Influence of Variety and Nitrogen Fertilization on the Technological Parameters of Special Malts Prepared from Naked and Hulled Oat Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Malting Procedure
2.2.1. Steeping and Germination of the Oat Grains
2.2.2. Kilning and Grinding of the Oat Malt
2.3. Analyses of the Grains and Malts
2.3.1. Basic Physical Properties of the Grains
2.3.2. Technological Parameters of the Malt
2.3.3. Soluble Nitrogen Ratio (Kolbach Index)
2.3.4. Thousand Grain Weight of Grain and Malt
2.4. Mashing Procedure—Production of Congress Worts from Naked and Hulled Oat Malts
2.5. Analyses of the Worts during the Congress Mashing Regime
2.5.1. Saccharification Time
2.5.2. Wort pH
2.5.3. Wort Extract Content
2.5.4. Wort Filtration Time
2.5.5. Wort Volume
2.6. Statistical Analysis
3. Results
3.1. Analysis of the Naked Oat Grains, the Hulled Oat Grains, the Naked Oat Malts and the Hulled Oat Malts
3.1.1. Basic Properties of the Hulled Oat and Naked Oat Grains
3.1.2. Basic Properties of the Hulled Oat and Naked Oat Malts
3.1.3. Technological Parameters of the Naked Oat and Hulled Oat Malts
4. Discussion
4.1. Analysis of the Hulled and Covered Oat Grains and Hulled and Naked Oat Malts
4.1.1. Basic Properties of the Hulled Oat and Naked Oat Grains
4.1.2. Basic Properties of the Hulled Oat Malts and Naked Oat Malts
4.2. Analysis of Technological Parameters of Naked and Hulled Oat Malts and Worts Produced from Malts during the Congress Mashing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bathgate, G.N. A review of malting and malt processing for whisky distillation. J. Inst. Brew. 2016, 122, 197–211. [Google Scholar] [CrossRef]
- Briggs, D.E. The biochemistry of malting. In Malts and Malting, 1st ed.; Blackie Academic & Professional: London, UK, 1998; pp. 133–218. [Google Scholar]
- Guido, L.F. Brewing and Craft Beer. Beverages 2019, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Phiarais, B.P.N.; Wijngaard, H.H.; Arendt, E.K. The impact of kilning on enzymatic activity of buckwheat malt. J. Inst. Brew. 2005, 111, 290–298. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Jiang, Y.; Wang, M.; Wang, B.; Xiao, L.; Xu, X.; Chai, D.; Dong, L. Metabolite fingerprinting of buckwheat in the malting process. J. Food Meas. Charact. 2020, 15, 1475–1486. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E.; Bogdan, P.; Diowksz, A. Malted and unmalted oats in brewing. J. Inst. Brew. 2014, 120, 390–398. [Google Scholar] [CrossRef]
- Klose, C.; Mauch, A.; Wunderlich, S.; Thiele, F.; Zarnkow, M.; Jacob, F.; Arendt, E.K.; Brew, J.I. Brewing with 100% Oat Malt. J. Inst. Brew. 2011, 117, 411–421. [Google Scholar] [CrossRef]
- Peterson, D.M. Malting oats: Effects on chemical composition of hull-less and hulled genotypes. Cereal Chem. 1998, 75, 230–234. [Google Scholar] [CrossRef]
- Tang, M.; Wang, L.; Cheng, X.; Wu, Y.; Ouyang, J. Non-starch constituents influence the in vitro digestibility of naked oat (Avena nuda L.) starch. Food Chem. 2019, 297, 124953. [Google Scholar] [CrossRef] [PubMed]
- Aboshora, W. Functional Foods: Effect of Superfine Grinding on Functional Properties and Antioxidant Capacities of Dietary Fiber from Cereal Bran. J. Cereal Sci. 2015, 65, 125–131. [Google Scholar] [CrossRef]
- Isidro-Sánchez, J.; Prats, E.; Howarth, C.; Langdon, T.; Montilla-Bascón, G. Genomic Approaches for Climate Resilience Breeding in Oats. In Genomic Designing of Climate-Smart Cereal Crops, 1st ed.; Kole, C., Ed.; Springer: Cham, Switzerland, 2020; pp. 133–169. [Google Scholar]
- Canales, F.J.; Montilla-Bascón, G.; Rispail, N.; Prats, E. Salicylic acid regulates polyamine biosynthesis during drought responses in oat. Plant Signal Behav. 2019, 14, e1651183. [Google Scholar] [CrossRef]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Barley, oat, and cereal-pea mixtures as dryland forages in the northern Great Plains. Agron. J. 2004, 96, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, L.Z.; Yang, N.; Huth, N.; Wang, E.L.; Werf, W.V.D.; Evers, J.B.; Wang, Q.; Zhang, D.S.; Wang, R.N.; et al. Optimized planting time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agric. For. Meteorol. 2019, 266–267, 184–197. [Google Scholar] [CrossRef]
- Scholes, R.J. The Future of Semi-Arid Regions: A Weak Fabric Unravels. Climate 2020, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Dawson, I.K.; Russell, J.; Powell, W.; Steffenson, B.; Thomas, W.T.; Waugh, R. Barley: A translational model for adaptation to climate change. New Phytol. 2015, 206, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Daničić, M.; Zekić, V.; Mirosavljević, M.; Lalić, B.; Putnik-Delić, M.; Maksimović, I.; Dalla Marta, A. The Response of Spring Barley (Hordeum vulgare L.) to Climate Change in Northern Serbia. Atmosphere 2019, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.J.; Bending, G.D.; Chandler, D.; Hilton, S.; Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 2012, 87, 52–71. [Google Scholar] [CrossRef]
- Baer-Nawrocka, A.; Kiryluk-Dryjska, E. Cereals production in selected European Union countries-political and structural implications. J. Agribus. Rural Dev. 2015, 38, 617–625. [Google Scholar] [CrossRef]
- Leszczyńska, D.; Klimek-Kopyra, A.; Patkowski, K. Evaluation of the Productivity of New Spring Cereal Mixture to Optimize Cultivation under Different Soil Conditions. Agriculture 2020, 10, 344. [Google Scholar] [CrossRef]
- Boczkowska, M.; Tarczyk, E. Genetic diversity among Polish landraces of common oat (Avena sativa L.). Genet. Resour. Crop Evol. 2013, 60, 2157–2169. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Fregeau-Reid, J.; Rioux, S.; Pageau, D.; Xue, A.; Martin, R.; Fedak, G.; Lajeunesse, J.; Savard, M. Response of oat genotypes to Fusarium Head Blight in Eastern Canada. Crop Sci. 2010, 50, 134–142. [Google Scholar] [CrossRef]
- Šliková, S.; Šrobárová, A.; Šudyová, V.; Polišenská, I.; Gregová, E.; Miháli, D. Response of oat cultivars to Fusarium infection with a view to their suitability for food use. Biologia 2010, 65, 609–614. [Google Scholar] [CrossRef]
- Langevin, F.; Eudes, F.; Comeau, A. Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species’. Eur. J. Plant Pathol. 2004, 110, 735–746. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 30 September 2021).
- EBC—Analytica. 4.5.1 Extract of Malt: Congress Mash; Experimental Station for Variety Assessment, Chemical and Technology Laboratory: Nürnberg, Germany, 1998. [Google Scholar]
- Kunze, W. Technology Brewing and Malting, 6th ed.; VLB Berlin: Berlin, Germany, 2019. [Google Scholar]
- Jin, Y.; Du, J.; Zhang, K.; Guo, M. Relationships between the index of protein modification (Kolbach index) and hydrolytic enzyme production in a wheat malt. J. Inst. Brew. 2014, 120, 201–206. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, W.; Li, C. Protein content correlates with the in vitro starch digestibility of raw barley flour. Food Biosci. 2021, 43, 101292. [Google Scholar] [CrossRef]
- Oscarsson, M.; Andersson, R.; Åman, P.; Olofsson, S.; Jonsson, A. Effects of cultivar, nitrogen fertilization rate and environment on yield and grain quality of barley. J. Sci. Food Agric. 1998, 78, 359–366. [Google Scholar] [CrossRef]
- Micek, P.; Kulig, B.; Woźnica, P.; Sajdak, A. The nutritive value for ruminants of faba bean (Vicia faba) seeds and naked oat (Avena nuda) grain cultivated in an organic farming system. J. Anim. Feed Sci. 2012, 21, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Lin, W.; Tong, L.; Liu, X.; Zhong, K.; Wang, L.; Zhou, S. Hypolipidaemic effects of oat flakes and β-glucans derived from four Chinese naked oat (Avena nuda) cultivars in Wistar-Lewis rats. J. Sci. Food Agric. 2016, 96, 644–649. [Google Scholar] [CrossRef]
- Sterna, V.; Zute, S.; Brunava, L. Oat Grain Composition and its Nutrition Benefice. Agric. Agric. Sci. Procedia 2016, 8, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, S.E. Barley: Production, Improvement, and Uses, 1st ed.; Wiley-Blackwell: Chichester, WS, UK, 2010; ISBN 978-0-8138-0123-0. [Google Scholar]
- Yin, C.; Zhang, G.P.; Wang, J.M.; Chen, J.X. Variation of beta-amylase activity in barley as affected by cultivar and environment and its relation to protein content and grain weight. J. Cereal Sci. 2002, 36, 307–312. [Google Scholar] [CrossRef]
- Chen, J.X.; Dai, F.; Wei, K.; Zhang, G.P. Relationship between malt qualities and β-amylase activity and protein content as affected by timing of nitrogen fertilizer application. J. Zhejiang Univ. Sci. B 2006, 7, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ping, H.; Wang, J.; Ren, G. Prediction of the total starch and amylose content in barley using near-infrared reflectance spectroscopy. Intell. Autom. Soft Comput. 2013, 19, 231–237. [Google Scholar] [CrossRef]
- Asare, E.K.; Jaiswal, S.; Maley, J.; Baga, M.; Sammynaiken, R.; Rossnagel, B.G.; Chibbar, R.N. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. J. Agric. Food Chem. 2011, 59, 4743–4754. [Google Scholar] [CrossRef]
- Ahmed, Z.; Tetlow, I.J.; Falk, D.E.; Liu, Q.; Emes, M.J. Resistant starch content is related to granule size in barley. Cereal Chem. 2016, 93, 618–630. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, L.; Chen, J.; Qiu, Z.; He, Y. GainTKW: A Measurement System of Thousand Kernel Weight Based on the Android Platform. Agronomy 2018, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Fu, B.X. Inter-Relationships between Test Weight, Thousand Kernel Weight, Kernel Size Distribution and Their Effects on Durum Wheat Milling, Semolina Composition and Pasta Processing Quality. Foods 2020, 9, 1308. [Google Scholar] [CrossRef]
- Liu, W.; Leiser, W.L.; Reif, J.C.; Tucker, M.R.; Losert, D.; Weissmann, S.; Hahn, V.; Maurer, H.P.; Würschum, T. Multiple-line cross QTL mapping for grain yield and thousand kernel weight in triticale. Plant Breed. 2016, 135, 567–573. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Lv, C.; Guo, B.; Xu, R. Combining ability of different agronomic traits and yield components in hybrid barley. PLoS ONE 2015, 10, e0126828. [Google Scholar] [CrossRef]
- Yu, W.; Tan, X.; Zou, W.; Hu, Z.; Fox, G.P.; Gidley, M.J.; Gilbert, R.G. Relationships between protein content, starch molecular structure and grain size in barley. Carbohydr. Polym. 2017, 155, 271–279. [Google Scholar] [CrossRef]
- Griffey, C.; Brooks, W.; Kurantz, M.; Thomason, W.; Taylor, F.; Obert, D.; Moreau, R.; Flores, R.; Sohn, M.; Hicks, K. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production. J. Cereal Sci. 2010, 51, 41–49. [Google Scholar] [CrossRef]
- Sallam, A.; Amro, A.; Elakhdar, A.; Dawood, M.F.; Moursi, Y.S.; Baenziger, P.S. Marker–trait association for grain weight of spring barley in well-watered and drought environments. Mol. Biol. Rep. 2019, 46, 2907–2918. [Google Scholar] [CrossRef]
- Mahalingam, R. Analysis of the Barley Malt Rootlet Proteome. Int. J. Mol. Sci. 2020, 21, 179. [Google Scholar] [CrossRef] [Green Version]
- Neylon, E.; Arendt, E.K.; Lynch, K.M.; Zannini, E.; Bazzoli, P.; Monin, T.; Sahin, A.W. Rootlets, a Malting By-Product with Great Potential. Fermentation 2020, 6, 117. [Google Scholar] [CrossRef]
- Yu, W.; Gilbert, R.G.; Fox, G.P. Malt protein inhibition of β-amylase alters starch molecular structure during barley mashing. Food Hydrocoll. 2020, 100, 105423. [Google Scholar] [CrossRef]
- Yu, W.; Quek, W.P.; Li, C.; Gilbert, R.G.; Fox, G.P. Effects of the Starch Molecular Structures in Barley Malts and Rice Adjuncts on Brewing Performance. Fermentation 2018, 4, 103. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.E.; Stewart, G.G. Free Amino Nitrogen in Brewing. Fermentation 2019, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.M.; Guido, L.F. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.G.; Hill, A.E.; Lekkas, C. Wort FAN—Its characteristics and importance during fermentation. J. Am. Soc. Brew. Chem. 2013, 71, 179–185. [Google Scholar] [CrossRef]
- Stewart, G.G. Saccharomyces species in the Production of Beer. Beverages 2016, 2, 34. [Google Scholar] [CrossRef]
- Niu, C.; Han, Y.; Wang, J.; Zheng, F.; Liu, C.; Li, Y.; Li, Q. Malt derived proteins: Effect of protein Z on beer foam stability. Food Biosci. 2018, 25, 21–27. [Google Scholar] [CrossRef]
- Siebert, K.J. Recent discoveries in beer foam. J. Am. Soc. Brew. Chem. 2014, 72, 79–87. [Google Scholar] [CrossRef]
- Błażewicz, J.; Liszewski, M.; Zembold, A. Technological properties of worts obtained from malts of naked barley grain. Acta Sci. Pol. Technol. Aliment. 2007, 6, 37–48. [Google Scholar]
- Błażewicz, J.; Liszewski, M.; Zembold-Guła, A.; Kozłowska, K.; Szwed, Ł. Liczba Kolbacha jako ważny wskaźnik wartości przetwórczej ziarna jęczmienia browarnego. Fragm. Agron. 2013, 30, 46–53. [Google Scholar]
- Preedy, V.R. Overveiw of Manufacturing Beer: Ingredients, Processes and Quality Criteria. In Beer in Health and Disease Prevention, 1st ed.; Academic Press: London, UK, 2011; pp. 3–16. [Google Scholar]
- Karimi, M.; Kheiralipour, K.; Tabatabaeefar, A.; Khoubakht, G.M.; Naderi, M.; Heidarbeigi, K. The effect of moisture content on physical properties of wheat. Pak. J. Nutr. 2009, 8, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Sologubik, C.A.; Campañone, L.A.; Pagano, A.M.; Gely, M.C. Effect of moisture content on some physical properties of barley. Ind. Crop. Prod. 2013, 43, 762–767. [Google Scholar] [CrossRef]
- Gely, M.C.; Pagano, A.M. Effect of moisture content on engineering properties of sorghum grains. Agric. Eng. Int. CIGR J. 2017, 19, 200–209. [Google Scholar]
- Jung, H.; Lee, Y.J.; Yoon, W.B. Effect of moisture content on the grinding process and powder properties in food: A review. Processes 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Aprodu, I.; Banu, I. Milling, functional and thermo-mechanical properties of wheat, rye, triticale, barley and oat. J. Cereal Sci. 2017, 77, 42–48. [Google Scholar] [CrossRef]
- Virkki, L.; Johansson, L.; Ylinen, M.; Maunu, S.; Ekholm, P. Structural characterization of water-insoluble nonstarchy polysaccharides of oats and barley. Carbohydr. Polym. 2005, 59, 357–366. [Google Scholar] [CrossRef]
- Cassol, L.C.; Piva, J.T.; Soares, A.B.; Assmann, A.L. Yield and structural composition of oat and ryegrass subjected to different periods of cutting and nitrogen fertilization. Rev. Ceres 2011, 58, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Welch, R.W.; Yong, Y.Y. The effects of variety and nitrogen fertiliser on protein production in oats. J. Sci. Food Agric. 1980, 31, 541–548. [Google Scholar] [CrossRef]
- White, E.; Finnan, J. Crop structure in winter oats and the effect of nitrogen on quality-related characters. J. Crop Improv. 2017, 31, 758–779. [Google Scholar] [CrossRef]
- Blazewicz, J.; Liszewski, M. The grain of naked barley of ‘Rastik’ cultivar as a raw material for malts of pilzen type production. Acta Sci. Pol. Technol. Aliment. 2003, 2, 63–74. [Google Scholar]
- Najamuddin, U.; Gorji, S.; Fitzgerald, M. Genotypic variability in the composition of soluble protein from rice bran–opportunities for nutrition. J. Food Compost. Anal. 2021, 103, 104077. [Google Scholar] [CrossRef]
- Nogala-Kałucka, M.; Kawka, A.; Dwiecki, K.; Siger, A. Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products. Acta Sci. Pol. Technol. Aliment. 2020, 19, 405–423. [Google Scholar] [PubMed]
- Rafińska, K.; Pomastowski, P.; Rudnicka, J.; Krakowska, A.; Maruśka, A.; Narkute, M.; Buszewski, B. Bioactive compounds and antioxidant activity of wheat bran and barley husk in the extracts with different polarity. Int. J. Food Prop. 2019, 22, 646–658. [Google Scholar]
- Gasiński, A.; Błażewicz, J.; Kawa-Rygielska, J.; Śniegowska, J.; Zarzecki, M. Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations. Foods 2021, 10, 304. [Google Scholar] [CrossRef]
Abbreviation | Variety | Nitrogen Fertilization [kg N/ha] | Type |
---|---|---|---|
K40G | Kozak (hulled oat) | 40 | Grain |
K60G | Kozak (hulled oat) | 60 | Grain |
K80G | Kozak (hulled oat) | 80 | Grain |
A40G | Amant (naked oat) | 40 | Grain |
A60G | Amant (naked oat) | 60 | Grain |
A80G | Amant (naked oat) | 80 | Grain |
M40G | Maczo (naked oat) | 40 | Grain |
M60G | Maczo (naked oat) | 60 | Grain |
M80G | Maczo (naked oat) | 80 | Grain |
P40G | Polar (naked oat) | 40 | Grain |
P60G | Polar (naked oat) | 60 | Grain |
P80G | Polar (naked oat) | 80 | Grain |
S40G | Siwek (naked oat) | 40 | Grain |
S60G | Siwek (naked oat) | 60 | Grain |
S80G | Siwek (naked oat) | 80 | Grain |
K40M | Kozak (hulled oat) | 40 | Malt |
K60M | Kozak (hulled oat) | 60 | Malt |
K80M | Kozak (hulled oat) | 80 | Malt |
A40M | Amant (naked oat) | 40 | Malt |
A60M | Amant (naked oat) | 60 | Malt |
A80M | Amant (naked oat) | 80 | Malt |
M40M | Maczo (naked oat) | 40 | Malt |
M60M | Maczo (naked oat) | 60 | Malt |
M80M | Maczo (naked oat) | 80 | Malt |
P40M | Polar (naked oat) | 40 | Malt |
P60M | Polar (naked oat) | 60 | Malt |
P80M | Polar (naked oat) | 80 | Malt |
S40M | Siwek (naked oat) | 40 | Malt |
S60M | Siwek (naked oat) | 60 | Malt |
S80M | Siwek (naked oat) | 80 | Malt |
K40W | Kozak (hulled oat) | 40 | Wort |
K60W | Kozak (hulled oat) | 60 | Wort |
K80W | Kozak (hulled oat) | 80 | Wort |
A40W | Amant (naked oat) | 40 | Wort |
A60W | Amant (naked oat) | 60 | Wort |
A80W | Amant (naked oat) | 80 | Wort |
M40W | Maczo (naked oat) | 40 | Wort |
M60W | Maczo (naked oat) | 60 | Wort |
M80W | Maczo (naked oat) | 80 | Wort |
P40W | Polar (naked oat) | 40 | Wort |
P60W | Polar (naked oat) | 60 | Wort |
P80W | Polar (naked oat) | 80 | Wort |
S40W | Siwek (naked oat) | 40 | Wort |
S60W | Siwek (naked oat) | 60 | Wort |
S80W | Siwek (naked oat) | 80 | Wort |
Year | Nitrogen Fertilization [kg N/ha] | Amant Grain Yield [t/ha] | Maczo Grain Yield [t/ha] | Siwek Grain Yield [t/ha] | Polar Grain Yield [t/ha] | Kozak Grain Yield [t/ha] |
---|---|---|---|---|---|---|
2018 | 40 | 4.490 | 4.865 | 5.328 | 3.603 | 5.488 |
2018 | 60 | 4.390 | 4.285 | 5.023 | 3.333 | 5.667 |
2018 | 80 | 4.548 | 4.563 | 5.383 | 3.623 | 5.892 |
Average for 2018 | 4.476 | 4.571 | 5.244 | 3.519 | 5.682 | |
2019 | 40 | 3.668 | 3.513 | 3.968 | 3.375 | 4.772 |
2019 | 60 | 4.023 | 3.473 | 4.203 | 4.003 | 5.284 |
2019 | 80 | 4.150 | 3.645 | 4.215 | 4.060 | 5.309 |
Average for 2019 | 3.947 | 3.543 | 4.128 | 3.813 | 5.122 | |
2020 | 40 | 5.268 | 4.550 | 4.205 | 5.120 | 7.408 |
2020 | 60 | 5.390 | 4.730 | 4.195 | 5.173 | 7.765 |
2020 | 80 | 5.440 | 4.743 | 4.640 | 5.208 | 7.839 |
Average for 2020 | 5.366 | 4.674 | 4.347 | 5.167 | 7.671 |
Sample | Protein Content [% w/w; d.m.] 1 | Starch Content [% w/w; d.m.] | Moisture [% w/w] | TGW [g] |
---|---|---|---|---|
K40G | 15.20 ± 0.53 b | 55.43 ± 1.47 ab | 9.53 ± 0.22 ab | 24.23 ± 0.50 abc |
K60G | 14.60 ± 0.48 bc | 55.67 ± 1.37 ab | 9.50 ± 0.19 ab | 25.22 ± 0.44 a |
K80G | 13.97 ± 0.26 c | 55.87 ± 1.20 ab | 9.60 ± 0.18 ab | 24.83 ± 0.49 ab |
A40G | 15.60 ± 0.70 b | 52.20 ± 2.70 cd | 8.90 ± 0.15 d | 22.00 ± 0.69 cdef |
A60G | 15.60 ± 0.54 b | 52.63 ± 2.48 cd | 9.37 ± 0.21 abcd | 21.63 ± 0.55 cdef |
A80G | 16.07 ± 0.52 a | 51.63 ± 2.78 d | 9.67 ± 0.27 a | 22.23 ± 0.42 bcde |
M40G | 15.37 ± 0.72 b | 54.10 ± 2.18 bc | 9.17 ± 0.15 bcd | 20.38 ± 1.48 ef |
M60G | 15.27 ± 0.82 b | 54.70 ± 1.71 bc | 9.40 ± 0.10 abc | 20.43 ± 1.38 ef |
M80G | 15.77 ± 0.69 ab | 54.77 ± 2.02 bc | 9.13 ± 0.12 bcd | 23.09 ± 1.93 abcd |
P40G | 15.33 ± 1.21 b | 53.63 ± 2.40 bcd | 9.67 ± 0.23 a | 23.81 ± 1.54 abc |
P60G | 15.63 ± 1.22 ab | 53.57 ± 2.35 bcd | 9.30 ± 0.10 abcd | 23.75 ± 0.41 abc |
P80G | 15.20 ± 0.90 b | 53.27 ± 2.40 bcd | 9.27 ± 0.06 abcd | 22.74 ± 0.44 abcde |
S40G | 16.00 ± 0.51 a | 52.60 ± 2.70 cd | 9.00 ± 0.15 cd | 19.92 ± 0.48 f |
S60G | 16.23 ± 0.35 a | 53.63 ± 2.31 bcd | 8.97 ± 0.15 cd | 20.79 ± 0.53 def |
S80G | 16.30 ± 0.26 a | 53.40 ± 2.43 bcd | 9.00 ± 0.08 cd | 21.00 ± 0.87 def |
Sample | Protein Content [% w/w; d.m.] 1 | Soluble Protein Content [% w/w; d.m.] | Kolbach index | Extractivity [%] | Moisture [% w/w] | TGW [g] |
---|---|---|---|---|---|---|
K40M | 10.43 ± 0.24 e | 4.70 ± 0.27 b | 40.16 ± 0.72 ef | 81.07 ± 0.09 d | 3.90 ± 0.06 f | 21.93 ± 0.53 ab |
K60M | 10.33 ± 0.33 e | 4.60 ± 0.26 b | 41.07 ± 0.32 def | 81.27 ± 0.07 cd | 4.10 ± 0.10 f | 22.14 ± 0.62 a |
K80M | 10.50 ± 0.08 e | 4.53 ± 0.28 b | 39.06 ± 0.96 f | 81.63 ± 0.22 abcd | 3.90 ± 0.06 f | 21.59 ± 0.54 ab |
A40M | 11.53 ± 0.59 cd | 5.67 ± 0.02 a | 46.82 ± 2.84 a | 81.50 ± 0.14 abcd | 7.43 ± 0.02 a | 19.04 ± 0.06 de |
A60M | 11.97 ± 0.33 bcd | 5.63 ± 0.02 a | 45.45 ± 1.64 ab | 81.90 ± 0.31 abc | 6.73 ± 0.18 bc | 19.89 ± 0.06 cd |
A80M | 12.20 ± 0.32 bc | 5.63 ± 0.02 a | 44.51 ± 1.39 abcd | 81.83 ± 0.30 abc | 6.93 ± 0.21 ab | 20.87 ± 0.02 bc |
M40M | 12.10 ± 0.48 bc | 5.63 ± 0.02 a | 45.21 ± 2.03 abc | 81.93 ± 0.39 ab | 6.57 ± 0.22 bc | 16.64 ± 0.31 g |
M60M | 12.27 ± 0.52 bc | 5.57 ± 0.04 a | 44.03 ± 1.73 abcde | 81.97 ± 0.39 a | 6.00 ± 0.18 de | 17.21 ± 0.33 fg |
M80M | 12.60 ± 0.53 ab | 5.53 ± 0.06 a | 43.71 ± 1.58 abcde | 81.67 ± 0.22 abcd | 6.03 ± 0.14 de | 18.02 ± 0.59 ef |
P40M | 12.70 ± 0.30 ab | 5.67 ± 0.02 a | 43.04 ± 1.02 abcde | 81.29 ± 0.09 cde | 6.63 ± 0.12 bc | 20.45 ± 0.52 bc |
P60M | 12.73 ± 0.19 ab | 5.53 ± 0.03 a | 41.66 ± 0.17 bcdef | 81.30 ± 0.07 cde | 6.30 ± 0.21 cde | 22.11 ± 0.19 a |
P80M | 13.33 ± 0.17 a | 5.60 ± 0.03 a | 41.34 ± 0.24 cdef | 81.32 ± 0.08 cde | 6.63 ± 0.29 bc | 21.58 ± 0.13 ab |
S40M | 12.30 ± 0.20 bc | 5.57 ± 0.02 a | 43.45 ± 0.83 abcde | 81.87 ± 0.22 abc | 6.00 ± 0.31 de | 19.78 ± 0.58 cd |
S60M | 12.07 ± 0.23 bcd | 5.60 ± 0.01 a | 44.66 ± 1.27 abcd | 81.70 ± 0.20 abcd | 6.37 ± 0.13 cd | 20.66 ± 0.45 bc |
S80M | 11.10 ± 0.16 de | 5.37 ± 0.07 a | 45.18 ± 1.49 abc | 81.73 ± 0.19 abc | 5.83 ± 0.15 e | 19.92 ± 0.67 cd |
Sample | Saccharification Time [min] 1 | Wort pH | Wort Extract Content [%w/w] | Wort Filtration Time [min] | Wort Volume [mL] |
---|---|---|---|---|---|
K40W | 26.67 ± 4.64 a | 5.58 ± 0.22 a | 5.93 ± 0.12 c | 105 ± 7.50 b | 223.33 ± 36.40 a |
K60W | 26.67 ± 5.83 a | 5.55 ± 0.01 a | 6.23 ± 0.20 c | 106.67 ± 6.67 ab | 228.33 ± 34.83 a |
K80W | 26.67 ± 5.83 a | 5.34 ± 0.13 b | 6.13 ± 0.23 c | 110 ± 5 a | 221.67 ± 38.03 a |
A40W | 21.67 ± 3.33 abc | 5.05 ± 0.13 c | 7.12 ± 0.03 b | 110 ± 5 a | 168.33 ± 38.74 c |
A60W | 23.33 ± 3.00 ab | 5.03 ± 0.12 c | 7.14 ± 0.04 b | 110 ± 5 a | 158.33 ± 31.44 d |
A80W | 23.33 ± 3.00 ab | 5.04 ± 0.10 c | 7.15 ± 0.05 b | 108.33 ± 5.83 ab | 156.67 ± 31.37 d |
M40W | 13.33 ± 0.83 d | 5.00 ± 0.11 c | 7.29 ± 0.08 ab | 110 ± 5 a | 171.67 ± 38.58 c |
M60W | 15 cd | 4.98 ± 0.11 c | 7.30 ± 0.08 ab | 108.33 ± 5.83 ab | 175 ± 40.10 bc |
M80W | 16.67 ± 0.83 bcd | 4.99 ± 0.12 c | 7.29 ± 0.07 ab | 108.33 ± 5.83 ab | 168.33 ± 41.69 c |
P40W | 21.67 ± 2.20 abc | 4.99 ± 0.08 c | 7.56 ± 0.08 a | 103.33 ± 8.33 b | 155 ± 45.21 d |
P60W | 16.67 ± 0.83 bcd | 4.99 ± 0.08 c | 7.48 ± 0.14 a | 110 ± 5 a | 203.33 ± 39.06 ab |
P80W | 16.67 ± 0.83 bcd | 5.00 ± 0.08 c | 7.32 ± 0.12 ab | 106.67 ± 6.67 ab | 156.67 ± 41.06 d |
S40W | 13.33 ± 0.83 d | 4.98 ± 0.22 c | 7.04 ± 0.11 b | 96.67 ± 11.67 c | 191.67 ± 40.68 b |
S60W | 13.33 ± 0.83 d | 4.98 ± 0.10 c | 7.03 ± 0.07 b | 110 ± 5 a | 191.67 ± 36.86 b |
S80W | 11.67 ± 0.83 d | 4.96 ± 0.10 c | 7.02 ± 0.10 b | 113.33 ± 3.33 a | 193.33 ± 37.03 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażewicz, J.; Kawa-Rygielska, J.; Leszczyńska, D.; Grabiński, J.; Gasiński, A. Influence of Variety and Nitrogen Fertilization on the Technological Parameters of Special Malts Prepared from Naked and Hulled Oat Varieties. Agronomy 2021, 11, 2566. https://doi.org/10.3390/agronomy11122566
Błażewicz J, Kawa-Rygielska J, Leszczyńska D, Grabiński J, Gasiński A. Influence of Variety and Nitrogen Fertilization on the Technological Parameters of Special Malts Prepared from Naked and Hulled Oat Varieties. Agronomy. 2021; 11(12):2566. https://doi.org/10.3390/agronomy11122566
Chicago/Turabian StyleBłażewicz, Józef, Joanna Kawa-Rygielska, Danuta Leszczyńska, Jerzy Grabiński, and Alan Gasiński. 2021. "Influence of Variety and Nitrogen Fertilization on the Technological Parameters of Special Malts Prepared from Naked and Hulled Oat Varieties" Agronomy 11, no. 12: 2566. https://doi.org/10.3390/agronomy11122566
APA StyleBłażewicz, J., Kawa-Rygielska, J., Leszczyńska, D., Grabiński, J., & Gasiński, A. (2021). Influence of Variety and Nitrogen Fertilization on the Technological Parameters of Special Malts Prepared from Naked and Hulled Oat Varieties. Agronomy, 11(12), 2566. https://doi.org/10.3390/agronomy11122566