Pea Breeding Lines Adapted to Autumn Sowings in Broomrape Prone Mediterranean Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Assessments
2.3. Statistical Analysis
2.3.1. Variances Analyses
2.3.2. Heritability-Adjusted GGE Biplot (HA-GGE)
2.3.3. Multi-Trait Stability Index (MTSI) Based on Factor Analysis
2.3.4. Non-Metric Multi-Dimensional Scaling Ordination (NMDS)
3. Results
3.1. Multi-Trait Stability Index (MTSI)
3.2. Correlations between Traits and Non-Metric Multi-Dimensional Scaling Ordination (NMDS)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Guinet, M.; Nicolardot, B.; Voisin, A.S. Nitrogen benefits of ten legume pre-crops for wheat assessed by field measurements and modelling. Eur. J. Agron. 2020, 120, 126–151. [Google Scholar] [CrossRef]
- FAOSTAT 2020. Available online: http://www.fao.org/faostat (accessed on 4 February 2021).
- Tulbek, M.C.; Lam, R.S.H.; Wang, Y.C.; Asavajaru, P.; Lam, A. Chapter 9—Pea: A Sustainable Vegetable Protein Crop. In Sustainable protein sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academis Press: Cambridge, MA, USA, 2017; pp. 145–164. [Google Scholar] [CrossRef]
- Parihar, A.K.; Dixit, G.P.; Bohra, A.; Gupta, D.S.; Singh, A.K.; Kumar, N.; Singh, D.; Singh, N.P. Genetic Advancement in Dry Pea (Pisum sativum L.): Retrospect and Prospect. In Accelerated Plant Breeding; Gosal, S.S., Wani, S.H., Eds.; Springer Nature: Cham, Switzerland, 2020; Volume 3. [Google Scholar] [CrossRef]
- Rubiales, D.; Fondevilla, S.; Chen, W.; Gentzbittel, L.; Higgins, T.J.V.; Castillejo, M.A.; Singh, K.B.; Rispail, N. Achievements and challenges in legume breeding for pest and disease resistance. Crit. Rev. Plant Sci. 2015, 34, 195–236. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Kaul, H.P. Yield structure components of autumn- and spring-sown pea (Pisum sativum L.). Acta Agric. Scand. Sect. B—Soil Plant Sci 2020, 70, 109–116. [Google Scholar] [CrossRef]
- Rubiales, D.; Fernández-Aparicio, M.; Moral, A.; Barilli, E.; Sillero, J.C.; Fondevilla, S. Disease resistance in pea (Pisum sativum L.) types for autumn sowings in Mediterranean environments. Czech. J. Genet. Plant Breed. 2009, 45, 135–142. [Google Scholar] [CrossRef]
- Rubiales, D.; Fernández-Aparicio, M.; Pérez-De-Luque, A.; Castillejo, M.A.; Prats, E.; Sillero, J.C.; Rispail, N.; Fondevilla, S. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest. Manag. Sci. 2009, 65, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 2011, 32, 433–449. [Google Scholar] [CrossRef]
- Rubiales, D.; Moreno, M.T.; Sillero, J.C. Search for Resistance to Crenate Broomrape (Orobanche crenata Forsk.) in Pea Germplasm. Genet. Resour. Crop Evol. 2005, 52, 853–861. [Google Scholar] [CrossRef]
- Fondevilla, S.; Flores, F.; Emeran, A.A.; Kharrat, M.; Rubiales, D. High productivity of dry pea genotypes resistant to crenate broomrape in Mediterranean environments. Agron. Sustain. Dev. 2017, 37, 61. [Google Scholar] [CrossRef]
- Rubiales, D.; Fondevilla, S.; Fernández-Aparicio, M. Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy 2021, 11, 36. [Google Scholar] [CrossRef]
- Fondevilla, S.; Fernández-Aparicio, M.; Satovic, Z.; Emeran, A.A.; Torres, A.M.; Moreno, M.T.; Rubiales, D. Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata in pea. Mol. Breed. 2010, 25, 259–272. [Google Scholar] [CrossRef]
- Rubiales, D.; Fondevilla, S. Future prospects for ascochyta blight resistance breeding in cool season food legumes. Front. Plant Sci. 2012, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Timmerman-Vaughan, G.; Rubiales, D.; Warkentin, T.; Siddique, K.; Erskine, W.; Barbetti, M. Didymella pinodes and its management in field pea: Challenges and opportunities. Field Crop Res. 2013, 148, 61–77. [Google Scholar] [CrossRef]
- Iglesias-García, R.; Prats, E.; Fondevilla, S.; Satovic, Z.; Rubiales, D. Quantitative Trait Loci Associated to Drought Adaptation in Pea (Pisum sativum L.). Plant Mol. Biol. Rep. 2015, 33, 1768–1778. [Google Scholar] [CrossRef]
- Tiwari, K.R.; Penner, G.A.; Warkentin, T.D. Inheritance of powdery mildew resistance in pea. Can. J. Plant Sci. 1997, 77, 307–310. [Google Scholar] [CrossRef]
- Fondevilla, S.; Rubiales, D. Powdery mildew control in pea. A review. Agron. Sustain. Dev. 2011, 32, 401–409. [Google Scholar] [CrossRef]
- Yan, W.; Holland, J.B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica 2009, 171, 355–369. [Google Scholar] [CrossRef]
- Flores, F.; Nadal, S.; Solis, I.; Winkler, J.; Sass, O.; Stoddard, F.L.; Link, W.; Raffiot, B.; Muel, F.; Rubiales, D.; et al. Faba bean adaptation to autumn sowing under European climates. Agron. Sustain. Dev. 2012, 32, 727–734. [Google Scholar] [CrossRef]
- Iglesias-García, R.; Prats, E.; Flores, F.; Amri, M.; Mikić, A.; Rubiales, D. Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass and flowering date stability in Mediterranean environments. Crop Pasture Sci. 2017, 68, 915–923. [Google Scholar] [CrossRef]
- Rubiales, D.; Emeran, A.A.; Flores, F. Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments. Agronomy 2020, 10, 1295. [Google Scholar] [CrossRef]
- RAEA. Resultados de Ensayos de Variedades de Guisantes Proteaginosos en Andalucía. Campaña 2014/2015. 2015. Available online: File:///E:/Descargas/RAEA%20Resultados%20guisantes%2014-15%20 (accessed on 21 December 2020).
- Red de Información Agroclimática de Andalucía (RIA). Available online: https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/ (accessed on 21 December 2020).
- McIntosh, M.S. Analysis of combined experiments. Agron. J. 1983, 75, 153–155. [Google Scholar] [CrossRef]
- Aznar-Fernández, T.; Carrillo-Perdomo, E.; Flores, F.; Rubiales, D. Identification and multi-environment validation of resistance to pea weevil (Bruchus pisorum) in Pisum germplasm. J. Pest Sci. 2018, 91, 505–514. [Google Scholar] [CrossRef]
- Burgueño, J.; Crossa, J.; Vargas, M. SAS Programs for Graphing GE and GGE Biplots; CIMMYT: El Batan, Mexico, 2003. [Google Scholar]
- Olivoto, T.; Lúcio, A.D.C.; Da Silva, J.A.G.; Sari, B.G.; Diel, M.I. Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. Agron. J. 2019, 111, 2961–2969. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Yang, R.-C.; Crossa, J.; Cornelius, P.L.; Burgueño, J. Biplot Analysis of Genotype × Environment Interaction: Proceed with Caution. Crop Sci. 2009, 49, 1564–1576. [Google Scholar] [CrossRef]
- Smykal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2012, 2, 74–115. [Google Scholar] [CrossRef]
- Rubiales, D.; González-Bernal, M.J.; Warkentin, T.; Bueckert, R.; VazPatto, M.C.; McPhee, K.; McGee, R.; Smýkal, P. CH20—Advances in breeding of peas. In Achieving Sustainable Cultivation of Vegetables; Hochmuth, G., Ed.; Burleig Dodds Science Publishing Limited: Cambridge, UK, 2019. [Google Scholar]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. The Effect of Orobanche crenata Infection Severity in Faba Bean, Field Pea, and Grass Pea Productivity. Front. Plant Sci. 2016, 7, 1409. [Google Scholar] [CrossRef]
- Parker, C. Parasitic Weeds: A World Challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Parker, C. Orobanche crenata in UK—An update. Haustorium 2014, 65, 5–6. [Google Scholar]
- Rubiales, D. Can we breed for durable resistance to broomrapes? Phytopathol. Mediterr. 2018, 57, 170–185. [Google Scholar]
- Grenz, J.; Sauerborn, J. Mechanisms limiting the geographical range of the parasitic weed Orobanche crenata. Agric. Ecosyst. Environ. 2007, 122, 275–281. [Google Scholar] [CrossRef]
- Pérez-De-Luque, A.; Jorrín, J.; Cubero, J.I.; Rubiales, D. Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 2005, 45, 379–387. [Google Scholar] [CrossRef]
- Pérez-De-Luque, A.; Sillero, J.C.; Moral, A.; Cubero, J.I.; Rubiales, D. Effect of sowing date and host resistance on the establishment and development of Orobanche crenata in faba bean and common vetch. Weed Res. 2004, 44, 282–288. [Google Scholar] [CrossRef]
- Rubiales, D.; Alcántara, C.; Pérez-De-Luque, A.; Gil, J.; Sillero, J.C. Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions. Agrononie 2003, 23, 359–362. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Res. 2012, 125, 92–97. [Google Scholar] [CrossRef]
- Moral, J.; Lozano-Baena, M.D.; Rubiales, D. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth. Front. Plant Sci. 2015, 6, 408. [Google Scholar] [CrossRef]
- Pérez-De-Luque, A.; Flores, F.; Rubiales, D. Differences in Crenate Broomrape Parasitism Dynamics on Three Legume Crops Using a Thermal Time Model. Front. Plant Sci. 2016, 7, 1910. [Google Scholar] [CrossRef] [PubMed]
- Rubiales, D.; Barilli, E.; Flores, F. Broomrape (Orobanche crenata) as a major constraint for grass pea (Lathyrus sativus) production in Mediterranean rain-fed environments. Agronomy 2020, 10, 1931. [Google Scholar] [CrossRef]
- Yu, J.; Holland, J.B.; McMullen, M.D.; Buckler, E.S. Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics 2008, 178, 539–551. [Google Scholar] [CrossRef]
- Gutiérrez, N.; Palomino, C.; Šatović, Z.; Ruiz-Rodríguez, M.D.; Vitale, S.; Gutiérrez, M.V.; Rubiales, D.; Kharrat, M.; Amri, M.; Emeran, A.A.; et al. QTLs for Orobanche spp. resistance in faba bean: Identification and validation across different environments. Mol. Breed. 2013, 32, 909–922. [Google Scholar] [CrossRef]
- Maalouf, F.; Khalil, S.; Ahmed, S.; Akintunde, A.N.; Kharrat, M.; El Shama’A, K.; Hajjar, S.; Malhotra, R.S. Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res. 2011, 124, 288–294. [Google Scholar] [CrossRef]
- Rubiales, D.; Flores, F.; Emeran, A.A.; Kharrat, M.; Amri, M.; Rojas-Molina, M.M.; Sillero, J.C. Identification and multi-environment validation of resistance against broomrapes (Orobanche crenata and O. foetida) in faba bean (Vicia faba). Field Crops Res. 2014, 166, 58–65. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Moral, A.; Kharrat, M.; Rubiales, D. Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low induction of broomrape seed germination. Euphytica 2012, 186, 897–905. [Google Scholar] [CrossRef]
- Ejeta, G. Breeding for Striga Resistance in Sorghum: Exploitation of an Intricate Host-Parasite Biology. Crop Sci. 2007, 47, S216–S227. [Google Scholar] [CrossRef]
- Vogler, R.K.; Ejeta, G.; Butler, L.G. Inheritance of Low Production of Striga Germination Stimulant in Sorghum. Crop Sci. 1996, 36, 1185–1191. [Google Scholar] [CrossRef]
- Pavan, S.; Schiavulli, A.; Marcotrigiano, A.R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Charnikhova, T.; Lotti, C.; Bouwmeester, H.; Ricciardi, L. Characterization of Low-Strigolactone Germplasm in Pea (Pisum sativum L.) Resistant to Crenate Broomrape (Orobanche crenata Forsk.). Mol. Plant-Microbe Interact. 2016, 29, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Bardaro, N.; Marcotrigiano, A.R.; Bracuto, V.; Mazzeo, R.; Ricciardi, F.; Lotti, C.; Pavan, S.; Ricciardi, L. Genetic analysis of resistance to Orobanche crenata (Forsk.) in a pea (Pisum sativum L.) low-strigolactone line. J. Plant Pathol. 2016, 98, 671–675. [Google Scholar]
- Fondevilla, S.; Torres, A.M.; Moreno, M.T.; Rubiales, D. Identification of a New Gene for Resistance to Powdery Mildew in Pisum fulvum, a Wild Relative of Pea. Breed. Sci. 2007, 57, 181–184. [Google Scholar] [CrossRef]
- Iglesias-García, R.; Rubiales, D.; Fondevilla, S. Penetration resistance to Erysiphe pisi in pea mediated by er1 gene is associated with protein cross-linking but not with callose apposition or hypersensitive response. Euphytica 2015, 201, 381–387. [Google Scholar] [CrossRef]
- Carrillo, E.; Satovic, Z.; Aubert, G.; Boucherot, K.; Rubiales, D.; Fondevilla, S. Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep. 2014, 33, 1133–1145. [Google Scholar] [CrossRef]
- Banniza, S.; Hashemi, P.; Warkentin, T.D.; Vandenberg, A.; Davis, A.R. The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (Pisum sativum). Can. J. Bot. 2005, 83, 954–967. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Russi, L.; Romani, M.; Pecetti, L.; Nazzicari, N. Farmer-participatory vs. conventional market-oriented breeding of inbred crops using phenotypic and genome-enabled approaches: A pea case study. Field Crops Res. 2019, 232, 30–39. [Google Scholar] [CrossRef]
- Tayeh, N.; Klein, A.; Le Paslier, M.C.; Jacquin, F.; Houtin, H.; Rond, C.; Chabert-Martinello, M.; Magnin-Robert, J.B.; Marget, P.; Aubert, G.; et al. Genomic prediction in pea: Effect of marker density and training population size and composition on prediction accuracy. Front. Plant Sci. 2015, 6, 941. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Rubiales, D.; Wang, Y.; Fang, P.; Sun, T.; Liu, N.; Xu, P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor. Appl. Genet. 2021, 134, 755–776. [Google Scholar] [CrossRef]
- Cvejić, S.; Radanović, A.; Dedić, B.; Jocković, M.; Jocić, S.; Miladinović, D. Genetic and Genomic Tools in Sunflower Breeding for Broomrape Resistance. Genes 2020, 11, 152. [Google Scholar] [CrossRef] [PubMed]
Accession | Derived from Cross * or Obtentor | Progeny | |
---|---|---|---|
Breeding lines | J4 | Ps624 × Messire | Ps624/Messire |
J20 | [(Messire × Pf660) × Messire] × Ballet | Messire/Pf660//Ballet | |
NS1 | J20 × J23 | Messire/Pf660/Ballet//Ps624/Ps423/Radley | |
NS8 | [(3070 × J4) × (3054 × J20)] × Viriato | Franklin/Ps624/Messire//B99-100/Messire/Pf660/Ballet//Viriato | |
NS16 | J2 × Cartouche | Ps624/Messire//Cartouche | |
NS20 | 3062 × J20 | 3062//Messire/Pf660/Ballet | |
NS21 | 3066 × J4 | 3066//Ps624/Messire | |
NS22 | 3066 × J4 | 3066//Ps624/Messire | |
NS24 | Baccara × J6 | Baccara//Ps565/Ps624 | |
NS27 | 3066 × J4 | 3066//Ps624/Messire | |
NS33 | J4 × J23 | Ps624/Messire//Ps423/Radley | |
NS34 | 3064 × J20 | 3064//Messire/Pf660/Ballet | |
NS35 | 3066 × J4 | 3066//Ps624/Messire | |
NS36 | 3066 × J4 | 3066//Ps624/Messire | |
NS39 | (J4 × Baccara) × Chicarrón | Ps624/Messire/Baccara//Chicarron | |
NS47 | [3070 × (6NIL × Baccara)] × (J22 × RMS1) | Franklin//6NIL/Baccara/Messire/Pf660/P665/RMS1 | |
NS81 | 3071 × (6NIL × Baccara) | Lifter//Messire/Pf660/Baccara | |
NS82 | 3066 × J4 | 3066//Ps624/Messire | |
NS83 | 3066 × J4 | 3066//Ps624/Messire/ | |
Check cultivars | Messire | SERASEM, France | |
Kayanne | MOMONT, France | ||
Chicarrón | ITACyL, Spain | ||
Cartouche | SERASEM, France | ||
Enduro | FLORIM. D., France | ||
Babieca | INIA, Spain |
Environments | Season | Site, Level of Broomrape (Oc) Infestation | Soil Type | Soil pH | Organic Matter (g/100 g) | Available Phosphorus (mg/kg) | Average Tmax (°C) | Average Tmin (°C) | Rain (mm) |
Al-18 | 2017–2018 | Córdoba Almezos: high Oc | Cambisol | - | - | - | 19.8 | 7.6 | 442 |
Al-19 | 2018–2019 | Córdoba Almezos: high Oc | Cambisol | 7.5 | 1.2 | 15.0 | 21.6 | 6.4 | 206 |
Al-20 | 2019–2020 | Córdoba Almezos: high Oc | Cambisol | - | - | - | 19.9 | 6.7 | 362 |
Co-18 | 2017–2018 | Córdoba Cortijo: high Oc | Cambisol | - | - | - | 19.5 | 7.5 | 441 |
Co-19 | 2018–2019 | Córdoba Cortijo: high Oc | Cambisol | 7.5 | 1.2 | 15.1 | 22.2 | 6.3 | 206 |
Co-20 | 2019–2020 | Córdoba Cortijo: high Oc | Cambisol | - | - | - | 20.1 | 6.6 | 363 |
Pu-18 | 2017–2018 | Córdoba Puente: low Oc | Vertisol | - | - | - | 19.6 | 7.6 | 441 |
Pu-19 | 2018–2019 | Córdoba Puente: low Oc | Vertisol | 7.8 | 0.7 | 9.9 | 22.0 | 5.9 | 129 |
Pu-20 | 2019–2020 | Córdoba Puente: low Oc | Vertisol | - | - | - | 20.0 | 6.7 | 322 |
Accession | Al-18 | Al-19 | Al-20 | Co-18 | Co-19 | Co-20 | Pu-18 | Pu-19 | Pu-20 | Mean | SE | S2xi a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Breeding lines | NS22 | 4811 | 3693 | 2292 | 4144 | 3077 | 1494 | 7333 | 7933 | 6560 | 4593 | 463 | 5,098,509 |
NS34 | 4552 | 4685 | 3136 | 3656 | 3360 | 2842 | 6430 | 5593 | 5753 | 4445 | 263 | 1,640,110 | |
NS8 | 4387 | 4463 | 1564 | 2193 | 3679 | 2112 | 7610 | 6007 | 4790 | 4089 | 404 | 3,855,415 | |
NS39 | 4273 | 4627 | 1516 | 2823 | 2542 | 2192 | 6600 | 6239 | 5870 | 4076 | 384 | 3,579,527 | |
NS35 | 4123 | 2917 | 2372 | 3124 | 3083 | 1904 | 6267 | 5865 | 5581 | 3915 | 315 | 2,611,513 | |
NS21 | 4282 | 3611 | 2618 | 3554 | 3572 | 2027 | 3904 | 4669 | 5786 | 3780 | 265 | 1,203,486 | |
NS83 | 3498 | 3798 | 2489 | 3041 | 2824 | 1963 | 4094 | 5859 | 5678 | 3694 | 261 | 1,808,051 | |
NS33 | 3290 | 2763 | 2616 | 3330 | 2531 | 1262 | 5667 | 4392 | 4923 | 3419 | 293 | 1,850,394 | |
NS27 | 4643 | 3193 | 1876 | 2522 | 3004 | 1304 | 4596 | 3530 | 5693 | 3374 | 316 | 1,991,276 | |
NS81 | 3145 | 3874 | 1776 | 2457 | 2925 | 1320 | 2296 | 5757 | 5933 | 3276 | 348 | 2,677,509 | |
NS36 | 3498 | 3935 | 1721 | 2441 | 2665 | 1579 | 4715 | 2788 | 5038 | 3153 | 258 | 1,516,254 | |
NS82 | 2900 | 3256 | 1705 | 2584 | 3097 | 1571 | 2584 | 5633 | 5025 | 3151 | 265 | 1,872,430 | |
NS47 | 3578 | 3750 | 1644 | 2137 | 2337 | 1814 | 4912 | 4363 | 3060 | 3066 | 266 | 1,350,504 | |
NS1 | 3437 | 3911 | 1796 | 1996 | 2174 | 1812 | 4952 | 3644 | 3493 | 3024 | 217 | 1,254,387 | |
NS20 | 3434 | 3712 | 1788 | 1993 | 2362 | 2134 | 4944 | 1887 | 4007 | 2918 | 236 | 1,288,321 | |
NS24 | 3218 | 3057 | 472 | 1552 | 3149 | 854 | 4378 | 3468 | 5297 | 2827 | 314 | 2,536,403 | |
J20 | 3484 | 3169 | 2140 | 2009 | 2530 | 2120 | 3904 | 2482 | 3473 | 2812 | 169 | 496,512 | |
J4 | 3271 | 3499 | 2636 | 2074 | 2380 | 1498 | 2459 | 3015 | 3827 | 2740 | 186 | 540,092 | |
NS16 | 2444 | 2777 | 604 | 1003 | 1222 | 762 | 2540 | 1972 | 2957 | 1809 | 183 | 845,190 | |
Check cultivars | Messire | 4905 | 2987 | 180 | 1267 | 2117 | 832 | 7933 | 6126 | 5800 | 3572 | 521 | 7,383,456 |
Kayanne | 3690 | 3383 | 128 | 2249 | 2759 | 794 | 5185 | 7208 | 5230 | 3403 | 427 | 5,044,151 | |
Chicarrón | 3549 | 3643 | 68 | 2494 | 2837 | 904 | 7180 | 5191 | 3920 | 3310 | 440 | 4,530,520 | |
Cartouche | 3537 | 2508 | 56 | 1276 | 722 | 124 | 5514 | 4630 | 2870 | 2360 | 382 | 3,866,770 | |
Enduro | 2634 | 2789 | 4 | 975 | 973 | 368 | 4930 | 4873 | 3270 | 2313 | 355 | 3,418,513 | |
Babieca | 2607 | 1752 | 8 | 1166 | 1690 | 348 | 2554 | 5026 | 3580 | 2081 | 300 | 2,477,425 | |
Mean | 3647 | 3430 | 1488 | 2322 | 2544 | 1437 | 4939 | 4726 | 4696 | 3248 | |||
SE | 95 | 117 | 147 | 122 | 94 | 84 | 215 | 217 | 142 | 69 |
Accession | Al-18 | Al-19 | Al-20 | Co-18 | Co-19 | Co-20 | Pu-18 | Pu-19 | Pu-20 | Mean | SE | S2xi a | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Breeding lines | NS22 | 0.00 | 0.01 | 0.06 | 0.14 | 0.08 | 0.18 | 0.00 | 0.00 | 0.16 | 0.06 | 0.02 | 0.0056 |
J4 | 0.00 | 0.00 | 0.57 | 0.36 | 0.03 | 0.37 | 0.00 | 0.00 | 0.00 | 0.15 | 0.05 | 0.0495 | |
NS16 | 0.05 | 0.03 | 0.78 | 0.47 | 0.20 | 0.21 | 0.00 | 0.00 | 0.08 | 0.20 | 0.05 | 0.0694 | |
J20 | 0.10 | 0.01 | 1.15 | 0.12 | 0.03 | 0.41 | 0.00 | 0.00 | 0.01 | 0.20 | 0.07 | 0.1430 | |
NS33 | 0.05 | 0.35 | 0.90 | 0.18 | 0.18 | 0.20 | 0.00 | 0.00 | 0.02 | 0.21 | 0.06 | 0.0809 | |
NS27 | 0.00 | 0.05 | 1.38 | 0.21 | 0.20 | 0.24 | 0.00 | 0.00 | 0.04 | 0.23 | 0.08 | 0.1939 | |
NS81 | 0.03 | 0.06 | 1.29 | 0.50 | 0.04 | 0.25 | 0.00 | 0.00 | 0.06 | 0.25 | 0.08 | 0.1792 | |
NS39 | 0.14 | 0.05 | 1.04 | 0.14 | 0.07 | 1.17 | 0.00 | 0.00 | 0.06 | 0.30 | 0.09 | 0.2136 | |
NS20 | 0.16 | 0.04 | 1.14 | 0.58 | 0.21 | 0.71 | 0.00 | 0.00 | 0.02 | 0.32 | 0.07 | 0.1629 | |
NS36 | 0.04 | 0.01 | 0.86 | 0.16 | 0.15 | 1.56 | 0.00 | 0.00 | 0.14 | 0.32 | 0.11 | 0.2869 | |
NS21 | 0.06 | 0.10 | 0.87 | 0.05 | 0.12 | 1.57 | 0.00 | 0.00 | 0.16 | 0.33 | 0.11 | 0.2905 | |
NS8 | 0.15 | 0.07 | 1.37 | 0.44 | 0.28 | 0.85 | 0.00 | 0.00 | 0.10 | 0.36 | 0.09 | 0.2160 | |
NS24 | 0.28 | 0.04 | 1.78 | 0.43 | 0.19 | 0.52 | 0.00 | 0.00 | 0.08 | 0.37 | 0.11 | 0.3152 | |
NS47 | 0.24 | 0.27 | 1.20 | 0.66 | 0.19 | 0.82 | 0.00 | 0.00 | 0.06 | 0.38 | 0.08 | 0.1754 | |
NS34 | 0.03 | 0.16 | 1.25 | 0.07 | 0.65 | 1.36 | 0.00 | 0.00 | 0.02 | 0.39 | 0.13 | 0.3093 | |
NS35 | 0.18 | 0.26 | 0.92 | 0.13 | 0.13 | 1.71 | 0.00 | 0.00 | 0.15 | 0.39 | 0.12 | 0.3227 | |
NS82 | 0.03 | 0.16 | 0.87 | 0.30 | 0.03 | 1.94 | 0.00 | 0.00 | 0.25 | 0.40 | 0.14 | 0.4096 | |
NS1 | 0.28 | 0.02 | 1.77 | 0.70 | 0.12 | 0.74 | 0.00 | 0.00 | 0.04 | 0.41 | 0.11 | 0.3461 | |
NS83 | 0.02 | 0.13 | 0.86 | 0.29 | 0.02 | 2.24 | 0.00 | 0.00 | 0.21 | 0.42 | 0.15 | 0.5405 | |
Check cultivars | Cartouche | 0.84 | 1.34 | 0.90 | 1.61 | 1.94 | 0.90 | 0.00 | 0.00 | 0.65 | 0.91 | 0.15 | 0.4331 |
Chicarrón | 0.21 | 0.88 | 1.81 | 0.60 | 2.56 | 2.42 | 0.00 | 0.00 | 0.19 | 0.96 | 0.21 | 1.0686 | |
Babieca | 0.80 | 0.84 | 1.61 | 1.22 | 2.38 | 2.11 | 0.00 | 0.00 | 0.25 | 1.02 | 0.17 | 0.7725 | |
Enduro | 0.47 | 1.56 | 1.88 | 2.06 | 2.80 | 1.47 | 0.00 | 0.00 | 0.28 | 1.17 | 0.22 | 1.0269 | |
Kayanne | 1.07 | 1.83 | 1.95 | 1.49 | 2.08 | 2.12 | 0.00 | 0.00 | 0.18 | 1.19 | 0.19 | 0.8251 | |
Messire | 0.84 | 0.57 | 2.72 | 1.57 | 2.33 | 2.41 | 0.00 | 0.00 | 0.26 | 1.19 | 0.21 | 1.1847 | |
Mean | 0.24 | 0.35 | 1.24 | 0.57 | 0.68 | 1.14 | 0.00 | 0.00 | 0.14 | 0.48 | |||
SE | 0.04 | 0.07 | 0.07 | 0.06 | 0.11 | 0.11 | 0.00 | 0.00 | 0.02 | 0.03 |
Trait | Factor | XO | XS | SD | h2 | SG(%) |
---|---|---|---|---|---|---|
Grain yield | FA1 | 3054 | 3709 | 656 | 0.76 | 16.43 |
Dry biomass | FA1 | 6624 | 8372 | 1748 | 0.78 | 20.74 |
Crop appearance | FA1 | 3.33 | 4.27 | 0.93 | 0.95 | 26.93 |
Broomrape infection | FA2 | 0.59 | 0.41 | −0.18 | 0.77 | 23.13 |
Grain Yield | Dry Biomass | Dtf | Crop Stature | Crop Appearance # | Broomrape | Powdery Mildew | Ascochyta Blight ## | |
---|---|---|---|---|---|---|---|---|
Grain yield | 0.9649 *** | −0.0972 | 0.2056 | 0.8955 *** | −0.9650 *** | −0.1269 | −0.1772 | |
Dry biomass | 0.0426 | 0.1602 | 0.8052 *** | −0.9115 *** | −0.1304 | −0.6560 ** | ||
Dtf | 0.5760 * | −0.1314 | −0.0714 | 0.6284 ** | −0.8432 *** | |||
Crop stature | 0.3971 | −0.2999 | 0.3615 | −0.7356 *** | ||||
Crop appearance # | −0.8858 *** | −0.0482 | −0.7937 *** | |||||
Broomrape | −0.0604 | 0.1012 | ||||||
Powdery mildew | −0.5859 * | |||||||
Ascochyta blight ## |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiales, D.; Osuna-Caballero, S.; González-Bernal, M.J.; Cobos, M.J.; Flores, F. Pea Breeding Lines Adapted to Autumn Sowings in Broomrape Prone Mediterranean Environments. Agronomy 2021, 11, 769. https://doi.org/10.3390/agronomy11040769
Rubiales D, Osuna-Caballero S, González-Bernal MJ, Cobos MJ, Flores F. Pea Breeding Lines Adapted to Autumn Sowings in Broomrape Prone Mediterranean Environments. Agronomy. 2021; 11(4):769. https://doi.org/10.3390/agronomy11040769
Chicago/Turabian StyleRubiales, Diego, Salvador Osuna-Caballero, María J. González-Bernal, María J. Cobos, and Fernando Flores. 2021. "Pea Breeding Lines Adapted to Autumn Sowings in Broomrape Prone Mediterranean Environments" Agronomy 11, no. 4: 769. https://doi.org/10.3390/agronomy11040769
APA StyleRubiales, D., Osuna-Caballero, S., González-Bernal, M. J., Cobos, M. J., & Flores, F. (2021). Pea Breeding Lines Adapted to Autumn Sowings in Broomrape Prone Mediterranean Environments. Agronomy, 11(4), 769. https://doi.org/10.3390/agronomy11040769