Effect of Fertilization on the Energy Profit of Tall Wheatgrass and Reed Canary Grass
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Experiments
2.2. Calculation of Higher Heating Value and Erosion Risk
- HHV = higher heating value (MJ/kg)
- C, O, H = weight of given elements in the dry sample (wt%)
- EP = energy profit (GJ/ha)
- Y = average yield of dry matter (t/ha)
- Gha = soil loss (t/ha/year)
- R = the rainfall and runoff factor
- K = the soil erodibility factor
- L = the slope-length factor
- S = the slope-steepness factor
- C = the cover and management factor
- P = the support practice factor
2.3. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter Yield
3.2. Higher Heating Value and Energy Profit
3.3. Erosion Threats
3.4. Multicriteria Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Indragandhi, V.; Subramaniyaswamy, V.; Logesh, L. Resources, configurations, and soft computing techniques for pow-er management and control of PV/wind hybrid system. Renew. Sustain. Energy Rev. 2017, 69, 129–143. [Google Scholar] [CrossRef]
- Quek, T.Y.A.; Alvin Ee, W.L.; Chen, W.; Ng, T.S.A. Environmental impacts of transitioning to renewable electricity for Singapore and the surrounding region: A life cycle assessment. J. Clean. Prod. 2019, 214, 1–11. [Google Scholar] [CrossRef]
- Lee, J.W. Long-run dynamics of renewable energy consumption on carbon emissions and economic growth in the Euro-pean union. Int. J. Sustain. Dev. World Ecol. 2018, 26, 69–78. [Google Scholar] [CrossRef]
- Bernas, J.; Moudrý, J.; Kopecký, M.; Konvalina, P.; Štěrba, Z. Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy 2019, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Haag, N.L.; Nägele, H.J.; Reiss, K.; Biertümpfel, A.; Oechsner, H. Methane formation potential of cup plant (Silphiumperfoliatum). Biomass Bioenergy 2015, 75, 126–133. [Google Scholar] [CrossRef]
- Schmidt, A.; Lemaigre, S.; Delfosse, P.; von Francken-Welz, H.; Emmerling, C. Biochemical methane potential (BMP) of six perennial energy crops cultivated at three different locations in W-Germany. Biomass Convers. Biorefin. 2018, 8, 873–888. [Google Scholar] [CrossRef]
- Vogel, E.; Deumlich, D.; Kaupenjohann, M. Bioenergy maize and soil erosion—Risk assessment and erosion control con-cepts. Geoderma 2016, 261, 80–92. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Liu, X. (Vivian) Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I—Impacts on water, soil, and air quality. Renew. Sustain. Energy Rev. 2018, 81, 3140–3158. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of digestate as an alternative to mineral fertilizer: Effects on growth and crop quality. Arch. Agron. Soil Sci. 2018, 65, 700–711. [Google Scholar] [CrossRef]
- Czekała, W.; Lewicki, A.; Pochwatka, P.; Czekała, A.; Wojcieszak, D.; Jóźwiakowski, K.; Waliszewska, H. Digestate management in polish farms as an element of the nutrient cycle. J. Clean. Prod. 2020, 242, 118454. [Google Scholar] [CrossRef]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and com-post. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef]
- Kolář, L.; Kužel, S.; Peterka, J.; Borová-Batt, J. Agrochemical value of the liquid phase of wastes from fermenters dur-ing biogas production. Plant Soil Environ. 2010, 56, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Przygocka-Cyna, K.; Grzebisz, W. Biogas digestate—Benefits and risks for soil fertility and crop quality—An evaluation of grain maize response. Open Chem. 2018, 16, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Panuccio, M.R.; Romeo, F.; Mallamaci, C.; Muscolo, A. Digestate Application on Two Different Soils: Agricultural Bene-fit and Risk. Waste Biomass Valorization 2021. [Google Scholar] [CrossRef]
- López-Bellido, L.; Wery, J.; López-Bellido, R.J. Energy crops: Prospects in the context of sustainable agriculture. Eur. J. Agron. 2014, 60, 1–12. [Google Scholar] [CrossRef]
- Emmerling, C.; Schmidt, A.; Ruf, T.; von Francken-Welz, H.; Thielen, S. Impact of newly introduced perennial bioenergy crops on soil quality parameters at three different locations in W-Germany. J. Plant Nutr. Soil Sci. 2017, 180, 759–767. [Google Scholar] [CrossRef]
- Haughton, A.J.; Bohan, D.A.; Clark, S.J.; Mallott, M.D.; Mallott, V.; Sage, R.; Karp, A. Dedicated biomass crops can enhance biodiversity in the arable landscape. GCB Bioenergy 2015, 8, 1071–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopecky, M.; Moudry, J.; Bernas, J.; Suchy, K. The environmental aspects of energy crops growing in the condition of the Czech Republic. In Proceedings of the Research for Rural Development, Jelgava, Latvia, 17–19 May 2017. [Google Scholar]
- Lees, C.; de Baets, S.; Rickson, J.; Simmons, R.W. Selecting plant traits for soil erosion control in grassed waterways under a changing climate: A growth room study. Eur. J. Soil Sci. 2020. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. A Review of the Science and Logic Associated with Approach Used in the Universal Soil Loss Equation Family of Models. Soil Syst. 2019, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Menšík, L.; Kincl, D.; Nerušil, P.; Srbek, J.; Hlisnikovský, L.; Smutný, V. Water Erosion Reduction Using Diffe-rent Soil Tillage Approaches for Maize (Zea mays L.) in the Czech Republic. Land 2020, 9, 358. [Google Scholar] [CrossRef]
- Ruf, T.; Makselon, J.; Udelhoven, T.; Emmerling, C. Soil quality indicator response to land-use change from annual to perennial bioenergy cropping systems in Germany. GCB Bioenergy 2018, 10, 444–459. [Google Scholar] [CrossRef]
- Kopecký, M.; Peterka, J.; Kolář, L.; Konvalina, P.; Maroušek, J.; Váchalová, R.; Herout, M.; Strunecký, O.; Batt, J.; Tran, D.K. Influence of selected maize cultivation technologies on changes in the labile fraction of soil organic matter sandy-loam cambisol soil structure. Soil Tillage Res. 2021, 207, 104865. [Google Scholar] [CrossRef]
- Usťak, S.; Šinko, J.; Muňoz, J. Reed canary grass (Phalaris arundinacea L.) as a promising energy crop. J. Cent. Eur. Agric. 2019, 20, 1143–1168. [Google Scholar] [CrossRef]
- Csete, S.; Stranczinger, S.; Szalontai, B.; Farkas, A.; Pal, W.R.; Salamon-Albert, E.; Kocsis, M.; Tovari, P.; Vojtela, T.; Dezso, J.; et al. Tall Wheatgrass Cultivar Szarvasi-1 (Elymus elongatus subsp. ponticus cv. Szarvasi-1) as a Potential Energy Crop for Semi-Arid Lands of Eastern Europe. In Sustainable Growth and Applications in Renewable Energy Sources; Intechopen: London, UK, 2011. [Google Scholar]
- Rancane, S.; Karklins, A.; Lazdina, D.; Berzins, P.; Bardule, A.; Butlers, A.; Lazdins, A. Biomass yield and chemical composition of Phalaris arundinacea L. using different rates of fermentation residue as fertiliser. Agron. Res. 2017, 15, 521–529. [Google Scholar]
- Jensen, E.F.; Casler, M.D.; Farrar, K.; Finnan, J.M.; Lord, R.; Palmborg, C.; Valentine, J.; Donnison, I.S. Reed Canary Grass: From Production to End Use; Academic Press: Cambridge, MA, USA, 2018; ISBN 9780128129005. [Google Scholar]
- Galatowitsch, S.M.; Anderson, N.O.; Ascher, P.D. Invasiveness in wetland plants in temperate North America. Wetlands 1999, 19, 733–755. [Google Scholar] [CrossRef]
- Oleszek, M.; Król, A.; Tys, J.; Matyka, M.; Kulik, M. Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 2014, 156, 303–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazli, R.I.; Kusvuran, A.; Tansi, V.; Ozturk, H.H.; Budak, D.B. Comparison of cool and warm season perennial grasses for biomass yield, quality, and energy balance in two contrasting semiarid environments. Biomass Bioenergy 2020, 139, 105627. [Google Scholar] [CrossRef]
- Dickeduisberg, M.; Laser, H.; Tonn, B.; Isselstein, J. Tall wheatgrass (Agropyron elongatum) for biogas production: Crop management more important for biomass and methane yield than grass provenance. Ind. Crops Prod. 2017, 97, 653–663. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth-Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Czech Hydrometeorological Institute. Available online: http://portal.chmi.cz/?l=en (accessed on 21 October 2020).
- IUSS Working Group. WRB World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; ISBN 9789251083697. [Google Scholar]
- Sheng, C.; Azevedo, J.L.T. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Wischmeier, W.; Smith, D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; USDA Agriculture Handbook 537; USDA: Washington, DC, USA, 1978. [Google Scholar]
- Janeček, M.; Dostál, T.; Kozlovsky-Dufková, J.; Dumbrovský, M.; Hůla, J.; Kadlec, V.; Vlasák, J. Protection of Agricultural Land Against Erosion: Methodology; Czech University of Life Sciences Prague: Prague, Czech Republic, 2012. (In Czech) [Google Scholar]
- Meloun, M.; Militký, J. Statistical Data Analysis, A Practical Guide with 1250 Exercises and Answer key on CD; Woodhead Publishing India: New Delhi, India, 2011. [Google Scholar]
- Fagbohungbe, M.O.; Onyeri, C.; Adewale, C.; Semple, K.T. The effect of acidogenic and methanogenic conditions on the availability and stability of carbon, nitrogen and phosphorus in a digestate. J. Environ. Chem. Eng. 2019, 7, 103138. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Tuszynska, A.; Czerwionka, K.; Obarska-Pempkowiak, H. Phosphorus concentration and availability in raw organic waste and post fermentation products. J. Environ. Manag. 2021, 278, 111468. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.; Labrincha, J.; Dias-Ferreira, C. Extraction of phosphorus and struvite production from the anaerobically digested organic fraction of municipal solid waste. J. Environ. Chem. Eng. 2018, 6, 2837–2845. [Google Scholar] [CrossRef]
- Danielewicz, D.; Surma-Ślusarska, B.; Żurek, G.; Martyniak, D. Selected Grass Plants as Biomass Fuels and Raw Materi-als for Papermaking. Part I. Calorific Value and Chemical Composition. BioResources 2015, 10, 8539–8551. [Google Scholar] [CrossRef] [Green Version]
- Martyniak, D.; Żurek, G.; Prokopiuk, K. Biomass yield and quality of wild populations of tall wheatgrass [Elymus elon-gatus (Host.) Runemark]. Biomass Bioenergy 2017, 101, 21–29. [Google Scholar] [CrossRef]
- Pocienė, L.; Šarūnaitė, L.; Tilvikienė, V.; Šlepetys, J.; Kadžiulienė, Ž. The yield and composition of reed canary grass bio-mass as raw material for combustion. Biologija 2013, 59. [Google Scholar] [CrossRef]
- Muylle, H.; Van Hulle, S.; De Vliegher, A.; Baert, J.; Van Bockstaele, E.; Roldán-Ruiz, I. Yield and energy balance of an-nual and perennial lignocellulosic crops for bio-refinery use: A 4-year field experiment in Belgium. Eur. J. Agron. 2015, 63, 62–70. [Google Scholar] [CrossRef]
- Heinsoo, K.; Hein, K.; Melts, I.; Holm, B.; Ivask, M. Reed canary grass yield and fuel quality in Estonian farmers’ fields. Biomass Bioenergy 2011, 35, 617–625. [Google Scholar] [CrossRef]
- Prochnow, A.; Heiermann, M.; Plöchl, M.; Amon, T.; Hobbs, P.J. Bioenergy from permanent grassland—A review: 2. Combustion. Bioresour. Technol. 2009, 100, 4945–4954. [Google Scholar] [CrossRef]
- Wrobel, C.; Coulman, B.E.; Smith, D.L. The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agric. Scand. Sect. B Plant Soil Sci. 2009, 59, 1–18. [Google Scholar] [CrossRef]
- Kołodziej, B.; Stachyra, M.; Antonkiewicz, J.; Bielińska, E.; Wiśniewski, J. The effect of harvest frequency on yielding and quality of energy raw material of reed canary grass grown on municipal sewage sludge. Biomass Bioenergy 2016, 85, 363–370. [Google Scholar] [CrossRef]
- Lord, R.A. Reed canarygrass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable energy crop production. Biomass Bioenergy 2015, 78, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Thy, P.; Wang, L.; Anderson, S.N.; Vandergheynst, J.S.; Upadhyaya, S.K.; Jenkins, B.M. Influence of leaching pretreatment on fuel properties of biomass. Fuel Process. Technol. 2014, 128, 43–53. [Google Scholar] [CrossRef]
- López-González, D.; Avalos-Ramirez, A.; Giroir-Fendler, A.; Godbout, S.; Fernandez-Lopez, M.; Sanchez-Silva, L.; Valverde, J.L. Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrome-try. Energy 2015, 90, 1626–1635. [Google Scholar] [CrossRef]
- Greenhalf, C.E.; Nowakowski, D.J.; Bridgwater, A.V.; Titiloye, J.; Yates, N.; Riche, A.; Shield, I. Thermochemical char-acterisation of straws and high yielding perennial grasses. Ind. Crops Prod. 2012, 36, 449–459. [Google Scholar] [CrossRef]
- Ciria, C.S.; Barro, R.; Sanz, M.; Ciria, P. Long-Term Yield and Quality Performance of Perennial Energy Grasses (Agropyron spp.) on Marginal Land. Agronomy 2020, 10, 1051. [Google Scholar] [CrossRef]
- Jasinskas, A.; Zaltauskas, A.; Kryzeviciene, A. The investigation of growing and using of tall perennial grasses as energy crops. Biomass Bioenergy 2008, 32, 981–987. [Google Scholar] [CrossRef]
- Frydrych, J. Use of Certain Grasses as Replacements Spontaneous Fallows in Marginal Areas and Negative Phe-Nomena on Fallow Land from the Viewpoint of the Agricultural. 2007. Available online: https://biom.cz/cz/odborne-clanky/vyuziti-nekterych-trav-jako-nahrady-spontannich-uhoru-v-marginalnich-oblastech-a-negativni-jevy-na-ladem-lezici-pude-z (accessed on 11 January 2021). (In Czech).
- Bernas, J.; Kopecký, M.; Moudrý, J.; Jelínková, Z.; Moudrý, J.; Suchý, K. Cultivation of tall wheatgrass and reed canary grass for energy purposes in terms of environmental impacts. In Proceedings of the TAE 2016—Proceedings of the 6th International Conference on Trends in Agricultural Engineering 2016, Prague, Czech Republic, 7–9 September 2016. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new as-sessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Ciria, C.S.; Berti, M.T.; Kazula, M.; Peterson, A. Perennial grasses: Biomass quality and yield comparison of different spe-cies in the northern great plains of the United States. In Proceedings of the European Biomass Conference and Exhibition Proceedings, Stockholm, Sweden, 12–15 June 2017. [Google Scholar]
- Wysocka-Czubaszek, A.; Czubaszek, R. Quantification of Water Erosion Rates on the Narew River Valley-Sides Using Universal Soil Loss Equation. Pol. J. Soil Sci. 2015, 47, 1. [Google Scholar] [CrossRef] [Green Version]
- Podhrázská, J.; Kučera, J.; Karásek, P.; Konečná, J.; Pochop, M. Degradation caused by water erosion and its economic consequences. Stud. Oecol. 2015, 9, 3–12. [Google Scholar]
- Jakubínský, J.; Pechanec, V.; Procházka, J.; Cudlín, P. Modelling of soil erosion and accumulation in an agricultural landscape-A comparison of selected approaches applied at the small stream basin level in the Czech Republic. Water 2019, 11, 404. [Google Scholar] [CrossRef] [Green Version]
- Kadlec, V.; Holubík, O.; Procházková, E.; Urbanová, J.; Tippl, M. Soil organic carbon dynamics and its influence on the soil erodibility factor. Soil Water Res. 2012, 7, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhao, F.; Liu, S.; Wang, L.; Qiu, L.; Alexandrov, G.; Jothiprakash, V. Bioenergy production and environmental impacts. Geosci. Lett. 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer: Berlin, Germany, 2010; ISBN 9789048185290. [Google Scholar]
- Cosentino, S.L.; Copani, V.; Scalici, G.; Scordia, D.; Testa, G. Soil Erosion Mitigation by Perennial Species Under Mediterranean Environment. Bioenergy Res. 2015, 8, 1538–1547. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic aspects of future energy crops in Europe. Biofuels Bioprod. Biorefin. 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Nitsch, H.; Osterburg, B.; Roggendorf, W.; Laggner, B. Cross compliance and the protection of grassland—Illustrative analyses of land use transitions between permanent grassland and arable land in German regions. Land Use Policy 2012, 29, 440–448. [Google Scholar] [CrossRef]
Year | Average Temperature (°C) | Precipitation (mm) | ||
---|---|---|---|---|
Year | Season | Year | Season | |
2012 | 9.3 | 15.3 | 798.1 | 567.7 |
Diff. | +1.1 | +1.1 | +215.3 | +201.5 |
2013 | 9.1 | 15.3 | 685.4 | 469.5 |
Diff. | +0.9 | +1.1 | +102.6 | +103.3 |
2014 | 10.2 | 15.1 | 595.9 | 428.7 |
Diff. | +2.0 | +0.9 | +13.1 | +62.5 |
2015 | 10.5 | 16.9 | 487.7 | 233.8 |
Diff. | +2.3 | +2.7 | −95.1 | −132.4 |
2016 | 10.5 | 15.7 | 680.9 | 447.7 |
Diff. | +2.3 | +1.5 | +98.1 | +81.5 |
2017 | 9.7 | 16.4 | 630.3 | 438.8 |
Diff. | +1.5 | +2.2 | +47.5 | +72.6 |
Long-term average (1961–1990) | 8.2 | 14.2 | 582.8 | 366.2 |
GPS coordinates | 48°97′44.13″ N, 14°44′88.37″ E |
Altitude (m a.s.l.) | 391.5–393.8 |
Soil texture class (WRB) | sandy loam |
Soil type (WRB) | cambisols |
Bulk density (g/cm3) | 1.27 |
Corg (%) | 5.24 |
pHH2O | 6.1 |
pHKCl | 5.6 |
P (mg/kg) | 46 |
K (mg/kg) | 94 |
Mg (mg/kg) | 80 |
CEC (mmol+/kg) | 72 |
Year | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|
Nmin | 0.21 | 0.22 | 0.19 | 0.22 | 0.23 |
Norg | 0.15 | 0.16 | 0.14 | 0.16 | 0.14 |
P | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
K | 0.35 | 0.33 | 0.35 | 0.39 | 0.37 |
Ca | 0.25 | 0.24 | 0.26 | 0.24 | 0.25 |
Mg | 0.06 | 0.06 | 0.05 | 0.07 | 0.06 |
DM | 7.50 | 7.80 | 7.50 | 7.40 | 7.70 |
Species | Fertilization | Year | |||||
---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | Average | ||
TWG | Control | ||||||
Mineral | |||||||
Digestate | |||||||
RCG | Control | ||||||
Mineral | |||||||
Digestate |
Species | Variant | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|
TWG | Control | |||||
TWG | Mineral | |||||
TWG | Digestate | |||||
RCG | Control | |||||
RCG | Mineral | |||||
RCG | Digestate |
Species | Fertilization | 2014 | 2015 | 2016 | 2017 | 2018 | Average |
---|---|---|---|---|---|---|---|
TWG | Control | 62 | 112 | 154 | 149 | 101 | 116 ± 47 |
Mineral | 63 | 152 | 175 | 161 | 112 | 133 ± 46 | |
Digestate | 60 | 154 | 197 | 133 | 123 | 133 ± 56 | |
RCG | Control | 52 | 73 | 87 | 108 | 81 | 80 ± 27 |
Mineral | 43 | 73 | 103 | 100 | 82 | 80 ± 24 | |
Digestate | 75 | 82 | 107 | 105 | 67 | 87 ± 30 |
Species | Fertilization | Area (ha) | G (t/year/TJ) |
---|---|---|---|
TWG | Control | 8.7 | 13.76 |
Mineral | 7.5 | 11.98 | |
Digestate | 7.5 | 11.92 | |
RCG | Control | 12.4 | 19.76 |
Mineral | 12.5 | 19.81 | |
Digestate | 11.4 | 18.19 |
Parameter | Factor Weights | Contributions of a Given Factor to Communality | |||
---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | Communality | |
Yield | 0.769024 | 0.557612 | 0.591398 | 0.902329 | 1.000000 |
N | −0.296698 | −0.918397 | 0.088030 | 0.931483 | 1.000000 |
C | 0.859376 | 0.503139 | 0.738527 | 0.991676 | 1.000000 |
H | 0.873744 | −0.175124 | 0.763428 | 0.794097 | 1.000000 |
S | −0.735966 | −0.662257 | 0.541647 | 0.980231 | 1.000000 |
Ash | 0.134064 | 0.972888 | 0.017973 | 0.964484 | 1.000000 |
O | −0.871086 | −0.483177 | 0.758791 | 0.992251 | 1.000000 |
HHV | 0.899220 | 0.433944 | 0.808596 | 0.996903 | 1.000000 |
G | −0.796146 | −0.513393 | 0.633848 | 0.897420 | 1.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopecký, M.; Mráz, P.; Kolář, L.; Váchalová, R.; Bernas, J.; Konvalina, P.; Perná, K.; Murindangabo, Y.; Menšík, L. Effect of Fertilization on the Energy Profit of Tall Wheatgrass and Reed Canary Grass. Agronomy 2021, 11, 445. https://doi.org/10.3390/agronomy11030445
Kopecký M, Mráz P, Kolář L, Váchalová R, Bernas J, Konvalina P, Perná K, Murindangabo Y, Menšík L. Effect of Fertilization on the Energy Profit of Tall Wheatgrass and Reed Canary Grass. Agronomy. 2021; 11(3):445. https://doi.org/10.3390/agronomy11030445
Chicago/Turabian StyleKopecký, Marek, Petr Mráz, Ladislav Kolář, Radka Váchalová, Jaroslav Bernas, Petr Konvalina, Kristýna Perná, Yves Murindangabo, and Ladislav Menšík. 2021. "Effect of Fertilization on the Energy Profit of Tall Wheatgrass and Reed Canary Grass" Agronomy 11, no. 3: 445. https://doi.org/10.3390/agronomy11030445
APA StyleKopecký, M., Mráz, P., Kolář, L., Váchalová, R., Bernas, J., Konvalina, P., Perná, K., Murindangabo, Y., & Menšík, L. (2021). Effect of Fertilization on the Energy Profit of Tall Wheatgrass and Reed Canary Grass. Agronomy, 11(3), 445. https://doi.org/10.3390/agronomy11030445