Effects of NaCl on Hydroponic Cultivation of Reichardia picroides (L.) Roth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Growth Analysis
2.3. Leaf Sampling and Extraction
2.4. Chlorophylls and Carotenoids
2.5. Antocyanins and Flavonol Glycosides
2.6. Total Phenols
2.7. Antioxidant Capacity
2.8. Nitrates
2.9. Statistical Analysis
3. Results
3.1. Plant Growth and Crop Yield
3.2. Leaf Nitrate Content
3.3. Antioxidant Capacity and Compounds
4. Discussion
4.1. Plant Growth and Crop Yield
4.2. Leaf Nitrate Content
4.3. Antioxidant Capacity and Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saysel, A.K.; Barlas, Y. A dynamic model of salinization on irrigated lands. Ecol. Model. 2001, 139, 177–199. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Reis, M.; Coelho, L.; Santos, G.; Kienle, U.; Beltrão, J. Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agric. Water Manag. 2015, 152, 217–221. [Google Scholar] [CrossRef]
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, P.; Mishra, J.; Arora, N.K. Plant growth promoting bacteria for combating salinity stress in plants—recent developments and prospects: A review. Microbiol. Res. 2021, 252, 126861. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Kyriacou, M.C. Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Front. Plant Sci. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Prohens, J.; Burruezo, A.R.; Nuez, F. New crops: An alternative for the development of horticulture. J. Food Agric. Env. 2003, 1(1), 75–79. [Google Scholar]
- Garcia-Oliveira, P.; Barral, M.; Carpena, M.; Gullón, P.; Fraga-Corral, M.; Otero, P.; Prieto, M.A.; Simal-Gandara, J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct. 2021, 12, 2850–2873. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, H.N.; Rau, M.R.; Fett-Neto, A.G. Oxidative stress and production of bioactive monoterpene indole alkaloids: Biotechnological implications. Biotechnol. Lett. 2014, 36, 191–200. [Google Scholar] [CrossRef]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different phenolic compounds activate distinct human bitter taste receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef]
- Ghirardini, M.P.; Carli, M.; del Vecchio, N.; Rovati, A.; Cova, O.; Valigi, F.; Agnetti, G.; Macconi, M.; Adamo, D.; Traina, M.; et al. The importance of a taste. A comparative study on wild food plant consumption in twenty-one local communities in Italy. J. Ethnobiol. Ethnomed. 2007, 3, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchio, R.; Cavallo, C.; Cicia, G.; Del Giudice, T. Are (All) Consumers Averse to Bitter Taste? Nutrients 2019, 11, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.; Jobling, J.; Rogers, G. Some perspectives on rocket as a vegetable crop: A review. Veg. Crop. Res. Bull. 2012, 76, 21–41. [Google Scholar] [CrossRef]
- Long, C.L.; Li, H.; Ouyang, Z.; Yang, X.; Li, Q.; Trangmar, B. Strategies for agrobiodiversity conservation and promotion: A case from Yunnan, China. Biodivers. Conserv. 2003, 12, 1145–1156. [Google Scholar] [CrossRef]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; López-Serrano, M.; Egea-Gilabert, C. An agroindustrial compost as alternative to peat for production of baby leaf red lettuce in a floating system. Sci. Hortic. 2019, 246, 907–915. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Venturi, F.; Taglieri, I.; Ferroni, G.; Guidi, L. Comparison of three domestications and wild-harvested plants for nutraceutical properties and sensory profiles in five wild edible herbs: Is domestication possible? Foods 2020, 9, 1065. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364. [Google Scholar] [CrossRef]
- Maggini, R.; Benvenuti, S.; Leoni, F.; Pardossi, A. Terracrepolo (Reichardia picroides (L.) Roth.): Wild food or new horticultural crop? Sci. Hortic. 2018, 240, 224–231. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Petropoulos, S.A. Impact of salinity on the growth and chemical composition of two underutilized wild edible greens: Taraxacum officinale and Reichardia picroides. Horticulturae 2021, 7, 160. [Google Scholar] [CrossRef]
- Lichtentahler, H.K.; Buschmann, C. Chlorophylls and carotenoids; Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4-3. [Google Scholar] [CrossRef]
- Hrazdina, G.; Marx, G.A.; Hoch, H.C. Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum sativum L.) leaves—anthocyanins and flavonol glycosides. Plant Physiol. 1982, 70, 745–748. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.M.; Saltveit, M.E. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agr. Food Chem. 2002, 50, 7536–7541. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.A.; Haroon, M.H.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 1750. [Google Scholar] [CrossRef]
- Letchamo, W.; Gosselin, A. Root and shoot growth and chlorophyll content of Taraxacum officinale provenances as affected by defoliation and debudding under organic and hydroponic cultivation. J. Hortic. Sci. 1995, 70, 279–285. [Google Scholar] [CrossRef]
- Dorais, M.; Papadopoulos, A.P.; Luo, X.; Leonhart, S.; Gosselin, A.; Pedneault, K.; Angers, P.; Gaudreau, L. Soilless greenhouse production of medicinal plants in north Eastern Canada. Acta Hortic. 2001, 554, 297–303. [Google Scholar] [CrossRef]
- Léonhart, S.; Pedneault, K.; Gosselin, A.; Angers, P.; Papadopoulos, A.P.; Dorais, M. Diversification of greenhouse crop production under supplemental lighting by the use of new cultures with high economic potential. Acta Hortic. 2002, 580. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/nitrites in food—risk for nitrosative stress and benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, A.; Gladwin, M.; Coleman, G.D.; Hord, N.; Howard, G.; Kim-Shapiro, D.B.; Lajous, M.; Larsen, F.J.; Lefer, D.J.; McClure, L.A.; et al. Dietary Nitrate and the Epidemiology of Cardiovascular Disease: Report from a National Heart, Lung, and Blood Institute Workshop. J. Am. Heart Assoc. 2016, 5, e003402. [Google Scholar] [CrossRef] [PubMed]
- The European Commission. Commission Regulation (EU) No. 1258/2011 amending Regulation (EC) No. 1881/2006 as regards maximum levels for nitrates in food stuffs. O. J. Eur. Union 2011, L320, 15–17. [Google Scholar]
- Santamaria, P.; Gonnella, M.; Elia, A.; Parente, A.; Serio, F. Ways of reducing rocket salad nitrate content. Acta Hortic. 2001, 548, 529–536. [Google Scholar] [CrossRef]
- Savo, V.; Salomone, F.; Mattoni, E.; Tofani, D.; Caneva, G. Traditional Salads and Soups with Wild Plants as a Source of Antioxidants: A Comparative Chemical Analysis of Five Species Growing in Central Italy. Evid.-Based Complementary Altern. Med. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, A.A.; Marandos, E.; Assimakopoulou, A.; Vidalis, N.; Petropoulos, S.A.; Karapanos, I.C. Effect of nutrient solution pH on the growth, yield and quality of Taraxacum officinale and Reichardia picroides in a floating hydroponic system. Agronomy 2021, 11, 1118. [Google Scholar] [CrossRef]
Sampling Time | NaCl (mM) | Leaf Number | Leaf Biomass | Root Biomass | ||
---|---|---|---|---|---|---|
FW (g) | DW (g) | FW (g) | DW (g) | |||
Four weeks | 1.7 (Control) | 76 ± 18 a | 60.79 ± 18.99 a | 4.932 ± 0.857 a | 10.84 ± 1.35 a | 0.910 ± 0.113 a |
25 | 68 ± 16 a | 47.94 ± 18.12 a | 4.541 ± 0.956 a | 13.13 ± 1.26 a | 1.030 ± 0.229 a | |
50 | 77 ± 11 a | 46.14 ± 5.73 ab | 4.164 ± 0.817 a | 10.69 ± 1.89 a | 0.893 ± 0.172 a | |
100 | 40 ± 8 b | 22.38 ± 5.75 b | 2.545 ± 0.270 b | 9.10 ± 2.68 a | 0.780 ± 0.262 a | |
Six weeks | 1.7 (Control) | 85 ± 18 a | 84.43 ± 14.70 a | 8.697 ± 1.549 a | 15.64 ± 2.76 a | 1.560 ± 0.165 a |
25 | 79 ± 14 ab | 62.23 ± 10.43 b | 6.590 ± 0.970 ab | 17.06 ± 3.47 a | 1.570 ± 0.300 a | |
50 | 71 ± 8 ab | 53.53 ± 16.82 b | 6.355 ± 1.004 b | 19.79 ± 5.63 a | 2.063 ± 0.267 a | |
100 | 57 ± 10 b | 26.70 ± 12.02 c | 2.841 ± 0.900 c | 7.94 ± 3.89 b | 0.747 ± 0.278 b | |
Main effects | ||||||
Four weeks | 65 a | 44.31 b | 4.046 b | 10.94 b | 0.903 b | |
Six weeks | 73 a | 56.72 a | 5.977 a | 15.11 a | 1.395 a | |
1.7 (Control) | 81 a | 72.61 a | 6.568 a | 13.24 a | 1.235 a | |
25 | 74 a | 55.08 a | 5.566 a | 15.10 a | 1.300 a | |
50 | 74 a | 49.83 ab | 5.259 a | 15.24 a | 1.299 a | |
100 | 49 b | 24.54 b | 2.693 b | 8.52 b | 0.763 b | |
2-way ANOVA | ||||||
NaCl concentration | ** | *** | *** | *** | * | |
Time | ns | * | *** | *** | ** | |
Interaction | ns | ns | ns | ns | Ns |
Sampling Time | NaCl (m) | Water Content | Total Chlorophylls (mg/kg FW) | Carotenoids (mg/kg FW) | Anthocyanins (mg Cy-3-glu/kg FW) | Flavonol Glycosides (mg Qu-3-glu/ kg FW) | Total Phenols | Antioxidant Capacity | ||
---|---|---|---|---|---|---|---|---|---|---|
Folin-Ciocalteu (mg GAE/ kg FW) | Phenol Index (A320/g FW) | FRAP (mmol Fe(II)/ kg FW) | DPPH (% Inhibition/ g FW) | |||||||
Four weeks | 1.7 (Control) | 0.922 ± 0.010 a | 390 ± 130 a | 86.8 ± 26.6 b | 21.69 ± 2.46 a | 698 ± 81 b | 1167 ± 0.301 b | 7.22 ± 1.29 a | 7.28 ± 1.93 c | 24.57 ± 3.48 a |
25 | 0.916 ± 0.012 a | 383 ± 102 a | 92.6 ± 34.7 b | 22.28 ± 4.42 a | 703 ± 185 b | 1314 ± 0.174 ab | 7.28 ± 1.50 a | 9.14 ± 1.49 bc | 25.22 ± 2.48 a | |
50 | 0.922 ± 0.007 a | 427 ± 39 a | 139.7 ± 83.6 a | 27.01 ± 3.64 a | 1240 ± 248 a | 1823 ± 0.308 a | 12.04 ± 1.50 a | 12.75 ± 1.79 ab | 33.56 ± 8.00 a | |
100 | 0.914 ± 0.012 a | 325 ± 70 a | 103.6 ± 14.0 ab | 23.78 ± 2.91 a | 1182 ± 230 a | 1836 ± 0.329 a | 10.27 ± 1.92 a | 13.50 ± 2.70 a | 35.84 ± 6.55 a | |
Six weeks | 1.7 (Control) | 0.897 ± 0.003 a | 394 ± 91 a | 109.2 ± 22.3 ab | 24.71 ± 5.21 b | 870 ± 208 a | 1419 ± 213 b | 8.53 ± 1.87 b | 10.38 ± 1.82 b | 30.06 ± 4.82 b |
25 | 0.894 ± 0.004 a | 346 ± 36 a | 127.4 ± 34.3 a | 40.15 ± 8.42 a | 1342 ± 277 a | 1995 ± 420 ab | 12.66 ± 3.53 ab | 14.68 ± 3.22 a | 42.58 ± 8.12 ab | |
50 | 0.891 ± 0.019 a | 395 ± 111 a | 98.0 ± 22.8 ab | 39.67 ± 6.75 a | 1275 ± 615 a | 1959 ± 685 ab | 12.88 ± 4.56 ab | 14.45 ± 3.93 a | 42.80 ± 11.58 a | |
100 | 0.873 ± 0.015 a | 367 ± 77 a | 78.7 ± 6.3 b | 38.84 ± 5.83 a | 1664 ± 633 a | 2296 ± 664 a | 15.28 ± 5.10 a | 16.25 ± 3.94 a | 47.82 ± 10.08 a | |
Main effects | ||||||||||
Four weeks | 0.919 a | 381 a | 23.69 b | 956 b | 1535 b | 9.20 b | 10.67 b | 29.80 b | ||
Six weeks | 0.889 b | 376 a | 35.84 a | 1288 a | 1917 a | 12.34 a | 13.94 a | 40.82 a | ||
1.7 (Control) | 0.909 a | 392 a | 23.20 b | 784 b | 1293 b | 7.87 b | 8.83 b | 27.32 b | ||
25 | 0.905 a | 365 a | 31.21 ab | 1022 ab | 1655 ab | 9.97 ab | 11.91 ab | 33.90 ab | ||
50 | 0.907 a | 411 a | 33.34 ab | 1258 ab | 1891 ab | 12.46 ab | 13.60 a | 38.18 ab | ||
100 | 0.894 a | 346 a | 31.31 a | 1423 a | 2066 a | 12.78 a | 14.87 a | 41.83 a | ||
2-way ANOVA | ||||||||||
NaCl concentration | ns | ns | ns | ** | * | ** | * | ** | ** | |
Time | *** | ns | ns | *** | * | * | ** | ** | *** | |
Interaction | ns | ns | * | ns | Ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggini, R.; Benvenuti, S.; Leoni, F.; Incrocci, L.; Pardossi, A. Effects of NaCl on Hydroponic Cultivation of Reichardia picroides (L.) Roth. Agronomy 2021, 11, 2352. https://doi.org/10.3390/agronomy11112352
Maggini R, Benvenuti S, Leoni F, Incrocci L, Pardossi A. Effects of NaCl on Hydroponic Cultivation of Reichardia picroides (L.) Roth. Agronomy. 2021; 11(11):2352. https://doi.org/10.3390/agronomy11112352
Chicago/Turabian StyleMaggini, Rita, Stefano Benvenuti, Federico Leoni, Luca Incrocci, and Alberto Pardossi. 2021. "Effects of NaCl on Hydroponic Cultivation of Reichardia picroides (L.) Roth" Agronomy 11, no. 11: 2352. https://doi.org/10.3390/agronomy11112352
APA StyleMaggini, R., Benvenuti, S., Leoni, F., Incrocci, L., & Pardossi, A. (2021). Effects of NaCl on Hydroponic Cultivation of Reichardia picroides (L.) Roth. Agronomy, 11(11), 2352. https://doi.org/10.3390/agronomy11112352