
Visual | ||
Color | Visual evaluation of the optimal skin color of the tomatoes | 0–10 |
Homogeneity | General homogeneity of the sample | 0–10 |
Ribbing | Intensity of the ribs at calyx end | 1–4 |
Green shoulder | Intensity of the green trips at calyx end | 1–4 |
Columella | Amount of columella evaluated at longitudinal cut of the sample | 1–3 |
Flavor | ||
Sweet | Taste stimulated by sugars | 0–10 |
Acid | Taste stimulated by acids | 0–10 |
Salty | Taste stimulated by presence of salty substances | 0–10 |
Tomato ID | Aromatics reminiscent tomato characteristic flavor | 0–10 |
Fruity | Aromatics reminiscent fruity flavor | 0–10 |
Vegetal | Aromatics reminiscent vegetal flavor | 0–10 |
Aftertaste | Time the flavor of tomato remains in mouth after swallowing | 0–10 |
Texture | ||
Hardness | The force required to bite completely through the sample with molar teeth | 0–10 |
Crunchiness | The intensity of audible noise at first bite with molars | 0–10 |
Juiciness | The sensation of moisture released by the tomatoes during the first bites | 0–10 |
Juice density | Thickness of the tomato juice during the first bites | 1–3 |
Flesh | Amount of pulp detected in mouth after the first bites | 0–10 |
Peel | Thickness of the pericarp evaluated during the first bite | 0–10 |
Seeds | Quantity of seeds of the sample | 0–10 |
Adhesiveness | The degree to which product sticks on the surface of teeth. | 0–10 |
Residual peel | Amount of skin remaining on teeth after swallowing the sample | 0–10 |
Yield | Fruit Quality | ||||
---|---|---|---|---|---|
Factor | Total Yield (kg m−2) | Number of Fruits m−2 | Fruit Weight (g) | SSC (°Brix) | TA (%) |
CIAGRO-UMH | |||||
ANOVA p-values x | |||||
Cultivar (C) | *** | *** | *** | * | *** |
Grafting (G) | 0.055 | * | 0.703 | *** | 0.102 |
C×G | 0.069 | 0.054 | 0.125 | 0.682 | 0.249 |
Newman–Keuls’s Multiple Range Test y | |||||
Cultivar | |||||
UMH1200 | 6.59 a | 61.0 a | 109.0 a | 5.21 b | 0.34 a |
UMH1200×4 | 10.91 c | 73.2 b | 151.8 c | 4.99 a | 0.37 b |
UMH1200×18 | 8.41 b | 56.4 a | 154.4 c | 4.96 a | 0.37 b |
ComMuch | 7.9 b | 58.8 a | 138.3 b | 5.17 ab | 0.42 c |
Grafting | |||||
Non-grafted | 8.88 b | 65.7 b | 136.8 | 5.30 b | 0.37 |
Beaufort | 8.63 ab | 64.2 b | 137.8 | 5.02 a | 0.38 |
Maxifort | 7.84 a | 57.3 a | 140.6 | 4.92 a | 0.38 |
EEA-Elx | |||||
ANOVA p-values x | |||||
Cultivar (C) | *** | *** | ** | 0.492 | *** |
Grafting (G) | *** | ** | 0.091 | *** | 0.093 |
C×G | 0.057 | 0.170 | 0.649 | 0.439 | 0.768 |
Newman–Keuls’s Multiple Range Test y | |||||
Cultivar | |||||
UMH1200 | 10.52 a | 60.5 a | 173.9 a | 4.27 | 0.33 a |
UMH1200×4 | 15.59 b | 78.1 b | 198.4 b | 4.37 | 0.39 b |
UMH1200×18 | 14.93 b | 78.5 b | 189.7 b | 4.20 | 0.35 a |
ComMuch | 14.83 b | 74.8 b | 198.3 b | 4.30 | 0.42 b |
Grafting | |||||
Non-grafted | 14.91 b | 78.3 b | 190.1 | 4.48 b | 0.39 |
Beaufort | 15.16 b | 76.5 b | 197.2 | 4.23 a | 0.37 |
Maxifort | 11.83 a | 64.6 a | 182.8 | 4.15 a | 0.37 |
Factor | Malic Acid (mg g−1) | Citric Acid (mg g−1) | Glutamic Acid (mg g−1) | Fructose (mg g−1) | Glucose (mg g−1) | Sucrose Equivalents | SSC (°Brix) | Dry Matter (%) |
---|---|---|---|---|---|---|---|---|
ANOVA p-values x | ||||||||
Cultivar (C) | ** | *** | 0.800 | * | * | 0.063 | * | 0.159 |
Grafting (G) | 0.071 | 0.396 | 0.483 | * | 0.110 | * | 0.096 | 0.069 |
C×G | 0.071 | 0.139 | 0.601 | 0.082 | 0.879 | 0.250 | 0.943 | 0.536 |
Newman–Keuls’s Multiple Range Test y | ||||||||
Cultivar | ||||||||
UMH1200 | 0.69 a | 3.24 a | 2.64 | 16.77 | 18.18 | 42.85 ab | 5.16 b | 4.92 |
UMH1200×4 | 0.66 a | 3.41 a | 2.83 | 18.95 | 18.87 | 46.74 b | 5.05 ab | 4.97 |
UMH1200×18 | 0.68 a | 3.13 a | 2.81 | 17.76 | 16.83 | 43.17 ab | 4.78 a | 4.68 |
ComMuch | 0.81 b | 3.84 b | 2.76 | 16.99 | 16.41 | 41.16 a | 5.12 b | 4.94 |
Grafting | ||||||||
Non-grafted | 0.66 | 3.35 | 2.83 | 18.63 b | 18.48 | 45.91 b | 5.17 | 5.04 |
Beaufort | 0.74 | 3.5 | 2.81 | 17.48 ab | 17.5 | 43.19 ab | 4.99 | 4.82 |
Maxifort | 0.72 | 3.37 | 2.64 | 16.74 a | 16.73 | 41.34 a | 4.91 | 4.78 |
Sensory Trait | Se | ANOVA p-Values x | Tukey’s Multiple Range Test y | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Grafting | ||||||||||
C | G | C*G | 1200 | 1200×4 | 1200×18 | CMuch | Non-Graft | Beauf | Maxif | ||
Visual | |||||||||||
Color | 1 | *** | *** | *** | 3.73 a | 5.07 b | 5.24 b | 5.96 c | 4.76 a | 4.86 a | 5.38 b |
2 | *** | *** | *** | 5.69 c | 3.94 a | 5.83 c | 4.63 b | 4.96 b | 5.8 c | 4.3 a | |
Homogeneity | 1 | *** | *** | *** | 6.72 c | 5.78 b | 6.6 c | 5.36 a | 6.5 b | 5.48 a | 6.36 b |
2 | *** | 0.577 | *** | 7.13 b | 7.67 c | 7.04 ab | 6.63 a | 7.17 | 7.03 | 7.15 | |
Ribbing | 1 | *** | *** | *** | 1.36 a | 2.67 c | 2.19 b | 1.55 a | 1.75 a | 1.69 a | 2.4 b |
2 | *** | *** | *** | 2 b | 1.67 a | 1.67 a | 2.59 c | 1.63 a | 2.16 b | 2.16 b | |
Green shoulder | 1 | *** | *** | *** | 2.92 c | 2.64 b | 2.92 c | 2.14 a | 3 b | 2.46 a | 2.5 a |
2 | *** | *** | *** | 2.04 b | 3 c | 3.13 c | 1.52 a | 2.75 b | 2.33 a | 2.18 a | |
Columella | 1 | * | * | ** | 2.09 ab | 1.87 a | 2.02 ab | 2.25 b | 2.22 b | 1.89 a | 2.07 ab |
2 | ** | * | *** | 1.53 a | 1.76 ab | 2.07 b | 1.74 ab | 1.68 a | 1.64 a | 2.02 b | |
Flavor | |||||||||||
Sweet | 1 | 0.4 | 0.169 | 0.145 | 4.31 | 4.35 | 4.33 | 3.9 | 4.12 | 4.51 | 4.04 |
2 | * | 0.659 | 0.923 | 3.98 b | 2.96 a | 3.76 ab | 3.57 ab | 3.61 | 3.66 | 3.43 | |
Acid | 1 | *** | *** | 0.527 | 3.35 a | 3.87 ab | 4.44 bc | 4.81 c | 3.6 a | 4.17 ab | 4.58 b |
2 | *** | 0.058 | 0.875 | 3.23 b | 3.93 b | 1.98 a | 3.87 b | 3.1 | 3.64 | 3.01 | |
Salty | 1 | 0.632 | 0.065 | 0.748 | 1.69 | 2.12 | 2.03 | 2.19 | 1.61 | 1.97 | 2.44 |
2 | 0.779 | 0.401 | 0.952 | 1.13 | 0.792 | 1.06 | 1.13 | 0.804 | 1.23 | 1.05 | |
Tomato ID | 1 | 0.628 | * | 0.498 | 4.56 | 4.88 | 5.03 | 5.01 | 4.27 a | 5.25 ab | 5.08 b |
2 | ** | 0.237 | 0.917 | 4.32 ab | 3.75 a | 5.39 b | 4.67 ab | 4.4 | 4.9 | 4.29 | |
Fruity | 1 | 0.711 | 0.457 | 0.861 | 4.53 | 4.42 | 4.45 | 4.13 | 4.51 | 4.48 | 4.15 |
2 | 0.027 | * | 0.982 | 5.37 | 4.71 | 5.52 | 4.77 | 4.9 ab | 5.57 b | 4.79 a | |
Vegetal | 1 | 0.628 | 0.211 | 0.803 | 3.37 | 3.62 | 3.4 | 3.69 | 3.74 | 3.53 | 3.29 |
2 | * | 0.401 | 0.061 | 3.05 ab | 2.27 a | 3.04 a | 3.28 b | 2.98 | 3.07 | 2.69 | |
Aftertaste | 1 | 0.371 | 0.389 | 0.841 | 3.88 | 4.46 | 4.17 | 4.01 | 3.98 | 4.37 | 4.05 |
2 | *** | 0.239 | 0.883 | 3.85 bc | 2.88 a | 4.85 c | 3.9 ab | 3.87 | 4.14 | 3.59 | |
Texture | |||||||||||
Hardness | 1 | * | 0.419 | 0.755 | 3.08 a | 3.77 ab | 3.72 ab | 3.81 b | 3.43 | 3.6 | 3.75 |
2 | ** | 0.629 | 0.912 | 3.92 a | 3.65 a | 5 b | 4.4 ab | 4.24 | 4.38 | 4.1 | |
Crunchiness | 1 | 0.505 | 0.038 | 0.684 | 2.99 | 3.48 | 3.29 | 3.37 | 3.06 | 3.07 | 3.72 |
2 | ** | 0.292 | 0.848 | 2.93 ab | 2.25 a | 3.91 b | 3.23 ab | 3.28 | 3.18 | 2.78 | |
Juiciness | 1 | 0.823 | ** | 0.095 | 6.19 | 6.28 | 6.08 | 6.04 | 6.62 b | 5.89 a | 5.93 a |
2 | 0.794 | 0.989 | 0.936 | 5.68 | 5.46 | 5.81 | 5.45 | 5.61 | 5.62 | 5.57 | |
Juice density | 1 | 0.981 | 0.991 | 0.206 | 1.85 | 1.91 | 1.91 | 1.92 | 1.9 | 1.88 | 1.91 |
2 | 0.093 | 0.489 | 0.465 | 1.53 | 2.04 | 1.48 | 1.8 | 1.6 | 1.84 | 1.7 | |
Flesh | 1 | 0.361 | 0.224 | 0.846 | 5.45 | 5.63 | 6 | 5.92 | 5.95 | 5.85 | 5.45 |
2 | 0.614 | 0.878 | 0.923 | 5.72 | 5.63 | 6.04 | 5.82 | 5.75 | 5.88 | 5.77 | |
Peel | 1 | 0.923 | 0.645 | 0.967 | 3.22 | 3.28 | 3.17 | 3.41 | 3.3 | 3.4 | 3.11 |
2 | 0.25 | 0.789 | 0.975 | 3.15 | 2.85 | 2.41 | 2.87 | 2.92 | 2.7 | 2.84 | |
Seeds | 1 | 0.815 | 0.199 | 0.7 | 2.72 | 2.62 | 2.67 | 2.44 | 2.58 | 2.38 | 2.87 |
2 | 0.345 | 0.503 | 0.813 | 1.87 | 1.34 | 1.63 | 1.7 | 1.68 | 1.75 | 1.47 | |
Adhesiveness | 1 | 0.844 | ** | 0.831 | 6.05 | 6.32 | 6.1 | 6.21 | 6.52 b | 6.38 b | 5.61 a |
2 | *** | 0.903 | 0.999 | 6.43 b | 7.63 c | 7.02 bc | 5.7 a | 6.75 | 6.7 | 6.64 | |
Residual skin | 1 | 0.742 | * | 0.997 | 4.79 | 4.68 | 4.77 | 5.19 | 5.38 b | 4.98 ab | 4.21 a |
2 | 0.721 | 0.333 | 0.989 | 3.28 | 3.29 | 2.91 | 3.13 | 3.35 | 2.88 | 3.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbonell, P.; Cabrera, J.Á.; Salinas, J.F.; Alonso, A.; Grau, A.; Sánchez-Rodríguez, L.; Parra, J.; Bartual, J.; Martí, R.; Cebolla-Cornejo, J.; et al. Performance of New Muchamiel Tomato Lines with Virus Resistance Genes Grafted onto Two Commercial Rootstocks. Agronomy 2022, 12, 119. https://doi.org/10.3390/agronomy12010119
Carbonell P, Cabrera JÁ, Salinas JF, Alonso A, Grau A, Sánchez-Rodríguez L, Parra J, Bartual J, Martí R, Cebolla-Cornejo J, et al. Performance of New Muchamiel Tomato Lines with Virus Resistance Genes Grafted onto Two Commercial Rootstocks. Agronomy. 2022; 12(1):119. https://doi.org/10.3390/agronomy12010119
Chicago/Turabian StyleCarbonell, Pedro, José Ángel Cabrera, Juan Francisco Salinas, Aránzazu Alonso, Adrián Grau, Lucía Sánchez-Rodríguez, Joaquín Parra, Julián Bartual, Raul Martí, Jaime Cebolla-Cornejo, and et al. 2022. "Performance of New Muchamiel Tomato Lines with Virus Resistance Genes Grafted onto Two Commercial Rootstocks" Agronomy 12, no. 1: 119. https://doi.org/10.3390/agronomy12010119
APA StyleCarbonell, P., Cabrera, J. Á., Salinas, J. F., Alonso, A., Grau, A., Sánchez-Rodríguez, L., Parra, J., Bartual, J., Martí, R., Cebolla-Cornejo, J., Ruiz, J. J., & Martínez, S. G. (2022). Performance of New Muchamiel Tomato Lines with Virus Resistance Genes Grafted onto Two Commercial Rootstocks. Agronomy, 12(1), 119. https://doi.org/10.3390/agronomy12010119