A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm
Abstract
:1. Introduction
Deep Learning
2. Materials and Methods
2.1. Location and Description of the Study Area
2.2. Dataset Preparation
2.3. Classification Model
2.4. Performance Validation
2.5. Conventional Image Processing
2.6. Implementation Requirements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindell, C.A.; Steensma, K.M.; Curtis, P.D.; Boulanger, J.R.; Carroll, J.E.; Burrows, C.; Linz, G.M. Proportions of bird damage in tree fruits are higher in low-fruit-abundance contexts. Crop Prot. 2016, 90, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Bhusal, S.; Khanal, K.; Karkee, M.; Steensma, K.; Taylor, M.E. Unmanned aerial systems (UAS) for mitigating bird damage in wine grapes. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Bomford, M.; Sinclair, R. Australian research on bird pests: Impact, management and future directions. Emu 2002, 102, 29–45. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Data Base; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Sehhatisabet, M.E.; Abdi, F.; Ashoori, A.; Khaleghizadeh, A.; Khani, A.; Rabiei, K.; Shakiba, M. Preliminary assessment of distribution and population size of overwintering Little Bustards Tetrax tetraxin Iran. Bird Conserv. Int. 2012, 109, 123–132. [Google Scholar]
- Suárez-Seoane, S.; de la Morena, E.L.G.; Prieto, M.B.M.; Osborne, P.E.; de Juana, E. Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution. Ecol. Modell. 2008, 219, 17–29. [Google Scholar] [CrossRef]
- Iñigo, A.; Barov, B. Action Plan for the Little Bustard Tetrax tetrax in the European Union; SEO|BirdLife BirdLife International European Commission: London, UK, 2010. [Google Scholar]
- Khaleghizadeh, A.; Khormali, S.; Taghizadeh, M. Effects of agronomic methods on reducing bird damage to rapeseed. Ir. Res. Inst. Plant Prot. 2015, 12. (In Persian) [Google Scholar] [CrossRef]
- Ponjoan, A.; Bota, G.; Mañosa, S. Sisó Tetrax tetrax. In Atles dels Ocells Nidificants de Catalunya; Herrando, S., Brotons, L., Estrada, J., Guallar, S., Anton, M., Eds.; Institut Català d’Ornitologia/Lynx Edicions: Bellaterra, Spain, 2011; pp. 242–243. [Google Scholar]
- Halse, S.A.; Trevenen, H.J. Damage to cereal crops by larks in north-western Iraq. Ann. Appl. Biol. 1986, 108, 423–430. [Google Scholar] [CrossRef]
- Green, R.E. Food selection by skylarks: The effect of a pesticide on grazing preferences. Bird Probl. Agric. 1980, 180–187. [Google Scholar]
- Edgar, W.H.; Isaacson, A.J. Observations on skylark damage to sugar beet and lettuce seedlings in East Anglia. Ann. Appl. Biol. 1974, 76, 335–337. [Google Scholar] [CrossRef]
- Nilsson, L.; Bunnefeld, N.; Persson, J.; Månsson, J. Large grazing birds and agriculture—predicting field use of common cranes and implications for crop damage prevention. Agric. Ecosyst. Environ. 2016, 219, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Senar, J.C.; Domènech, J.; Arroyo, L.; Torre, I.; Gordo, O. An evaluation of monk parakeet damage to crops in the metropolitan area of Barcelona. Anim. Biodiv. Conserv. 2016, 39, 141–145. [Google Scholar] [CrossRef]
- Canavelli, S.B.; Branch, L.C.; Cavallero, P.; González, C.; Zaccagnini, M.E. Multi-level analysis of bird abundance and damage to crop fields. Agric. Ecosyst. Environ. 2014, 197, 128–136. [Google Scholar] [CrossRef]
- Shwiff, S.A.; Ernest, K.L.; Degroot, S.L.; Anderson, A.M.; Shwiff, S.S. The Economic Impact of Blackbird Damage to Crops; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Robinson, C.; Mort, N. A neural network system for the protection of citrus crops from frost damage. Comput. Electron. Agric. 1997, 16, 177–187. [Google Scholar] [CrossRef]
- Zhou, J.; Pavek, M.J.; Shelton, S.C.; Holden, Z.J.; Sankaran, S. Aerial multispectral imaging for crop hail damage assessment in potato. Comput. Electron. Agric. 2016, 127, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Zappone, A.; Di Renzo, M.; Debbah, M. Wireless networks design in the era of deep learning: Model-based, AI-based, or both? IEEE Trans. Commun. 2019, 67, 7331–7376. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Matthew, D.; Fergus, R. Visualizing and understanding convolutional neural networks. In ECCV 2014: Computer Vision–ECCV 2014, Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Pattanayak, S. Pro Deep Learning with TensorFlow; Apress: Bangalore, Karnataka, India, 2017. [Google Scholar]
- Azizi, A.; Abbaspour-Gilandeh, Y.; Vannier, E.; Dusséaux, R.; Mseri-Gundoshmian, T.; Moghaddam, H.A. Semantic segmentation: A modern approach for identifying soil clods in precision farming. Biosyst. Eng. 2020, 196, 172–182. [Google Scholar] [CrossRef]
- Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649. [Google Scholar]
- Hamid, M.S.; Abd Manap, N.; Hamzah, R.A.; Kadmin, A.F. Stereo Matching Algorithm based on Deep Learning: A Survey. J. King Saud Univ. Comput. Inf. Sci. 2020, in press. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, P.; Nielsen, L.N.; Steen, K.A.; Jørgensen, R.N.; Karstoft, H. DeepAnomaly: Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors 2016, 16, 1904. [Google Scholar] [CrossRef] [Green Version]
- Steen, K.A.; Christiansen, P.; Karstoft, H.; Jørgensen, R.N. Using deep learning to challenge safety standard for highly autonomous machines in agriculture. J. Imaging 2016, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.; Xu, J. Image classification of crop diseases and pests based on deep learning and fuzzy system. Int. J. Data Warehous. Min. 2000, 16, 34–47. [Google Scholar] [CrossRef]
- Tetila, E.C.; Machado, B.B.; Astolfi, G.; de Souza Belete, N.A.; Amorim, W.P.; Roel, A.R.; Pistori, H. Detection and classification of soybean pests using deep learning with UAV images. Comput. Electron. Agric. 2020, 179, 105836. [Google Scholar] [CrossRef]
- Sardogan, M.; Tuncer, A.; Ozen, Y. Plant leaf disease detection and classification based on CNN with LVQ algorithm. In Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Herzegovina, 20–23 September 2018; pp. 382–385. [Google Scholar]
- Trivedi, J.; Shamnani, Y.; Gajjar, R. Plant leaf disease detection using machine learning. In Proceedings of the International Conference on Emerging Technology Trends in Electronics Communication and Networking, Surat, India, 7–8 February 2020; pp. 267–276. [Google Scholar]
- Gandhi, R.; Nimbalkar, S.; Yelamanchili, N.; Ponkshe, S. May. Plant disease detection using CNNs and GANs as an augmentative approach. In Proceedings of the 2018 IEEE International Conference on Innovative Research and Development, Bangkok, Thailand, 11–12 May 2018; pp. 1–5. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. Imagenet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for Deep Learning. arXiv 2018, arXiv:1811.03378. [Google Scholar]
- Luo, P.; Wang, X.; Shao, W.; Peng, Z. Understanding regularization in batch normalization. arXiv 2018, arXiv:1809.00846, 1. [Google Scholar]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Khalil, M.; Ayad, H.; Adib, A. Performance evaluation of feature extraction techniques in MR-Brain image classification system. Procedia Comput. Sci. 2018, 127, 218–225. [Google Scholar] [CrossRef]
- Azizi, A.; Abbaspour-Gilandeh, Y.; Nooshyar, M.; Afkari-Sayah, A. Identifying potato varieties using machine vision and artificial neural networks. Int. J. Food Prop. 2016, 19, 618–635. [Google Scholar] [CrossRef]
- Azizi, A.; Gilandeh, Y.A.; Mesri-Gundoshmian, T.; Saleh-Bigdeli, A.A.; Moghaddam, H.A. Classification of soil aggregates: A novel approach based on deep learning. Soil Tillage Res. 2020, 199, 104586. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Udupi, V.R.; Patil, S.B. Convolutional neural networks for leaf image-based plant disease classification. IAES Int. J. Artif. Intell. 2019, 8, 328–341. [Google Scholar] [CrossRef]
- Nachtigall, L.G.; Araujo, R.M.; Nachtigall, G.R. Classification of Apple Tree Disorders Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA, USA, 6–8 November 2016; pp. 472–476. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, M.; Sinha, A.; Gupta, S.K.; Mishra, D.; Mishra, R. Potato crop disease classification using convolutional neural network. In Proceedings of the Smart Systems and IoT: Innovations in Computing, Jaipur, India, 18–20 January 2019; pp. 391–400. [Google Scholar]
- Alencastre-Miranda, M.; Johnson, R.M.; Krebs, H.I. Convolutional neural networks and transfer learning for quality inspection of different sugarcane varieties. IEEE Trans. Ind. Inform. 2020, 17, 787–794. [Google Scholar] [CrossRef]
- Ajdadi, F.R.; Abbaspour-Gilandeh, Y.A.; Mollazade, K.; Hasanzadeh, R.P. Application of machine vision for classification of soil aggregate size. Soil Tillage Res. 2016, 162, 8–17. [Google Scholar] [CrossRef]
Undamaged | Partially Damaged | Fully Damaged | |
---|---|---|---|
# of plants inside the frame | 14–18 | 14–18 | less than 14 |
# of leaves per a plant | 9–10 | 2–8 | less than 2 |
Convolutional Layers | Parameters |
---|---|
1 | 3 × 3 Conv. 64, Stride 1, BN, ReLU |
2 | 3 × 3 Conv. 64, Stride 1, BN, ReLU, 2 × 2 Max-pool |
3 | 3 × 3 Conv. 128, Stride 1, BN, ReLU |
4 | 3 × 3 Conv. 128, Stride 1, BN, ReLU, 2 × 2 Max-pool |
5 | 3 × 3 Conv. 256, Stride 1, BN, ReLU |
6 | 3 × 3 Conv. 256, Stride 1, BN, ReLU |
7 | 3 × 3 Conv. 256, Stride 1, BN, ReLU, 2 × 2 Max-pool |
8 | 3 × 3 Conv. 512, Stride 1, BN, ReLU, |
9 | 3 × 3 Conv. 512, Stride 1, BN, ReLU |
10 | 3 × 3 Conv. 512, Stride 1, BN, ReLU, 2 × 2 Max-pool |
11 | 3 × 3 Conv. 512, Stride 1, BN, ReLU |
12 | 3 × 3 Conv. 512, Stride 1, BN, ReLU |
13 | 3 × 3 Conv. 512, Stride 1, BN, ReLU, 2 × 2 Max-pool |
Deep Neural Network | Learning Rate | # Epochs | Optimizer Type | Mini-Batch Size | Learning Rate Drop Period | Learning Rate Drop Factor | L2regularization |
---|---|---|---|---|---|---|---|
Vgg16 | 0.002 | 100 | Adam | 4 | 20 | 0.7 | 0.005 |
ResNet50 | 0.001 | 100 | Adam | 8 | 8 | 0.6 | 0.0002 |
Actual Classes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Vgg16 | ResNet50 | Conventional IP | |||||||
Undamaged | Partially Damaged | Fully Damaged | Undamaged | Partially Damaged | Fully Damaged | Undamaged | Partially Damaged | Fully Damaged | |
Undamaged | 36 | 1 | 0 | 37 | 0 | 0 | 35 | 2 | 0 |
Partially damaged | 1 | 32 | 4 | 0 | 35 | 2 | 2 | 24 | 11 |
Fully damaged | 0 | 1 | 36 | 0 | 0 | 37 | 0 | 9 | 28 |
Class | Vgg16 | ResNet50 | Conventional IP Method | ||||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | |
Undamaged | 98.2 | 97.3 | 97.3 | 100 | 100 | 100 | 96.4 | 94.6 | 94.6 |
Partially damaged | 93.7 | 86.5 | 94.1 | 98.2 | 94.6 | 100 | 78.4 | 64.9 | 68.6 |
Fully-damaged | 95.5 | 97.3 | 90 | 98.2 | 100 | 94.9 | 82.0 | 75.7 | 71.8 |
Overall accuracy | 93.7 | 98.2 | 78.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzazadeh, A.; Azizi, A.; Abbaspour-Gilandeh, Y.; Hernández-Hernández, J.L.; Hernández-Hernández, M.; Gallardo-Bernal, I. A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm. Agronomy 2021, 11, 2364. https://doi.org/10.3390/agronomy11112364
Mirzazadeh A, Azizi A, Abbaspour-Gilandeh Y, Hernández-Hernández JL, Hernández-Hernández M, Gallardo-Bernal I. A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm. Agronomy. 2021; 11(11):2364. https://doi.org/10.3390/agronomy11112364
Chicago/Turabian StyleMirzazadeh, Ali, Afshin Azizi, Yousef Abbaspour-Gilandeh, José Luis Hernández-Hernández, Mario Hernández-Hernández, and Iván Gallardo-Bernal. 2021. "A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm" Agronomy 11, no. 11: 2364. https://doi.org/10.3390/agronomy11112364
APA StyleMirzazadeh, A., Azizi, A., Abbaspour-Gilandeh, Y., Hernández-Hernández, J. L., Hernández-Hernández, M., & Gallardo-Bernal, I. (2021). A Novel Technique for Classifying Bird Damage to Rapeseed Plants Based on a Deep Learning Algorithm. Agronomy, 11(11), 2364. https://doi.org/10.3390/agronomy11112364