Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characterization and Experimental Design
2.2. Soil Sampling and Analysis
2.3. Soil Loss Estimation, Revised Universal Soil Loss Equation (RUSLE) Model
2.4. Calculation of Soil Productivity from the Soil Profile Samples
2.5. Statistical Analyses
3. Results
3.1. Pore Size Distribution and Soil Water Retention
3.2. Infiltration
3.3. Soil Erodibility and Soil Loss Estimation
3.4. Soil Productivity Index
4. Discussion
4.1. Changes in Soil Physical Properties and Water Infiltration
4.2. Effect of Soil Management Practices on Soil Erosion Rates
4.3. Soil Productivity Index Changes under Analysed Management Practices
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavigelli, M.A.; Mirsky, S.B.; Teasdale, J.R.; Spargo, J.T.; Doran, J. Organic grain cropping systems to enhance ecosystem services. Renew. Agric. Food Syst. 2013, 28, 145–159. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.G.; de Goede, R.; Mäder, P.; Sukkel, W.; Brussaard, L. Soil quality—A review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Lozano-García, B.; Francaviglia, R.; Renzi, G.; Doro, L.; Ledda, L.; Benítez, C.; González-Rosado, M.; Parras-Alcántara, L. Land use change effects on soil organic carbon store. An opportunity to soils regeneration in Mediterranean areas: Implications in the 4p1000 notion. Ecol. Indic. 2020, 119, 106831. [Google Scholar] [CrossRef]
- Martín-López, B.; Oteros-Rozas, E.; Cohen-Sacham, E.; Santos-Martín, F.; Nieto-Romero, M.; Carvalho-Santos, C.; González, J.; García-Llorente, M.; Keren, K.; Geijzendorffer, I.; et al. Ecosystem services supplied by mediterranean basin ecosystems. In Routledge Handbook of Ecosysem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: New York, NY, USA, 2016; pp. 405–414. [Google Scholar]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Lee, H.; Lautenbach, S.; Nieto, A.P.G.; Bondeau, A.; Cramer, W.; Geijzendorffer, I.R. The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioning—A meta-analysis. Reg. Environ. Chang. 2019, 19, 2187–2202. [Google Scholar] [CrossRef]
- Comino, J.R.; Senciales, J.; Ramos, M.; Martínez-Casasnovas, J.; Lasanta, T.; Brevik, E.; Ries, J.; Sinoga, J.R. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; Franco, N.G.; Díaz-Pereira, E.; Montoya, I.; De Vente, J. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena 2020, 187, 104352. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J. Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrol. Hydrobiol. 2020, 20, 59–72. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Francaviglia, R.; Ledda, L.; Farina, R. Organic Carbon and Ecosystem Services in Agricultural Soils of the Mediterranean Basin. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2018; Volume 28, pp. 183–210. [Google Scholar] [CrossRef]
- FAOSTAT. 2017. Available online: http://faostat.fao.org/ (accessed on 24 October 2020).
- Infante-Amate, J.; Villa, I.; Aguilera, E.; Torremocha, E.; Guzmán, G.; Cid, A.; De Molina, M.G. The Making of Olive Landscapes in the South of Spain. A History of Continuous Expansion and Intensification. In Biocultural Diversity in Europe. Environmental History; Agnoletti, M., Emanueli, F., Eds.; Springer: Cham, Switzerland, 2016; Volume 5. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Amate, J.I.; de Molina, M.G.; Fernández, D.S.; Gómez, J.A. Quantifying the effect of historical soil man-agement on soil erosion rates in Mediterranean olive orchards. Agric. Ecosyst. Environ. 2011, 142, 341–351. [Google Scholar] [CrossRef]
- Rodríguez-Sousa, A.A.; Barandica, J.M.; Rescia, A.J. Estimation of Soil Loss Tolerance in Olive Groves as an Indicator of Sus-tainability: The Case of the Estepa Region (Andalusia, Spain). Agronomy 2019, 9, 785. [Google Scholar] [CrossRef] [Green Version]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Bojollo, R.; Moreno-García, M.; Ordóñez-Fernández, R.; García-Tejero, I.F.; Cárceles-Rodríguez, B.; Durán-Zuazo, V.H.; De Torres, M.A.R.-R. Efficient Groundcovers in Mediterranean Olive Groves Under Changing Climate. In Resources Use Efficiency in Agriculture; Springer: Singapore, 2020; pp. 729–760. [Google Scholar] [CrossRef]
- MITECO. Informe 2017 Sobre el Estado del Patrimonio Natural y de la Biodiversidad en España. 2017. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-espanol-patrimonio-natural-biodiv/informe-anual/Informe_2017_IEPNB.aspx (accessed on 10 January 2021).
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Earth arXiv 2020, arXiv:10.31223/X5GS3T. [Google Scholar]
- Parras-Alcantara, L.; Lozano-Garcia, B.; Keesstra, S.; Cerda, A.; Brevik, E.C. Long-term effects of soil management on eco-system services and soil loss estimation in olive grove top soils. Sci. Total Environ. 2016, 571, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Álvarez, S.; Landa, B.B.; Gómez, J.A. Soil properties in organic olive orchards following different weed man-agement in a rolling landscape of Andalusia, Spain. Renew. Agric. Food Syst. 2014, 29, 83–91. [Google Scholar] [CrossRef]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Mueller, L.; Schindler, U.; Mirschel, W.; Shepherd, T.G.; Ball, B.C.; Helming, K.; Rogasik, J.; Eulenstein, F.; Wiggering, H. Assessing the productivity function of soils. A review. Agron. Sustain. Dev. 2010, 30, 601–614. [Google Scholar] [CrossRef]
- Duan, X.; Xie, Y.; Ou, T.; Lu, H. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. Catena 2011, 87, 268–275. [Google Scholar] [CrossRef]
- Beets, P.; Kimberley, M.; Garrett, L.; Paul, T.; Matson, A. Soil productivity drivers in New Zealand planted forests. For. Ecol. Manag. 2019, 449, 117480. [Google Scholar] [CrossRef]
- Lal, R. Food security impacts of the “4 per Thousand” initiative. Geoderma 2020, 374, 114427. [Google Scholar] [CrossRef]
- Durán-Zuazo, V.H.; Rodríguez, B.C.; García-Tejero, I.F.; Ruiz, B.G.; Cuadros, T.S. Benefits of organic olive rainfed systems to control soil erosion and runoff and improve soil health restoration. Agron. Sustain. Dev. 2020, 40, 41. [Google Scholar] [CrossRef]
- Lozano-García, B.; Muñoz-Rojas, M.; Parras-Alcántara, L. Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Sci. Total Environ. 2017, 579, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Duval, M.E.; Martinez, J.M.; Galantini, J.A. Assessing soil quality indices based on soil organic carbon fractions in different long-term wheat systems under semiarid conditions. Soil Use Manag. 2019, 36, 71–82. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Abid, M.; Lal, R. Tillage and drainage impact on soil quality. Aggregate stability, carbon and nitrogen pools. Soil Tillage Res. 2008, 100, 89–98. [Google Scholar] [CrossRef]
- González-Rosado, M.; Lozano-García, B.; Aguilera-Huertas, J.; Parras-Alcántara, L. Short-term effects of land management change linked to cover crop on soil organic carbon in Mediterranean olive grove hillsides. Sci. Total Environ. 2020, 744, 140683. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Lamb, J.A.; Coulter, J.A. Short-Term Stover, Tillage, and Nitrogen Management Affect Near-Surface Soil Organic Matter. Soil Sci. Soc. Am. J. 2014, 79, 251–260. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Benítez, C.; Lozano-García, B. Effects of land management change on soil aggregates and organic carbon in Mediterranean olive groves. Catena 2020, 195, 104840. [Google Scholar] [CrossRef]
- Moreno, B.; Garcia-Rodriguez, S.; Cañizares, R.; Castro, J.; Benítez, E. Rainfed olive farming in south-eastern Spain: Long-term effect of soil management on biological indicators of soil quality. Agric. Ecosyst. Environ. 2009, 131, 333–339. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Ferreira, I.Q.; Freitas, S.L.; Pires, J.M.; Arrobas, M.P. Self-reseeding annual legumes for cover cropping in rainfed managed olive orchards. Span. J. Agric. Res. 2015, 13, e0302. [Google Scholar] [CrossRef]
- Rodríguez, P.C.R.; Durán, Z.V.H.; Francia, M.J.R.; Martín, P.F.J.; Moreno, M.F.; García, T.I.F. Organic olive farming in An-dalusia, Spain. A review. Agron. Sustain. Dev. 2018, 38, 20. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2015; No 106. [Google Scholar]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Long-term evaluation of the initiative 4‰ under different soil management systems in Mediterranean olive groves. Sci. Total Environ. 2021, 758, 143591. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A. Pressure-Menbrana apparatus construction and use. Agric. Eng. 1941, 28, 451–454. [Google Scholar]
- Bienes, R.; Marques, M.J.; Sastre, B.; García-Díaz, A.; Ruiz-Colmenero, M. Eleven years after shrub vegetation revegetation in semiarid eroded soil. Influence in soil properties. Geoderma 2016, 273, 106–114. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Lóczy, D.; Thiele-Bruhn, S.; Zornoza, R. Handbook of Plant and Soil Analysis for Agricultural Systems; Version 1.0. Zenodo; 2019; Available online: https://zenodo.org/record/2553445#.YGS18N9Lj3g (accessed on 31 March 2021). [CrossRef]
- Martínez-Mena, M.; Perez, M.; Almagro, M.; Garcia-Franco, N.; Díaz-Pereira, E. Long-term effects of sustainable management practices on soil properties and crop yields in rainfed Mediterranean almond agroecosystems. Eur. J. Agron. 2021, 123, 126207. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); U.S. Department of Agriculture Agricultural Handbook No. 703; USDA: Washington, DC, USA, 1997.
- Instituto para la Conservación de la Naturaleza (ICONA). Agresividad de la Lluvia en España—Valores del Factor R de la Ecuación Universal de Pérdidas de Suelo; MITECO: Madrid, Spain, 1988.
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; U.S. Department of Agriculture: Washington, DC, USA, 1978.
- McCool, D.K.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Length Factor for the Universal Soil Loss Equation. Trans. ASAE 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Xingwu, D.; Li, R.; Guangli, Z.; Jinming, H.; Haiyan, F. Soil productivity in the Yunnan province: Spatial distribution and sustainable utilization. Soil Tillage Res. 2015, 147, 10–19. [Google Scholar] [CrossRef]
- Pierce, F.J.; Larson, W.E.; Dowdy, R.H.; Graham, W.A.P. Productivity of soils: Assessing long-term changes due to erosion. J. Soil Water Conserv. 1983, 38, 39–44. [Google Scholar]
- Kiniry, L.N.; Scrivner, C.L.; Keener, M.E. A Soil Productivity Index Based Upon Predicted Water Depletion and Root Growth; College of Agriculture, Agricultural Experiment Station, University of Missouri: Columbia, MO, USA, 1983. [Google Scholar]
- Gu, Z.; Xie, Y.; Gao, Y.; Ren, X.; Cheng, C.; Wang, S. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637, 706–716. [Google Scholar] [CrossRef]
- Palese, A.M.; Vignozzi, N.; Celano, G.; Agnelli, A.; Pagliai, M.; Xiloyannis, C. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil Tillage Res. 2014, 144, 96–109. [Google Scholar] [CrossRef]
- Bienes, R.; Marques, M.; Sastre, B.; García-Díaz, A.; Esparza, I.; Antón, O.; Navarrete, L.; Hernánz, J.; Sánchez-Girón, V.; Del Arco, M.S.; et al. Tracking Changes on Soil Structure and Organic Carbon Sequestration after 30 Years of Different Tillage and Management Practices. Agronomy 2021, 11, 291. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Mulching as best management practice to reduce surface runoff and erosion in steep clayey olive groves. Int. Soil Water Conserv. Res. 2020, 9, 26–36. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic as-sessment. Land Degrad. Dev. 2020, 31, 1877–1889. [Google Scholar] [CrossRef]
- Ozturkmen, A.; Ramazanoglu, E.; Almaca, A.; Çakmakli, M. Effect of intercropping on soil physical and chemical properties in an olive orchard. Appl. Ecol. Environ. Res. 2020, 18, 7783–7793. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Water Infiltration and Surface Runoff in Steep Clayey Soils of Olive Groves under Different Management Practices. Water 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Monroy, A.P.; Maestre, F.T.; Delgado-Baquerizo, M.; Gallardo, A. Biological soil crusts modulate nitrogen availability in semiarid ecosystems: Insights from a Mediterranean grassland. Plant. Soil 2010, 333, 21–34. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Taguas, E.; Seeger, M.; Ries, J.B. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. J. Hydrol. 2018, 556, 749–758. [Google Scholar] [CrossRef]
- Taguas, E.V.; Peña, A.; Ayuso, J.A.; Pérez, R.; Yuan, Y.; Giráldez, J.V. Rainfall variability and hydrological and erosive response of an olive tree microcatchment under no-tillage with a spontaneous grass cover in Spain. Earth Surf. Process. Landf. 2010, 35, 750–760. [Google Scholar] [CrossRef]
- Sastre, B.; Marques, M.J.; García-Díaz, A.; Bienes, R. Three years of management with cover crops protecting sloping olive groves soils, carbon and water effects on gypsiferous soil. Catena 2018, 171, 115–124. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Acín-Carrera, G.; Marques, M.J.; Carral, P.; Alvarez, A.M.; Lopez, C.; Martin-Lopez, B.; González, J.A. Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity. Soil Use Manag. 2013, 29, 547–556. [Google Scholar] [CrossRef]
- López-Vicente, M.; Calvo-Seas, E.; Álvarez, S.; Cerdà, A. Effectiveness of cover crops to reduce loss of soil organic matter in a rainfed vineyard. Land 2020, 9, 230. [Google Scholar] [CrossRef]
- Márquez-García, F.; González-Sánchez, E.J.; Castro-García, S.; Ordóñez-Fernández, R. Improvement of soil carbon sink by cover crops in olive orchards under semiarid conditions. Influence of the type of soil and weed. Span. J. Agric. Res. 2013, 11, 335. [Google Scholar] [CrossRef]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- Novara, A.; Minacapilli, M.; Santoro, A.; Rodrigo-Comino, J.; Carrubba, A.; Sarno, M.; Gristina, L. Real cover crops contribu-tion to soil organic carbon sequestration in sloping vineyard. Sci. Total Environ. 2019, 652, 300–306. [Google Scholar] [CrossRef]
- Obalum, S.; Chibuike, G.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef]
- Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Taguas, E.; Gomez, J.A. Vulnerability of olive orchards under the current CAP (Common Agricultural Policy) regulations on soil erosion: A study case in Southern Spain. Land Use Policy 2015, 42, 683–694. [Google Scholar] [CrossRef]
- Taguas, E.V.; Vanderlinden, K.; Pedrera-Parrilla, A.; Giráldez, J.V.; Gómez, J.A. Spatial and temporal variability of spontaneous grass cover and its influence on sediment losses in an extensive olive orchard catchment. Catena 2017, 157, 58–66. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Francia, A.; Durán-Zuazo, V.; Martínez, A. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef]
- Gómez, J.A.; Romero, P.; Giráldez, J.V.; Fereres, E. Experimental assessment of runoff and soil erosion in an olive grove on a Vertic soil in Southern Spain as affected by soil management. Soil Use Manag. 2004, 20, 426–431. [Google Scholar] [CrossRef]
- Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcántara, L.; Jordán, A.; Cerdà, A. Effects of soil management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 551–552, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; Fernández-Raga, M.; Pulido, M.; di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, M.; Castro, J.; Humanes, M.D.; Muñoz, J. Sistemas de manejo del suelo en olivar de Andalucía. Edafología 2001, 8, 75–98. [Google Scholar]
- Gómez, J.A.; Guzmán, M.; Giráldez, J.V.; Fereres, E. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Tillage Res. 2009, 106, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Durán-Zuazo, V.; Pleguezuelo, C.R.; Panadero, L.A.; Raya, A.M.; Martínez, J.F.; Rodríguez, B.C. Soil Conservation Measures in Rainfed Olive Orchards in South-Eastern Spain: Impacts of Plant Strips on Soil Water Dynamics. Pedosphere 2009, 19, 453–464. [Google Scholar] [CrossRef]
- Romero, P.; Castro, G.; Gomez, J.A.; Fereres, E. Curve Number Values for Olive Orchards under Different Soil Management. Soil Sci. Soc. Am. J. 2007, 71, 1758–1769. [Google Scholar] [CrossRef]
- Barrena-González, J.; Rodrigo-Comino, J.R.; Gyasi-Agyei, Y.; FernánPulidezo, M.P.; Cerdà, A. Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates. Land 2020, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Bircher, P.; Liniger, H.; Prasuhn, V. Comparing different multiple flow algorithms to calculate RUSLE factors of slope length (L) and slope steepness (S) in Switzerland. Geomorphology 2019, 346, 106850. [Google Scholar] [CrossRef]
- Inventario Nacional de Erosión de Suelos (INES). Provincial de Jaén, Escala 1:250.000. Min.; Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2006; 398p.
- Durán-Zuazo, V.; Pleguezuelo, C.R.; Peinado, F.M.; De Graaff, J.; Martínez, J.F.; Flanagan, D. Environmental impact of introducing plant covers in the taluses of terraces: Implications for mitigating agricultural soil erosion and runoff. Catena 2011, 84, 79–88. [Google Scholar] [CrossRef]
- Espejo-Pérez, A.J.; Rodríguez-Lizana, A.; Ordóñez, R.; Giráldez, J.V. Soil Loss and Runoff Reduction in Olive-Tree Dry-Farming with Cover Crops. Soil Sci. Soc. Am. J. 2013, 77, 2140–2148. [Google Scholar] [CrossRef] [Green Version]
- Repullo-Ruibérriz De Torres, M.A.; Ordóñez-Fernández, R.; Giráldez, J.V.; Márquez-García, J.; Laguna, A.; Carbonell-Bojollo, R. Efficiency of four different seeded plants and native vegetation as cover crops in the control of soil and carbon losses by water erosion in olive orchards. Land Degrad. Dev. 2018, 29, 2278–2290. [Google Scholar] [CrossRef]
- Taguas, E.; Ayuso, J.; Pérez, R.; Giráldez, J.; Gomez, J.A. Intra and inter-annual variability of runoff and sediment yield of an olive micro-catchment with soil protection by natural ground cover in Southern Spain. Geoderma 2013, 206, 49–62. [Google Scholar] [CrossRef]
- Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Díaz, A. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. J. Soils Sediments 2016, 17, 873–888. [Google Scholar] [CrossRef]
- Alcantara, C.; Pujadas, S.; Saavedra, M.S. Management of cruciferous cover crops by mowing for soil and water conservation in Southern Spain. Agric. Water Manag. 2011, 98, 1071–1080. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Duan, X.; Shi, X.; Li, Y.; Rong, L.; Fen, D. A new method to calculate soil loss tolerance for sustainable soil productivity in farmland. Agron. Sustain. Dev. 2016, 37, 2. [Google Scholar] [CrossRef] [Green Version]
- Ajon, A.; Agber, P. Evaluation of Soil Erosion Effects on Soil Productivity Using Productivity Index Model in Makurdi, Benue State, Nigeria. World J. Res. Rev. 2018, 7, 26–31. [Google Scholar]
- Meena, R.S.; Kumar, S.; Yadav, G.S. Soil Carbon Sequestration in Crop Production. In Nutrient Dynamics for Sustainable Crop Production; Springer: Singapore, 2019; pp. 1–39. [Google Scholar] [CrossRef]
- Bogunovic, I.; Telak, L.J.; Pereira, P.; Filipovic, V.; Filipovic, L.; Percin, A.; Durdevic, B.; Birkás, M.; Dekemati, I.; Comino, J.R. Land management impacts on soil properties and initial soil erosion processes in olives and vegetable crops. J. Hydrol. Hydromech. 2020, 68, 328–337. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Jordán, A.; Anaya-Romero, M.; Phillips, J.D.; Jones, L.; Zhang, Z.; Pereira, P.; Fleskens, L.; van der Ploeg, M.; et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in Southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Pinto, J.G.; Viola, F.; Santos, J.A. Climate change projections for olive yields in the Mediterranean Basin. Int. J. Clim. 2020, 40, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Orlandi, F.; Rojo, J.; Picornell, A.; Oteros, J.; Pérez-Badia, R.; Fornaciari, M. Impact of Climate Change on Olive Crop Production in Italy. Atmosphere 2020, 11, 595. [Google Scholar] [CrossRef]
- Aguilera-Huertas, J.; Lozano-García, B.; González-Rosado, M.; Parras-Alcántara, L. Effects of Management and Hillside Position on Soil Organic Carbon Stratification in Mediterranean Centenary Olive Grove. Agronomy 2021, 11, 650. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2020, 11, 56. [Google Scholar] [CrossRef]
Tillage Practice | Hor. | Depth (cm) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | BD (Mg m−3) | OM (%) | pH (H2O) |
---|---|---|---|---|---|---|---|---|---|
Ap | 0–27.3 | 12.8 ± 1.7 Aa | 8.7 ± 0.6 Aa | 19.8 ± 1.5 Aa | 71.5 ± 0.9 Aa | 1.41 ± 0.03 Aa | 1.22 ± 0.06 Aa | 7.72 ± 0.10 Aa | |
CT0 | Bw | 27.3–56.0 | 13.6 ± 1.5 Aa | 5.5 ± 1.6 Ba | 22.9 ± 1.4 Aa | 71.6 ± 0.6 Aa | 1.42 ± 0.02 Aa | 1.01 ± 0.05 Aa | 8.02 ± 0.11 Ba |
BC | 56.0–89.0 | 17.6 ± 1.2 Ba | 3.8 ± 0.8 Ca | 24.8 ± 1.7 Aa | 71.4 ± 1.9 Aa | 1.43 ± 0.03 Aa | 0.76 ± 0.04 Ba | 8.15 ± 0.05 Ba | |
C | 89.0–115.7 | 12.6 ± 0.5 Aa | 4.1 ± 0.9 Ca | 21.9 ± 1.6 Aa | 74.0 ± 0.7 Aa | 1.44 ± 0.02 Aa | 0.71 ± 0.02 Ba | 8.07 ± 0.10 Ba | |
Ap | 0–32.7 | 15.6 ± 3.6 Aa | 9.2 ± 5.2 Aa | 19.1 ± 5.0 Aa | 71.6 ± 2.8 Aa | 1.35 ± 0.14 Aa | 0.88 ± 0.29 Ab | 7.81 ± 0.10 Aa | |
CT1 | Bw | 32.7–65 | 15.8 ± 5.1 Aa | 3.6 ± 4.4 Ca | 21.0 ± 2.0 Aa | 75.3 ± 7.0 Aa | 1.35 ± 0.07 Aa | 0.59 ± 0.10 Bb | 8.11 ± 0.10 Ba |
BC | 65–89.7 | 21.7 ± 2.2 Ba | 6.5 ± 3.6 Ba | 20.6 ± 4.8 Ab | 72.9 ± 2.8 Aa | 1.37 ± 0.09 Aa | 0.38 ± 0.19 Cb | 8.17 ± 0.05 Ba | |
C | 89.7–119.7 | 12.2 ± 0.3 Aa | 9.7 ± 0.5 Ab | 21.5 ± 0.1 Aa | 68.7 ± 2.2 Ab | 1.39 ± 0.04 Aa | 0.29 ± 0.14 Cb | 8.11 ± 0.13 Ba | |
A | 0–21.7 | 15.0 ± 2.5 Aa | 9.8 ± 2.1 Aa | 26.7 ± 5.9 Ab | 63.5 ± 4.8 Ab | 1.37 ± 0.07 Aa | 0.74 ± 0.20 Ac | 7.82 ± 0.07 Aa | |
NT + H | Bw | 21.7–60 | 17.6 ± 2.1 Aa | 12.9 ± 5.6 Ab | 25.9 ± 4.9 Aa | 61.2 ± 6.2 Ab | 1.40 ± 0.03 Aa | 0.43 ± 0.18 Bc | 8.09 ± 0.17 Ba |
BC | 60–84.7 | 21.5 ± 1.2 Ba | 12.3 ± 9.6 Ab | 29.1 ± 5.5 Aa | 58.6 ± 7.9 Ab | 1.42 ± 0.04 Aa | 0.27 ± 0.09 Cc | 8.05 ± 0.09 Ba | |
C | 84.7–110 | 12.7 ± 0.8 Aa | 6.9 ± 0.72 Ba | 24.8 ± 3.4 Aa | 68.2 ± 7.6 Ab | 1.39 ± 0.03 Aa | 0.27 ± 0.09 Cb | 8.17 ± 0.13 Ba | |
A | 0–23.5 | 8.75 ± 3.2 Ab | 7.72 ± 2.5 Aa | 21.7 ± 3.9 Aa | 70.60 ± 4.6 Aa | 1.26 ± 0.05 Ab | 0.85 ± 0.13 Ab | 7.83 ± 0.12 Aa | |
NT-CC | Bw | 23.5–64.4 | 9.81 ± 2.6 Ab | 8.13 ± 1.4 Ab | 20.2 ± 4.6 Aa | 71.63 ± 5.3 Aa | 1.41 ± 0.07 Ba | 0.62 ± 0.16 Ab | 7.77 ± 0.09 Ab |
BC | 64.4–82.2 | 22.95 ± 1.3 Ba | 6.45 ± 0.8 Aa | 20.9 ± 2.5 Ab | 72.67 ± 3.9 Aa | 1.37 ± 0.03 Bb | 0.41 ± 0.08 Bb | 8.18 ± 0.10 Ba | |
C | 82.2–107.7 | 24.93 ± 1.1 Bb | 9.95 ± 1.5 Bb | 22.0 ± 0.9 Aa | 68.02 ± 5.1 Ab | 1.39 ± 0.05 Ba | 0.32 ± 0.10 Bb | 8.17 ± 0.05 Ba |
Sampling | Hor | TP (m3 m−3) | Μ (m3 m−3) | M (m3 m−3) | PWP % | FC % | AWC (mm cm−1) |
---|---|---|---|---|---|---|---|
CT0 | Ap | 0.45 Aa | 0.226 Aa | 0.221 Aa | 55.4 Aa | 42.7 Aa | 1.79 Aa |
Bw | 0.47 Aa | 0.241 Ba | 0.233 Aa | 55.8 Aa | 43.0 Aa | 1.82 Aa | |
BC | 0.43 Aa | 0.220 Aa | 0.215 Aa | 55.8 Aa | 42.9 Aa | 1.84 Aa | |
C | 0.42 Aa | 0.223 Aa | 0.202 Aa | 56.9 Ba | 44.4 Aa | 1.80 Aa | |
CT1 | Ap | 0.46 Aa | 0.236 Aa | 0.230 Aa | 55.3 Aa | 42.8 Aa | 1.70 Ab |
Bw | 0.46 Aa | 0.226 Aa | 0.234 Aa | 57.5 Bb | 45.1 Bb | 1.67 Ab | |
BC | 0.45 Aa | 0.235 Aa | 0.217 Aa | 56.2 Aa | 43.7 Aa | 1.71 Ab | |
C | 0.44 Aa | 0.251 Aa | 0.193 Aa | 54.0 Ab | 41.0 Ab | 1.81 Ba | |
NT + H | Ap | 0.46 Aa | 0.238 Aa | 0.225 Aa | 51.6 Ab | 37.9 Ab | 1.82 Aa |
Bw | 0.47 Aa | 0.226 Aa | 0.242 Aa | 48.8 Bc | 36.2 Ac | 1.79 Aa | |
BC | 0.43 Aa | 0.286 Bb | 0.145 Bb | 48.8 Bb | 34.6 Ab | 2.02 Bc | |
C | 0.44 Aa | 0.255 Aa | 0.189 Ba | 54.1 Cb | 40.9 Bb | 1.83 Aa | |
Ap | 0.51 Bb | 0.190 Ab | 0.316 Ab | 55.1 Aa | 42.3 Aa | 1.64 Ab | |
NT-CC | Bw | 0.45 Aa | 0.239 Ba | 0.207 Ba | 55.5 Aa | 42.8 Aa | 1.77 Ba |
BC | 0.45 Aa | 0.240 Ba | 0.207 Ba | 56.1 Aa | 43.5 Aa | 1.73 Bb | |
C | 0.44 Aa | 0.214 Aa | 0.227 Ba | 53.6 Bb | 40.6 Bb | 1.81 Ba |
Management Practice | K Factor (t ha h ha−1 MJ−1 mm−1) | RUSLE Model (Mg ha−1 Year−1) |
---|---|---|
CT0 | 0.0200 | 9.71 |
CT1 | 0.0202 | 9.82 |
NT+ H | 0.0250 | 13.88 |
NT-CC | 0.0207 | 2.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions. Agronomy 2021, 11, 812. https://doi.org/10.3390/agronomy11040812
González-Rosado M, Parras-Alcántara L, Aguilera-Huertas J, Lozano-García B. Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions. Agronomy. 2021; 11(4):812. https://doi.org/10.3390/agronomy11040812
Chicago/Turabian StyleGonzález-Rosado, Manuel, Luis Parras-Alcántara, Jesús Aguilera-Huertas, and Beatriz Lozano-García. 2021. "Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions" Agronomy 11, no. 4: 812. https://doi.org/10.3390/agronomy11040812