Assessing Suitability of Sentinel-2 Bands for Monitoring of Nutrient Concentration of Pastures with a Range of Species Compositions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Sampling and Preparation for Biomass and Pasture Quality Analysis
2.2.2. Pasture Quality Analysis
2.2.3. LAI Measurement
2.2.4. Canopy Spectral Reflectance Data
2.3. Post-Processing of Reflectance Data and Construction of Spectral Index-Based Models
2.3.1. Conversion of Hyperspectral Bands to Sentinel-2 Broadbands
2.3.2. Band-Pair Analysis Using the Normalised Difference Index (NDI)
2.3.3. Leave One Out Cross-Validation (LOOCV)
2.3.4. Vegetation Indices (VIs) Analysis
3. Results
3.1. Relationships between Two-Band NDIs and Measured PQQ Parameters
3.2. Relationships between VIs and PQQ Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- DEFRA. Farming Statistics Provisional Crop. Areas, Yields and Livestock Populations At June 2018—United Kingdom; DEFRA, 2018; pp. 1–23. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/747210/structure-jun2018prov-UK-11oct18.pdf (accessed on 1 May 2021).
- Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Philos. Trans. R. Soc. B: Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [Green Version]
- Edirisinghe, A.; Clark, D.; Waugh, D. Spatio-Temporal Modelling of Biomass of Intensively Grazed Perennial Dairy Pastures Using Multispectral Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 5–16. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some Challenges and Opportunities for Grazing Dairy Cows on Temperate Pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Uberoi, E. UK Dairy Industry Statistics; House of Commons Library: London, UK, 2020; pp. 1–11. [Google Scholar]
- Thomson, N.A.; Mccallum, D.A.; Howse, S.; Holmes, C.W.; Matthews, P.N.P.; Matthew, C. Estimation of Dairy Pastures—The Need for Standardisation. In Proceedings of the New Zealand Grassland Association; 1997; Volume 59, pp. 221–225. Available online: https://www.nzgajournal.org.nz/index.php/ProNZGA/article/view/2245 (accessed on 19 August 2020).
- Somasiri, S.C.; Kenyon, P.R.; Morel, P.C.H.; Kemp, P.D.; Morris, S.T. Alternative Method to Measure Herbage Dry Matter Mass in Plantain and Chicory Mixed Swards Grazed by Lambs. Proc. N. Z. Soc. Anim. Prod. 2014, 74, 115–123. [Google Scholar]
- Norris, K.H.; Barnes, R.F.; Moore, J.E.; Shenk, J.S. Predicting Forage Quality by Infrared Replectance Spectroscopy. J. Anim. Sci. 1976, 43, 889–897. [Google Scholar] [CrossRef]
- Petisco, C.; García-Criado, B.; García-Criado, L.; Vázquez-de-Aldana, B.R.; García-Ciudad, A. Quantitative Analysis of Chlorophyll and Protein in Alfalfa Leaves Using Fiber-Optic Near-Infrared Spectroscopy. Commun. Soil Sci. Plant. Anal. 2009, 40, 2474–2484. [Google Scholar] [CrossRef]
- Lugassi, R.; Chudnovsky, A.; Zaady, E.; Dvash, L.; Goldshleger, N. Estimating Pasture Quality of Fresh Vegetation Based on Spectral Slope of Mixed Data of Dry and Fresh Vegetation—Method Development. Remote Sens. 2015, 7, 8045–8066. [Google Scholar] [CrossRef] [Green Version]
- Nakagami, K.; Itano, S. Improving Pooled Calibration of a Rising-Plate Meter for Estimating Herbage Mass over a Season in Cool-Season Grass Pasture. Grass Forage Sci. 2014, 69, 717–723. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant. Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Numata, I.; Roberts, D.A.; Chadwick, O.A.; Schimel, J.P.; Galvão, L.S.; Soares, J.V. Evaluation of Hyperspectral Data for Pasture Estimate in the Brazilian Amazon Using Field and Imaging Spectrometers. Remote Sens. Environ. 2008, 112, 1569–1583. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, X.; Qiu, J.; Li, J.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.; Yu, H.; Xu, B. Remote Sensing-Based Biomass Estimation and Its Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative Analysis of Different Retrieval Methods for Mapping Grassland Leaf Area Index Using Airborne Imaging Spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Sibanda, M.; Mutanga, O.; Rouget, M. Examining the Potential of Sentinel-2 MSI Spectral Resolution in Quantifying above Ground Biomass across Different Fertilizer Treatments. ISPRS J. Photogramm. Remote Sens. 2015, 110, 55–65. [Google Scholar] [CrossRef]
- Punalekar, S.M.; Verhoef, A.; Quaife, T.L.; Humphries, D.; Bermingham, L.; Reynolds, C.K. Application of Sentinel-2A Data for Pasture Biomass Monitoring Using a Physically Based Radiative Transfer Model. Remote Sens. Environ. 2018, 218, 207–220. [Google Scholar] [CrossRef]
- Abuzar, M.; Whitfield, D.; McAllister, A. Farm Level Assessment of Irrigation Performance for Dairy Pastures in the Goulburn-Murray District of Australia by Combining Satellite-Based Measures with Weather and Water Delivery Information. ISPRS Int. J. Geo-Inf. 2017, 6, 239. [Google Scholar] [CrossRef] [Green Version]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content Using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the Canopy Chlorophyll Content from Sentinel-2 Spectral Bands to Estimate Nitrogen Uptake in Intensive Winter Wheat Cropping Systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Lugassi, R.; Zaady, E.; Goldshleger, N.; Shoshany, M.; Chudnovsky, A. Spatial and Temporal Monitoring of Pasture Ecological Quality: Sentinel-2-Based Estimation of Crude Protein and Neutral Detergent Fiber Contents. Remote Sens. 2019, 11, 799. [Google Scholar] [CrossRef] [Green Version]
- Beeri, O.; Phillips, R.; Hendrickson, J.; Frank, A.B.; Kronberg, S. Estimating Forage Quantity and Quality Using Aerial Hyperspectral Imagery for Northern Mixed-Grass Prairie. Remote Sens. Environ. 2007, 110, 216–225. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I.J. Mapping of Macro and Micro Nutrients of Mixed Pastures Using Airborne AisaFENIX Hyperspectral Imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 1–10. [Google Scholar] [CrossRef]
- Castro, P.A.; Garbulsky, M.F. Spectral Normalized Indices Related with Forage Quality in Temperate Grasses: Scaling up from Leaves to Canopies. Int. J. Remote Sens. 2018, 39, 3138–3163. [Google Scholar] [CrossRef]
- Cherney, D.J.R. Characterization of forages by chemical analysis. In Forage Evaluation in Ruminant Nutrition; Givens, D.I., Owen, E., Axford, R.F.E., Omed, H.M., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 281–300. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Kitcherside, M.A.; Glen, E.F.; Webster, A.J.F. FibreCap: An Improved Method for the Rapid Analysis of Fibre in Feeding Stuffs. Anim. Feed Sci. Technol. 2000, 86, 125–132. [Google Scholar] [CrossRef]
- Fuller, K.W. Automated Determination of Sugars. In Proceedings of the Automation in Analytical Chemistry, European Technicon Symposia, Paris, France, 2–4 November 1966; pp. 57–61. [Google Scholar]
- MacLellan, C.; Gray, A. Dual FOV Measurements with SVC HR-1024i Field Spectroradiometers—Bi-Conical Relative Reflectance Method; Edinburgh, UK, 2017; pp. 1–6. Available online: https://fsf.nerc.ac.uk/resources/guides/pdf_guides/DFOV_SVC_1024i.pdf (accessed on 19 August 2020).
- Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 Data for Estimation of Leaf Area Index in Temperate Forests. Remote Sens. 2019, 11, 1160. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, J.; Clark, C.; Lyons, N.; de Veyrac, G.; Beale, P.; Garcia, S. Spatial and Temporal Pasture Biomass Estimation Integrating Electronic Plate Meter, Planet CubeSats and Sentinel-2 Satellite Data. Remote Sens. 2020, 12, 3222. [Google Scholar] [CrossRef]
- Manning, J.; Cronin, G.; González, L.; Hall, E.; Merchant, A.; Ingram, L. The Behavioural Responses of Beef Cattle (Bos Taurus) to Declining Pasture Availability and the Use of GNSS Technology to Determine Grazing Preference. Agriculture 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Loris, V.; Damiano, G. Mapping the Green Herbage Ratio of Grasslands Using Both Aerial and Satellite-Derived Spectral Reflectance. Agric. Ecosyst. Environ. 2006, 115, 141–149. [Google Scholar] [CrossRef]
- Moges, S.M.; Raun, W.R.; Mullen, R.W.; Freeman, K.W.; Johnson, G.V.; Solie, J.B. Evaluation of Green, Red, and Near Infrared Bands for Predicting Winter Wheat Biomass, Nitrogen Uptake, and Final Grain Yield. J. Plant Nutr. 2005, 27, 1431–1441. [Google Scholar] [CrossRef]
- Munyati, C.; Balzter, H.; Economon, E. Correlating Sentinel-2 MSI-Derived Vegetation Indices with in-Situ Reflectance and Tissue Macronutrients in Savannah Grass. Int. J. Remote Sens. 2020, 41, 3820–3844. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Evaluation of Normalized Difference Water Index as a Tool for Monitoring Pasture Seasonal and Inter-Annual Variability in a Mediterranean Agro-Silvo-Pastoral System. Water 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Chen, X.; An, S. Assessing Plant Senescence Reflectance Index-Retrieved Vegetation Phenology and Its Spatiotemporal Response to Climate Change in the Inner Mongolian Grassland. Int. J. Biometeorol. 2017, 61, 601–612. [Google Scholar] [CrossRef]
- Starks, P.J.; Zhao, D.; Brown, M.A. Estimation of Nitrogen Concentration and in Vitro Dry Matter Digestibility of Herbage of Warm-Season Grass Pastures from Canopy Hyperspectral Reflectance Measurements. Grass Forage Sci. 2008, 63, 168–178. [Google Scholar] [CrossRef]
- Thulin, S.; Hill, M.; Held, A.; Jones, S.; Woodgate, P. Predicting Levels of Crude Protein, Digestibility, Lignin and Cellulose in Temperate Pastures Using Hyperspectral Image Data. Am. J. Plant Sci. 2014, 5, 997–1019. [Google Scholar] [CrossRef] [Green Version]
- Ausseil, A.-G.; Dymond, J.R.; Dynes, R.; Shepherd, J.D.; DeVantier, B.; Sutherland, A. Estimating Pasture Quality Using Landsat ETM+: Application for the Greenhouse Gas Inventory of New Zealand. In Proceedings of the 34th International Symposium on Remote Sensing of Environment—The GEOSS Era: Towards Operational Environmental Monitoring, Sydney, Australia, 10–15 April 2011; pp. 1–4. [Google Scholar]
- Pellissier, P.A.; Ollinger, S.V.; Lepine, L.C.; Palace, M.W.; McDowell, W.H. Remote Sensing of Foliar Nitrogen in Cultivated Grasslands of Human Dominated Landscapes. Remote Sens. Environ. 2015, 167, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P. Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef]
- Buxton, D.R. Quality-Related Characteristics of Forages as Influenced by Plant Environment and Agronomic Factors. Anim. Feed Sci. Technol. 1996, 59, 37–49. [Google Scholar] [CrossRef]
- Čop, J.; Lavrenčič, A.; Košmelj, K. Morphological Development and Nutritive Value of Herbage in Five Temperate Grass Species during Primary Growth: Analysis of Time Dynamics. Grass Forage Sci. 2009, 64, 122–131. [Google Scholar] [CrossRef]
- Durante, M.; Oesterheld, M.; Piñeiro, G.; Vassallo, M.M. Estimating Forage Quantity and Quality under Different Stress and Senescent Biomass Conditions via Spectral Reflectance. Int. J. Remote Sens. 2014, 35, 2963–2981. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of Canopy Biophysical Variables from Bidirectional Reflectance: Using Prior Information to Solve the Ill-Posed Inverse Problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Atzberger, C.; van Wieren, S. Estimation of Vegetation LAI from Hyperspectral Reflectance Data: Effects of Soil Type and Plant Architecture. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 358–373. [Google Scholar] [CrossRef]
- Punalekar, S.; Verhoef, A.; Tatarenko, V.I.; Van der Tol, C.; Macdonald, M.J.D.; Marchant, B.; Gerard, F.; White, K.; Gowing, D. Characterization of a Highly Biodiverse Floodplain Meadow Using Hyperspectral Remote Sensing within a Plant Functional Trait Framework. Remote Sens. 2016, 8, 112. [Google Scholar] [CrossRef] [Green Version]
Pasture Type | Species | Dates of Simultaneous Non-Destructive and Destructive Pasture Sampling | ||
---|---|---|---|---|
Perennial Ryegrass (PRG, 4 samples) | Perennial Ryegrass (5 varieties) | 24 April | ||
Mix-6 (12 samples) | Perennial Ryegrass (3 varieties); timothy, red clover, white clover (2 varieties), chicory, ribgrass | 2 May | 14 June | 25 August |
Mix-12 (12 samples) | Perennial Ryegrass, Festulolium, timothy, cocksfoot, meadow fescue; red clover, alsike clover, white clover, Lucerne, yellow trefoil, chicory, ribgrass | |||
Mix-17 (11 samples) | Perennial Ryegrass, Festulolium, timothy, cocksfoot, meadow fescue, tall fescue; red clover, white clover (2 varieties), alsike clover, sweet clover, birdsfoot trefoil, sainfoin, chicory, ribgrass, burnet, yarrow, sheep’s parsley |
Index | Formula | Selective References |
---|---|---|
NDVI (Normalised Difference Vegetation Index) | [33,34] | |
GNDVI (Green Normalised Difference Vegetation Index) | [35,36] | |
CLre (ChLorophyll red edge) | [20,37] | |
REPO (Red Edge POsition) | [20,37] | |
NDMI (Normalised Difference Moisture Index) | [38] | |
PSRI (Pigment Senescence Reflectance Index) | [39] | |
WDRVI (Wide Dynamic Range Vegetation Index) | [22] | |
SAVI (Soil-Adjusted Vegetation Index) | [22] |
Correlation Coefficient | Biomass | LAI | ADF | NDF | CP | WSC | OM |
---|---|---|---|---|---|---|---|
Biomass | 1.0 | ||||||
LAI | 0.70 | 1.0 | |||||
ADF | −0.72 | −0.35 | 1.0 | ||||
NDF | −0.32 | −0.27 | 0.65 | 1.0 | |||
CP | −0.01 | 0.58 | 0.27 | −0.17 | 1.0 | ||
WSC | 0.65 | 0.13 | −0.90 | −0.36 | −0.61 | 1.0 | |
OM | 0.37 | −0.14 | −0.66 | −0.05 | −0.81 | 0.87 | 1.0 |
Parameter | Order | Wave. (1) | Wave. (2) | MSE | r2 | Slope | intercept | Conr |
---|---|---|---|---|---|---|---|---|
LAI | 1 | 443 | 490 | 0.33 | 0.84 | 0.86 | 0.42 | 0.91 |
1 | 443 | 665 | 0.39 | 0.73 | 0.75 | 0.73 | 0.83 | |
1 | 705 | 740 | 0.43 | 0.66 | 0.67 | 0.96 | 0.76 | |
1 | 705 | 945 | 0.44 | 0.67 | 0.69 | 0.92 | 0.77 | |
2 | 443 | 490 | 0.34 | 0.84 | 0.86 | 0.42 | 0.91 | |
2 | 443 | 665 | 0.30 | 0.81 | 0.81 | 0.55 | 0.88 | |
2 | 705 | 740 | 0.44 | 0.65 | 0.67 | 0.96 | 0.76 | |
2 | 705 | 945 | 0.45 | 0.65 | 0.68 | 0.93 | 0.76 | |
3 | 443 | 490 | 0.35 | 0.83 | 0.84 | 0.47 | 0.90 | |
3 | 443 | 665 | 0.29 | 0.81 | 0.81 | 0.56 | 0.88 | |
3 | 665 | 1610 | 0.45 | 0.54 | 0.56 | 1.30 | 0.64 | |
3 | 705 | 740 | 0.45 | 0.63 | 0.68 | 0.96 | 0.76 | |
Biomass | 1 | 560 | 783 | 29.50 | 0.80 | 0.81 | 38.24 | 0.88 |
1 | 560 | 842 | 28.99 | 0.80 | 0.82 | 37.34 | 0.88 | |
1 | 560 | 865 | 28.56 | 0.80 | 0.82 | 36.80 | 0.88 | |
1 | 560 | 945 | 30.34 | 0.80 | 0.81 | 38.36 | 0.88 | |
2 | 490 | 865 | 30.40 | 0.76 | 0.80 | 39.91 | 0.86 | |
2 | 560 | 783 | 29.46 | 0.78 | 0.81 | 38.22 | 0.87 | |
2 | 560 | 842 | 29.06 | 0.78 | 0.82 | 37.44 | 0.87 | |
2 | 560 | 865 | 28.81 | 0.78 | 0.82 | 36.97 | 0.88 | |
3 | 490 | 865 | 31.20 | 0.77 | 0.80 | 40.56 | 0.86 | |
3 | 560 | 783 | 30.30 | 0.77 | 0.82 | 38.09 | 0.87 | |
3 | 560 | 842 | 30.14 | 0.78 | 0.82 | 37.79 | 0.87 | |
3 | 560 | 865 | 29.96 | 0.78 | 0.82 | 37.64 | 0.87 | |
ADF | 1 | 783 | 1610 | 16.51 | 0.81 | 0.82 | 47.30 | 0.88 |
1 | 842 | 1610 | 16.49 | 0.80 | 0.82 | 48.09 | 0.88 | |
1 | 865 | 1610 | 16.48 | 0.80 | 0.81 | 48.75 | 0.88 | |
1 | 945 | 1610 | 16.37 | 0.80 | 0.81 | 48.71 | 0.88 | |
2 | 783 | 1610 | 15.87 | 0.81 | 0.83 | 42.99 | 0.89 | |
2 | 842 | 1610 | 15.92 | 0.81 | 0.83 | 43.82 | 0.89 | |
2 | 865 | 1610 | 15.96 | 0.81 | 0.83 | 44.42 | 0.89 | |
2 | 945 | 1610 | 15.61 | 0.81 | 0.84 | 42.25 | 0.89 | |
3 | 783 | 1610 | 16.16 | 0.82 | 0.83 | 42.66 | 0.89 | |
3 | 842 | 1610 | 16.19 | 0.81 | 0.83 | 43.37 | 0.89 | |
3 | 865 | 1610 | 16.18 | 0.81 | 0.83 | 43.80 | 0.89 | |
3 | 945 | 1610 | 15.81 | 0.82 | 0.84 | 40.76 | 0.90 | |
NDF | 1 | 665 | 705 | 28.96 | 0.38 | 0.41 | 248.16 | 0.45 |
1 | 783 | 842 | 25.93 | 0.43 | 0.46 | 225.70 | 0.52 | |
1 | 783 | 865 | 26.85 | 0.45 | 0.47 | 221.74 | 0.53 | |
1 | 842 | 865 | 28.65 | 0.41 | 0.44 | 234.82 | 0.49 | |
2 | 665 | 705 | 28.74 | 0.37 | 0.41 | 245.64 | 0.46 | |
2 | 665 | 740 | 29.53 | 0.35 | 0.39 | 254.30 | 0.44 | |
2 | 783 | 842 | 26.57 | 0.39 | 0.44 | 236.04 | 0.49 | |
2 | 783 | 865 | 27.88 | 0.41 | 0.45 | 232.71 | 0.50 | |
3 | 665 | 705 | 30.24 | 0.33 | 0.37 | 263.00 | 0.41 | |
3 | 783 | 842 | 28.17 | 0.36 | 0.43 | 240.25 | 0.49 | |
3 | 783 | 865 | 28.56 | 0.43 | 0.47 | 222.36 | 0.53 | |
3 | 842 | 865 | 30.53 | 0.38 | 0.44 | 233.65 | 0.50 | |
CP | 1 | 443 | 705 | 16.31 | 0.51 | 0.59 | 44.77 | 0.67 |
1 | 560 | 705 | 16.49 | 0.49 | 0.52 | 51.72 | 0.59 | |
1 | 560 | 1610 | 15.27 | 0.61 | 0.63 | 39.71 | 0.71 | |
1 | 705 | 1610 | 13.64 | 0.69 | 0.71 | 31.36 | 0.79 | |
2 | 443 | 705 | 15.07 | 0.61 | 0.65 | 37.09 | 0.73 | |
2 | 560 | 705 | 16.51 | 0.47 | 0.52 | 51.58 | 0.60 | |
2 | 560 | 1610 | 14.01 | 0.63 | 0.68 | 34.56 | 0.76 | |
2 | 705 | 1610 | 11.90 | 0.74 | 0.76 | 26.31 | 0.83 | |
3 | 443 | 705 | 17.38 | 0.34 | 0.54 | 47.01 | 0.58 | |
3 | 560 | 705 | 16.27 | 0.47 | 0.52 | 51.73 | 0.60 | |
3 | 560 | 1610 | 15.67 | 0.50 | 0.67 | 37.03 | 0.70 | |
3 | 705 | 1610 | 12.40 | 0.70 | 0.74 | 28.57 | 0.81 | |
WSC | 1 | 740 | 1610 | 3.86 | 0.81 | 0.82 | 3.77 | 0.88 |
1 | 842 | 1610 | 4.20 | 0.80 | 0.81 | 3.95 | 0.88 | |
1 | 865 | 1610 | 4.16 | 0.80 | 0.81 | 3.85 | 0.88 | |
1 | 945 | 1610 | 4.00 | 0.82 | 0.83 | 3.51 | 0.89 | |
2 | 740 | 1610 | 3.97 | 0.80 | 0.82 | 3.64 | 0.88 | |
2 | 842 | 1610 | 4.33 | 0.79 | 0.81 | 3.85 | 0.87 | |
2 | 865 | 1610 | 4.28 | 0.79 | 0.82 | 3.75 | 0.88 | |
2 | 945 | 1610 | 4.13 | 0.81 | 0.83 | 3.39 | 0.89 | |
3 | 490 | 705 | 3.97 | 0.76 | 0.78 | 4.45 | 0.85 | |
3 | 740 | 1610 | 3.90 | 0.80 | 0.82 | 3.70 | 0.88 | |
3 | 865 | 1610 | 4.04 | 0.80 | 0.83 | 3.62 | 0.88 | |
3 | 945 | 1610 | 3.81 | 0.82 | 0.85 | 3.18 | 0.90 | |
OM | 1 | 560 | 705 | 9.03 | 0.48 | 0.51 | 445.26 | 0.58 |
1 | 740 | 1610 | 9.23 | 0.47 | 0.50 | 461.21 | 0.56 | |
1 | 865 | 1610 | 9.30 | 0.45 | 0.47 | 482.93 | 0.53 | |
1 | 945 | 1610 | 9.13 | 0.47 | 0.49 | 462.85 | 0.56 | |
2 | 560 | 705 | 9.11 | 0.46 | 0.54 | 424.48 | 0.61 | |
2 | 740 | 865 | 9.45 | 0.38 | 0.41 | 538.39 | 0.46 | |
2 | 740 | 1610 | 9.49 | 0.45 | 0.50 | 458.62 | 0.57 | |
2 | 945 | 1610 | 9.40 | 0.45 | 0.50 | 453.26 | 0.57 | |
3 | 490 | 705 | 7.63 | 0.59 | 0.62 | 347.79 | 0.70 | |
3 | 560 | 705 | 8.03 | 0.56 | 0.61 | 359.88 | 0.69 | |
3 | 740 | 1610 | 9.13 | 0.47 | 0.52 | 440.34 | 0.59 | |
3 | 945 | 1610 | 9.39 | 0.46 | 0.52 | 441.91 | 0.59 |
Biomass | LAI | CP | ADF | NDF | WSC | OM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | Order | MSE | Conr | MSE | Conr | MSE | Conr | MSE | Conr | MSE | Conr | MSE | Conr | MSE | Conr |
NDVI | 1 | 41.99 | 0.77 | 0.50 | 0.64 | 26.28 | 0.00 | 26.31 | 0.58 | 31.10 | 0.32 | 7.95 | 0.27 | 12.63 | 0.00 |
NDVI | 2 | 32.13 | 0.84 | 0.51 | 0.64 | 25.62 | 0.09 | 26.23 | 0.63 | 30.14 | 0.43 | 7.69 | 0.48 | 11.94 | 0.30 |
NDVI | 3 | 35.29 | 0.82 | 0.51 | 0.63 | 28.04 | 0.18 | 30.11 | 0.51 | 31.56 | 0.34 | 8.74 | 0.41 | 13.29 | 0.33 |
GNDVI | 1 | 28.99 | 0.88 | 0.52 | 0.68 | 26.68 | −0.01 | 24.30 | 0.63 | 33.87 | 0.17 | 7.53 | 0.40 | 12.22 | 0.04 |
GNDVI | 2 | 29.06 | 0.87 | 0.53 | 0.67 | 27.65 | −0.02 | 24.77 | 0.62 | 31.56 | 0.40 | 7.87 | 0.40 | 13.11 | 0.08 |
GNDVI | 3 | 30.14 | 0.87 | 0.54 | 0.68 | 25.38 | 0.04 | 25.90 | 0.64 | 32.40 | 0.40 | 7.11 | 0.49 | 11.51 | 0.22 |
SAVI | 1 | 42.21 | 0.77 | 0.50 | 0.64 | 26.21 | 0.00 | 26.73 | 0.56 | 31.06 | 0.32 | 8.01 | 0.26 | 12.68 | −0.01 |
SAVI | 2 | 30.91 | 0.86 | 0.51 | 0.64 | 25.41 | 0.12 | 26.40 | 0.62 | 30.16 | 0.43 | 7.64 | 0.49 | 11.77 | 0.32 |
SAVI | 3 | 33.23 | 0.84 | 0.50 | 0.64 | 27.53 | 0.19 | 30.46 | 0.50 | 32.00 | 0.33 | 8.65 | 0.42 | 12.97 | 0.35 |
CLre | 1 | 33.86 | 0.83 | 0.47 | 0.75 | 25.96 | 0.00 | 27.59 | 0.53 | 35.78 | 0.10 | 8.23 | 0.29 | 12.65 | 0.02 |
CLre | 2 | 34.81 | 0.84 | 0.47 | 0.75 | 26.75 | −0.01 | 26.40 | 0.55 | 33.32 | 0.32 | 8.23 | 0.30 | 13.39 | 0.02 |
CLre | 3 | 33.37 | 0.84 | 0.48 | 0.75 | 23.15 | 0.23 | 27.93 | 0.56 | 28.97 | 0.48 | 7.70 | 0.43 | 11.49 | 0.32 |
REPO | 1 | 31.44 | 0.86 | 0.49 | 0.73 | 26.51 | −0.01 | 26.68 | 0.56 | 37.06 | 0.05 | 7.91 | 0.37 | 12.43 | 0.06 |
REPO | 2 | 31.66 | 0.87 | 0.50 | 0.72 | 25.10 | 0.00 | 24.07 | 0.63 | 33.83 | 0.27 | 6.89 | 0.45 | 12.11 | 0.06 |
REPO | 3 | 31.99 | 0.86 | 0.50 | 0.76 | 22.32 | 0.24 | 25.60 | 0.63 | 32.54 | 0.35 | 7.06 | 0.55 | 11.56 | 0.31 |
WDRVI | 1 | 38.92 | 0.80 | 0.50 | 0.64 | 26.41 | −0.01 | 25.57 | 0.61 | 31.91 | 0.29 | 7.81 | 0.32 | 12.48 | 0.00 |
WDRVI | 2 | 34.03 | 0.83 | 0.51 | 0.63 | 25.57 | 0.06 | 26.17 | 0.63 | 29.77 | 0.43 | 7.64 | 0.47 | 11.87 | 0.27 |
WDRVI | 3 | 34.72 | 0.83 | 0.52 | 0.63 | 27.01 | 0.18 | 27.61 | 0.59 | 30.68 | 0.40 | 8.12 | 0.48 | 12.74 | 0.35 |
NDMI | 1 | 48.72 | 0.68 | 0.77 | 0.09 | 22.72 | 0.09 | 16.48 | 0.88 | 34.39 | 0.17 | 4.16 | 0.88 | 9.30 | 0.53 |
NDMI | 2 | 44.30 | 0.73 | 0.68 | 0.25 | 21.65 | 0.24 | 15.96 | 0.89 | 35.13 | 0.15 | 4.28 | 0.88 | 9.60 | 0.55 |
NDMI | 3 | 47.18 | 0.72 | 0.66 | 0.27 | 21.55 | 0.25 | 16.18 | 0.89 | 35.62 | 0.14 | 4.04 | 0.88 | 9.60 | 0.56 |
PSRI | 1 | 70.88 | 0.18 | 0.58 | 0.46 | 22.40 | 0.24 | 38.41 | 0.06 | 31.56 | 0.31 | 9.48 | −0.01 | 12.58 | 0.03 |
PSRI | 2 | 68.72 | 0.21 | 0.54 | 0.49 | 22.16 | 0.23 | 39.49 | 0.04 | 32.65 | 0.27 | 9.73 | −0.01 | 12.80 | 0.02 |
PSRI | 3 | 81.20 | 0.15 | 0.60 | 0.41 | 23.96 | 0.31 | 44.14 | −0.05 | 32.89 | 0.25 | 10.90 | −0.12 | 14.97 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punalekar, S.M.; Thomson, A.; Verhoef, A.; Humphries, D.J.; Reynolds, C.K. Assessing Suitability of Sentinel-2 Bands for Monitoring of Nutrient Concentration of Pastures with a Range of Species Compositions. Agronomy 2021, 11, 1661. https://doi.org/10.3390/agronomy11081661
Punalekar SM, Thomson A, Verhoef A, Humphries DJ, Reynolds CK. Assessing Suitability of Sentinel-2 Bands for Monitoring of Nutrient Concentration of Pastures with a Range of Species Compositions. Agronomy. 2021; 11(8):1661. https://doi.org/10.3390/agronomy11081661
Chicago/Turabian StylePunalekar, Suvarna M., Anna Thomson, Anne Verhoef, David J. Humphries, and Christopher K. Reynolds. 2021. "Assessing Suitability of Sentinel-2 Bands for Monitoring of Nutrient Concentration of Pastures with a Range of Species Compositions" Agronomy 11, no. 8: 1661. https://doi.org/10.3390/agronomy11081661
APA StylePunalekar, S. M., Thomson, A., Verhoef, A., Humphries, D. J., & Reynolds, C. K. (2021). Assessing Suitability of Sentinel-2 Bands for Monitoring of Nutrient Concentration of Pastures with a Range of Species Compositions. Agronomy, 11(8), 1661. https://doi.org/10.3390/agronomy11081661