Can Seaweed Extract Improve Yield and Quality of Brewing Barley Subjected to Different Levels of Nitrogen Fertilization?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Nitrogen Fertilization Doses, and Biostimulant Characteristics
2.2. Crop Practices
2.3. Experimental Site: Soil and Climate Characteristics
2.4. Growth, Yield Assessments, and Nitrogen Use Efficiency (NUE) Determination
2.5. Grain Quality Determinations
2.6. Satistical Analysis
3. Results
3.1. Growth Parameters
3.2. Yield and Its Components
3.3. Yield Quality
3.4. Nitrogen Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hafez, Y.M.; Abdelaal, K.A.A.; Eid, M.E.; Mehiar, F.F. Morphophysiological and biochemical responses of barley plants (Hordeum vulgare L.) against barley net blotch disease with application of non-traditional compounds and fungicides. Egypt. J. Biol. Pest Control 2016, 26, 261–268. [Google Scholar]
- Hafez, Y.M.; Mourad, R.Y.; Mansour, M.; Abdelaal, K.A.A. Impact of non-traditional compounds and fungicides on physiological and biochemical characters of barely infected with Blumeria graminis f. sp. hordei under field condtitions. Egypt. J. Biol. Pest Control 2014, 24, 445–453. [Google Scholar]
- Food and Agriculture Organization of the United Nations. 2017. Available online: http://www.fao.org/faostat/en/#data (accessed on 15 September 2021).
- Newton, A.C.; Flavell, A.J.; George, T.S.; Leat, P.; Mullholland, B.; Ramsay, L.; Revoredo-Giha, C.; Russell, J.; Steffenson, B.J.; Swanston, J.S.; et al. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011, 3, 141. [Google Scholar] [CrossRef]
- Zavřelová, M.; Psota, V.; Matušinsky, P.; Musilová, M.; Némethová, M. Evaluation of malting quality of spring barley genetic resources from different regions of origin. Kvas. Prum. 2021, 67, 392–402. [Google Scholar] [CrossRef]
- DeSalle, R.; Tattersall, I. Why Brewers Choose Barley. Am. Sci. 2020, 108, 50. [Google Scholar] [CrossRef]
- Dráb, Š.; Psota, V.; Frančáková, H.; Sachambula, L.; Hartmann, J.; Tokár, M. The dependence of malt quality on the variety and year. Kvas. Prum. 2013, 59, 182–189. [Google Scholar] [CrossRef]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for Brewing: Characteristic Changes during Malting, Brewing and Applications of its By-Products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [Green Version]
- E-malt.com. Available online: http://e-malt.com/ (accessed on 15 September 2021).
- Woonton, B.W.; Jacobsen, J.V.; Sherkat, F.; Stuart, I.M. Changes in germination and malting quality during storage of barley. J. Inst. Brew. 2005, 111, 33–41. [Google Scholar] [CrossRef]
- Madhujith, T.; Shahidi, F. Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J. Agric. Food Chem. 2007, 55, 5018–5024. [Google Scholar] [CrossRef]
- Kunze, W. Technology Brewing and Malting, 5th ed.; VLB: Berlin, Germany, 2014.
- Gorash, O.; Klymyshena, R.; Khomina, V.; Vilchynska, L. Ecological and biological conformity of conditions of the brewing barley cultivation zone. Ukr. J. Ecol. 2020, 10, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Przulj, N.; Momcilovic, V.; Simic, J.; Mirosa Vljevic, M. Effect of growing season and variety on quality of spring two-rowed barley. Genetika 2014, 46, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Prystupa, P.; Peton, A.; Pagano, E.; Ferraris, G.; Ventimiglia, L.; Loewy, T.; Gomez, F.; Gutierrez-Boem, F.H. Grain hordein content and malt quality as affected by foliar nitrogen fertilisation at heading. J. Inst. Brew. 2021, 127, 224–231. [Google Scholar] [CrossRef]
- Briggs, D.E. Malts and Malting; Blackie Academic & Professional: Birmingham, UK, 1998; p. 786. [Google Scholar]
- Fox, G.P. Chemical composition in barley grains and malt quality. In Genetics and Improvement of Barley Malt Quality; Springer: Berlin/Heidelberg, Germany, 2009; pp. 63–98. [Google Scholar]
- Bishop, L.R. The Institute of Brewing Research Scheme. Statistical studies of the analytical data accumulated in the course of the barley investigations I. The prediction of extract. J. Inst. Brew. 1930, 36, 421–434. [Google Scholar] [CrossRef]
- Magliano, P.N.; Prystupa, P.; Gutiérrez-Boem, F.H. Protein content of grains of different size fractions in malting barley. J. Inst. Brew. 2014, 120, 347–352. [Google Scholar] [CrossRef]
- Beillouin, D.; Leclère, M.; Barbu, C.M.; Bénézit, M.; Trépos, R.; Gauffreteau, A.; Jeuffroy, M.H. Azodyn-Barley, a winter-barley crop model for predicting and ranking genotypic yield, grain protein and grain size in contrasting pedoclimatic conditions. Agric. For. Meteorol. 2018, 262, 237–248. [Google Scholar] [CrossRef]
- Frančáková, H.; Líšková, M.; Bojňanská, T.; Mareček, J. Germination index as an indicator of malting potential. Czech J. Food Sci. 2012, 30, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Båga, M.; Rossnagel, B.G.; Legge, W.G.; Chibbar, R.N. Identification of quantitative trait loci for β-glucan concentration in barley grain. J. Cereal Sci. 2008, 48, 647–655. [Google Scholar] [CrossRef]
- Pascari, X.; Ramos, A.J.; Marín, S.; Sanchís, V. Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Res. Int. 2018, 103, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Roggero, P.P.; Fontana, F.; Casa, R.; Ronga, D. Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crop. Rese 2019, 241, 107559. [Google Scholar] [CrossRef]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; Richter, D.D.B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Malt, U.K. The Maltsers’ Association of Great Britain 2019. Available online: https://www.ukmalt.com/ (accessed on 16 September 2021).
- HGCA. Introductory Guide to Malting Barley; HGCA, Caledonia House: London, UK, 2001; p. 24. [Google Scholar]
- Prystupa, P.; Peton, A.; Pagano, E.; Gutierrez Boem, F.H. Sulphur fertilization of barley crops improves malt extract and fermentability. J. Cereal Sci. 2019, 85, 228–235. [Google Scholar] [CrossRef]
- Janković, S.; Glamočlija, D.; Maletić, R.; Rakić, S.; Hristov, N.; Ikanović, J. Effects of nitrogen fertilization on yield and grain quality in malting barley. Afr. J. Biotechnol. 2011, 10, 19534–19541. [Google Scholar]
- O’Donovan, J.T.; Turkington, T.K.; Edney, M.J.; Clayton, G.W.; McKenzie, R.H.; Juskiw, P.E.; Lafond, G.P.; Grant, C.A.; Brandt, S.; Harker, K.N.; et al. Seeding rate, nitrogen rate, and cultivar effects on malting barley production. Agron. J. 2011, 103, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Liebman, M.; Davis, A.S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 2000, 40, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.O.; Berlyn, G.P. The Use of Organic Biostimulants to Help Low Input Sustainable agriculture. J. Sustain. Agric. 1990, 1, 19–42. [Google Scholar] [CrossRef]
- Hamza, B.; Suggars, A. Biostimulants: Myths and realities. Turfgrass Trends 2001, 10, 6–10. [Google Scholar]
- Kauffman, G.L.; Kneivel, D.P.; Watschke, T.L. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop. Sci. 2007, 47, 261–267. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Conti, S.; Cozzolino, E.; Melchionna, G.; Ottaiano, L.; Testa, A.; Sabatino, L.; Rouphael, Y.; Mori, M. Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects. Agronomy 2021, 11, 342. [Google Scholar] [CrossRef]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 2021, 16, 1825. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Rayireth, U.; Subramanian, S.; Jithesh, M.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Featonby-Smith, B.C.; Van Staden, J. Effects of seaweed concentrate on grain yield in barley. S. Afr. J. Bot. 1987, 53, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, K.; Adamczewski, K. Wpływ bioregulatora Kelpak na plonowanie roślin uprawnych. (Influence of bioregulator Kelpak on yield of cereals and other crops). Prog. Plant Prot. 2006, 46, 102–108. (In Polish) [Google Scholar]
- Burchett, S.; Fuller, M.P.; Jellings, A.J. Application of seaweed extract improves winter hardiness of winter barley cv Igri. In The Society for Experimental Biology, Annual Meeting, The York University; Springer: Berlin/Heidelberg, Germany, 1998; ISSN 1430-34-8. [Google Scholar]
- Available online: http://www.agricoltura.regione.campania.it/concimazione/pdf/GUIDA2012.pdf (accessed on 20 November 2018).
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Colla, G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.M. Total nitrogen In: Black, C.A.; Evans, D.D.; White, I.L.; Ensminger, L.E.; Clark, F.E. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Am. Soc. Agron. Madison 1965, 9, 1149–1178. [Google Scholar]
- Simonne, A.H.; Simonne, E.H.; Eitenmiller, R.R.; Mills, H.A.; Cresman Iii, C.P. Could the Dumas method replace the Kjeldahl digestion for nitrogen and crude protein determinations in foods? J. Sci. Food Agric. 1997, 73, 39–45. [Google Scholar] [CrossRef]
- STATISTA. Available online: https://www.statista.com/statistics/716481/cultivated-area-for-barley-in-italy/ (accessed on 15 September 2021).
- Dordas, C. Nitrogen nutrition index and leaf chlorophyll concentration and its relationship with nitrogen use efficiency in barley (Hordeum vulgare L.). J. Plant Nutr. 2017, 40, 1190–1203. [Google Scholar] [CrossRef]
- Szczepanek, M.; Jaśkiewicz, B.; Kotwica, K. Response of barley on seaweed biostimulant application. Res. Rural. Dev. 2018, 2, 77–85. [Google Scholar]
- Moll, R.H.; Kamprath, E.L.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Le Gouis, J.; Delebarre, O.; Beghin, D.; Heumez, E.; Pluchard, P. Nitrogen uptake and utilisation efficiency of two-row and six-row winter barley cultivars grown at two N levels. Eur. J. Agron. 1999, 20, 73–79. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Sayre, R.K.D.; Rajaram, S.; McMahon, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 1997, 37, 898–904. [Google Scholar] [CrossRef]
- Barraclough, P.B.; Howarth, J.R.; Jones, J.; Lopez-Bellido, R.; Parmar, S.; Shepherd, C.E.; Hawkesford, M.J. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. Eur. J. Agron. 2010, 33, 1–11. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Sylvester-Bradley, R.; Scott, R.K. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertiliser nitrogen. J. Agric. Sci. 1998, 130, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Goñi, O.; Łangowski, Ł.; Feeney, E.; Quille, P.; O’Connell, S. Reducing Nitrogen Input in Barley Crops While Maintaining Yields Using an Engineered Biostimulant Derived From Ascophyllum nodosum to Enhance Nitrogen Use Efficiency. Front. Plant Sci. 2021, 12, 789. [Google Scholar] [CrossRef]
- Yan, M.; Pan, G.; Lavallee, J.M.; Conant, R.T. Rethinking sources of nitrogen to cereal crops. Glob. Chang. Biol. 2020, 26, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Ottaiano, L.; Di Mola, I.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Biostimulant Application under Different Nitrogen Fertilization Levels: Assessment of Yield, Leaf Quality, and Nitrogen Metabolism of Tunnel-Grown Lettuce. Agronomy 2021, 11, 1613. [Google Scholar] [CrossRef]
- Lopez-Bellido, R.J.; Lopez-Bellido, L. Efficiency of nitrogen in wheat under Mediterranean conditions: Effect of tillage, crop rotation and nitrogen fertilization. Field Crop. Res. 2001, 71, 31–46. [Google Scholar] [CrossRef]
- Albrizio, R.; Todorovic, M.; Matic, T.; Stellacci, A.M. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crop. Res. 2010, 115, 179–190. [Google Scholar] [CrossRef]
- Sifola, M.I.; Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Piccirillo, G.; del Piano, L.; Mori, M. Yield Response, Quality Traits, and Nitrogen-Use Efficiency of a Burley Tobacco Crop Grown in Mediterranean Areas (Southern Italy) as Affected by Intensive N Management. Agronomy 2021, 11, 1837. [Google Scholar] [CrossRef]
- Marino, M.A.; Mazzanti, A.; Assuero, S.G.; Gastal, F.; Echeverria, H.E.; Andrade, F. Nitrogen dilution curves and nitrogen use efficiency during winter-spring growth of annual ryegrass. Agron. J. 2004, 96, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Parisi, M.; Pentangelo, A.; Mori, M.; Di Mola, I. Effects of nitrogen management on biomass production and dry matter distribution of processing tomato cropped in southern Italy. Agronomy 2019, 9, 855. [Google Scholar] [CrossRef] [Green Version]
Parameters | Unit | I Year | II Year |
---|---|---|---|
Texture | |||
-Coarse sand | % | 35.9 | 35.5 |
-Fine sand | % | 43.1 | 43.9 |
-Silt | % | 12.0 | 11.7 |
-Clay | % | 9.0 | 8.9 |
N-total (Kjeldahl method) | % | 0.177 | 0.188 |
P2O5 (Olsen method) | ppm | 103.5 | 377.8 |
K2O (Tetraphenylborate method) | ppm | 671.7 | 1130.6 |
Organic matter (Bichromate method) | % | 4.17 | 3.62 |
N-NO3 | ppm | 17.76 | 66.00 |
N-NH4 | ppm | 19.06 | 29.89 |
pH | 7.45 | 7.43 | |
Electrical conductivity | dS m−1 | 0.212 | 0.220 |
Significance | Culms % | Leaves % | Spikes % | Yield | Biomass | Height | HI | Spike nb. m−2 |
---|---|---|---|---|---|---|---|---|
Year (Y) | 0.01 | ns | 0.01 | 0.01 | 0.01 | 0.01 | ns | 0.01 |
Biostimulant (B) | ns | ns | ns | 0.01 | 0.01 | 0.05 | ns | 0.05 |
Fertilization (F) | ns | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ns | 0.01 |
Y × B | ns | ns | ns | ns | ns | ns | ns | ns |
Y × F | ns | ns | ns | 0.05 | ns | ns | ns | ns |
B × F | ns | ns | ns | ns | 0.05 | 0.05 | ns | 0.05 |
Y × B × F | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | Biomass t ha−1 | Plant Height cm | HI % | Spikes n° m−2 | |
---|---|---|---|---|---|
Bio | N0 | 6.9 ± 0.6 c | 59.7 ± 2.6 c | 34.4 ± 1.2 | 361.5 ± 23.9 b |
N20 | 10.5 ± 1.3 a | 73.2 ± 2.2 ab | 35.1 ± 1.8 | 567.3 ± 46.0 a | |
N40 | 11.6 ± 1.2 a | 79.4 ± 2.6 a | 36.9 ± 3.1 | 619.1 ± 23.5 a | |
N60 | 11.6 ± 1.0 a | 76.8 ± 3.3 a | 37.1 ± 1.5 | 635.7 ± 30.5 a | |
Control | N0 | 6.9 ± 0.6 c | 61.2 ± 3.1 c | 32.9 ± 1.4 | 390.6 ± 27.1 b |
N20 | 7.4 ± 0.4 bc | 65.7 ± 2.9 bc | 34.3 ± 2.9 | 433.1 ± 20.4 b | |
N40 | 9.8 ± 0.8 ab | 72.4 ± 1.9 ab | 34.3 ± 1.7 | 553.3 ± 42.4 a | |
N60 | 11.1 ± 0.7 a | 78.2 ± 2.5 a | 40.1 ± 1.7 | 625.9 ± 29.0 a | |
I Year | 8.3 ± 1.7 b | 66.5 ± 2.3 b | 35.4 ± 1.7 | 489.4 ± 33.9 b | |
II Year | 10.6 ± 0.9 a | 75.1 ± 2.6 a | 35.8 ± 1.2 | 557.3 ± 37.5 a |
Significance | 1000 Seeds Weight | Protein Content | Germinability | Hectolitre Mass | Kernel Diameter | NUE |
---|---|---|---|---|---|---|
Year (Y) | ns | 0.01 | ns | 0.01 | ns | 0.01 |
Biostimulant (B) | 0.05 | 0.01 | ns | 0.01 | 0.05 | 0.01 |
Fertilization (F) | 0.01 | 0.05 | ns | 0.01 | 0.01 | ns |
Y × B | ns | ns | ns | ns | ns | ns |
Y × F | ns | ns | ns | ns | ns | ns |
B × F | ns | ns | ns | ns | ns | ns |
Y × B × F | ns | ns | ns | ns | ns | ns |
Significance | 1000 Seeds Weight g | Protein Content % | Germinability % | Hectolitre Mass kg hL−1 | Kernel Diameter mm |
---|---|---|---|---|---|
I Year | 41.7 ± 1.2 | 8.8 ± 0.3 b | 84.5 ± 1.6 | 66.3 ± 1.1 b | 3.45 ± 0.05 |
II Year | 42.5 ± 0.6 | 12.6 ± 0.5 a | 81.5 ± 1.4 | 69.3 ± 0.6 a | 3.49 ± 0.04 |
Bio | 42.9 ± 0.8 a | 11.8 ± 0.6 a | 81.3 ± 1.5 | 69.1 ± 0.7 a | 3.51 ± 0.05 a |
Control | 41.3 ± 1.0 b | 9.5 ± 0.4 b | 84.7 ± 1.4 | 66.6 ± 1.1 b | 3.43 ± 0.03 b |
N0 | 39.6 ± 1.0 b | 9.6 ± 0.8 b | 86.3 ± 2.1 | 64.9 ± 1.2 b | 3.36 ± 0.06 c |
N20 | 40.7 ± 1.9 b | 10.1 ± 0.8 b | 83.5 ± 1.8 | 66.3 ± 1.2 b | 3.44 ± 0.06 bc |
N40 | 42.9 ± 0.7 ab | 10.8 ± 0.9 b | 81.7 ± 1.9 | 69.1 ± 1.3 a | 3.50 ± 0.05 ab |
N60 | 45.1 ± 0.7 a | 12.1 ± 0.7 a | 80.5 ± 2.2 | 71.2 ± 0.7 a | 3.59 ± 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, E.; Di Mola, I.; Ottaiano, L.; Nocerino, S.; Sifola, M.I.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Can Seaweed Extract Improve Yield and Quality of Brewing Barley Subjected to Different Levels of Nitrogen Fertilization? Agronomy 2021, 11, 2481. https://doi.org/10.3390/agronomy11122481
Cozzolino E, Di Mola I, Ottaiano L, Nocerino S, Sifola MI, El-Nakhel C, Rouphael Y, Mori M. Can Seaweed Extract Improve Yield and Quality of Brewing Barley Subjected to Different Levels of Nitrogen Fertilization? Agronomy. 2021; 11(12):2481. https://doi.org/10.3390/agronomy11122481
Chicago/Turabian StyleCozzolino, Eugenio, Ida Di Mola, Lucia Ottaiano, Sabrina Nocerino, Maria Isabella Sifola, Christophe El-Nakhel, Youssef Rouphael, and Mauro Mori. 2021. "Can Seaweed Extract Improve Yield and Quality of Brewing Barley Subjected to Different Levels of Nitrogen Fertilization?" Agronomy 11, no. 12: 2481. https://doi.org/10.3390/agronomy11122481
APA StyleCozzolino, E., Di Mola, I., Ottaiano, L., Nocerino, S., Sifola, M. I., El-Nakhel, C., Rouphael, Y., & Mori, M. (2021). Can Seaweed Extract Improve Yield and Quality of Brewing Barley Subjected to Different Levels of Nitrogen Fertilization? Agronomy, 11(12), 2481. https://doi.org/10.3390/agronomy11122481