Do AMF and Irrigation Regimes Affect Sweet Pepper Fruit Quality under Open Field Conditions?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Growing Conditions
2.2. Raw Material Collection and Post-Harvest Treatments
2.3. Sample Preparation and Analyses
2.3.1. Dry Matter
2.3.2. Vitamin C
2.3.3. Reducing Sugars
2.3.4. Extract (Total Extract)
2.3.5. Carotenoid
2.3.6. Antioxidant Activity (AA)
2.3.7. Minerals
2.3.8 Preparation of Peppers Fruits Sample
2.3.9. Chemicals
2.4. Statistical Analysis
3. Results
3.1. Fruit Morphological Parameters
3.2. Biological Value of Fruits
4. Discussion
5. Conclusions
- AMF and irrigation affected fruit quality in field-grown sweet peppers beneficially. Biofertilization seems to have a slightly greater effect on the selected morphological parameters than irrigation.
- AMF-inoculated plants produced fruits with a higher weight, length, and width compared to non-inoculated ones, whereas pericarp thickness proved to be a typically cultivar-specific trait that was not affected by the studied factor. Irrigation of peppers resulted in the production of longer and wider fruits.
- Inoculation with AM fungi adversely influenced the biological value and antioxidant activity of the pepper fruits while at the same time increasing the fruit mineral content.
- Irrigation contributed to an increase in the biological value of the peppers, also increasing their antioxidant potential. The level of vitamin C remained an exception and it was highest in the fruits of plants grown without AMF and without irrigation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kraft, K.H.; Brown, C.H.; Nabhan, G.P.; Luedeling, E.; de Jesús Luna Ruiz, J.; d’Eeckenbrugge, G.C.; Hijmans, R.J.; Gepts, P. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl. Acad. Sci. USA 2014, 111, 6165–6170. [Google Scholar] [CrossRef] [Green Version]
- Batiha, G.E.S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A.; et al. Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp.and capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pérez, T.; Gómez-García, M.R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abdel-Razzak, H.; Wahb-Allah, M.A.; Alenazi, M.; Alsadon, A.; Devir, Y.H. Improvement in growth, yield, and fruit quality of three red sweet pepper cultivars by foliar application of humic and salicylic acids. HortTechnology 2019, 29, 170–178. [Google Scholar] [CrossRef]
- Penella, C.; Nebauer, S.G.; López-Galarza, S.; San Bautista, A.; Rodríguez-Burruezo, A.; Calatayud, A. Evaluation of some pepper genotypes as rootstocks in water stress conditions. Hort. Sci. 2014, 41, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Pyshnaya, O.N.; Mamedov, M.I.; Belavkin, E.G.; Kozar, E.G.; Dzhos, E.A.; Matyukina, A.A. Resistance of sweet pepper genotypes to abiotic stresses in growing conditions of low-capacity hydroponics. Agric. Biol. 2016, 51, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Ballina-Gómez, H.; Latournerie-Moreno, L.; Ruiz-Sánchez, E.; Pérez-Gutiérrez, A.; Rosado-Lugo, G. Morphological characterization of Capsicum annuum L. accessions from southern Mexico and their response to the Bemisia tabaci-Begomovirus complex. Chil. J. Agric. Res. 2013, 73, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Nkansah, G.O.; Norman, J.C.; Martey, A. Growth, yield and consumer acceptance of sweet pepper (Capsicum annuum L.) as influenced by open field and greenhouse production systems. J. Hortic. 2017, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Pérez, J.J.; Enríquez-Acosta, E.A.; Ramírez-Arrebato, M.A.; Rodríguez-Pedroso, A.T.; Capistrán, L.L.; Hernández-Montiel, L.G. Evaluation of the growth, yield and nutritional quality of pepper fruit with the application of Quitomax. Cien. Inv. Agr. 2019, 46, 23–29. [Google Scholar] [CrossRef]
- Al-Harbi, A.R.; Obadi, A.; Al-Omran, A.M.; Abdel-Razzak, H. Sweet peppers yield and quality as affected by biochar and compost as soil amendments under partial root irrigation. J. Saudi Soc. Agric. Sci. 2020, 19, 452–460. [Google Scholar] [CrossRef]
- Rubio, J.S.; García-Sánchez, F.; Flores, P.; Navarro, J.M.; Martínez, V. Yield and fruit quality of sweet pepper in response to fertilisation with Ca2+ and K+. Span. J. Agric. Res. 2010, 8, 170–177. [Google Scholar] [CrossRef]
- Sobczak, A.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Niedzińska, M. Growth, yield and quality of sweet pepper fruits fertilized with polyphosphates in hydroponic cultivation with LED lighting. Agronomy 2020, 10, 1560. [Google Scholar] [CrossRef]
- Ertek, A.; Sensoy, S.; Küçükyumuk, C. Irrigation scheduling for green pepper (Capsicum annuum L.) grown by field condition by using class A pan evaporation value. Am-Euras. J. Agric. Environ. Sci. 2007, 2, 349–358. [Google Scholar]
- Ismail, S.M. Influence of deficit irrigation on water use efficiency and bird pepper production (Capsicum annuum L.). JKAU Meteorol. Environ. Arid Land Agric. Sci. 2021, 21, 29–43. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Tekin, S.; Eker, S.; Kapur, B. Yield and quality response of drip-irrigated pepper under Mediterranean climatic conditions to various water regimes. Afr. J. Biotechnol. 2011, 10, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Li, G.; Wang, Y.; Huo, H. Bell pepper response to surface and subsurface drip irrigation under different fertigation levels. Irrig. Sci. 2012, 30, 233–245. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Şengül, H.; Baytorun, N.; Daşgan, Y.; Akyildiz, A.; Tekin, S.; Onder, D.; Ağçam, E.; Akhoundnejad, Y.; et al. Comparison of drip- and furrow-irrigated red pepper yield, yield components, quality and net profit generation. Irrig. Drain. 2015, 64, 546–556. [Google Scholar] [CrossRef]
- Gordin, L.C.; de Almeida, C.D.G.C.; Santos Júnior, J.A.; de França e Silva, E.F.; dos Santos Almeida, A.C.; da Silva, G.S.N. Irrigation scheduling techniques and irrigation frequency on capsicum growth and yield. Rev. DYNA 2019, 86, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Rocha, P.A.; Santos, M.R.; Donato, S.L.R.; Brito, C.F.B.; Ávila, J.S. Bell pepper cultivation under different irrigation strategies in soil with and without mulching. Hortic. Bras. 2018, 36, 453–460. [Google Scholar] [CrossRef]
- Stamenković, S.; Beškoski, V.; Karabegović, I.; Lazić, M.; Nikolić, N. Microbial fertilizers: A comprehensive review of current findings and future perspectives. Span. J. Agric. Res. 2018, 16, e09R01. [Google Scholar] [CrossRef] [Green Version]
- Goicoechea, N.; Antolin, M.C. Increased nutritional value in food crops. Microb. Biotechnol. 2017, 10, 1004–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S.; Rabara, R.C.; Negi, S. The future prospect for sustainable agriculture. Physiol. Mol. Plant Pathol. 2018, 10, 36–45. [Google Scholar] [CrossRef]
- Szczałba, M.; Kopta, T.; Gąstoł, M.; Sękara, A. Comprehensive insight into arbuscular mycorrhizal fungi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops. J. Appl. Microbiol. 2019, 127, 630–647. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of organic and conventional management on the nutritional level of vegetables. Sustainability 2020, 12, 8965. [Google Scholar] [CrossRef]
- Jamiołkowska, A.; Skwaryło-Bednarz, B.; Patkowska, E.; Buczkowska, H.; Gałązka, A.; Grządziel, J.; Kopacki, M. Efect of mycorrhizal inoculation and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. Agriculture 2020, 10, 1693. [Google Scholar] [CrossRef]
- Sellitto, V.M.; Golubkina, N.A.; Pietrantonio, L.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Florin, I.; Caruso, G. Tomato yield, quality, mineral composition and antioxidants as affected by beneficial microorganisms under soil salinity induced by balanced nutrient solutions. Agriculture 2019, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Jamiołkowska, A.; Michałek, W. Effect of mycorrhiza inoculation of pepper seedlings (Capsicum annuum L.) on the growth and protection against Fusarium oxysporum infection. Acta Sci. Pol. Hortorum Cultus 2019, 18, 161–169. [Google Scholar] [CrossRef]
- Nahed, M.M.E.S.; El-Sayeda, H.M.E.B.; Tolba, H.I. Response of sweet pepper plants to some organic and bio-fertilizers and its effect on fruit yield and quality. Middle East J. Agric. Res. 2015, 4, 435–445. [Google Scholar]
- Caruso, G.; Stoleru, V.V.; Munteanu, N.C.; Sellitto, V.M.; Teliba, G.C.; Burducea, M.; Tenu, I.; Morano, G.; Butnariu, M. Quality performances of sweet pepper under farming management. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Berova, M.; Karanatsidis, G.; Sapundzhieva, K.; Nikolova, V. Effect of organic fertilization on growth and yield of pepper plants (Capsicum annuum L.). Folia Hortic. 2010, 22, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Buczkowska, H.; Sałata, A. Inoculation with arbuscular mycorrhizal fungi (AMF) and plant irrigation with yield –forming factors in organic sweet pepper (Capsicum annuum L.) cultivation. Acta Sci. Pol. Hortorum Cultus 2020, 19, 125–138. [Google Scholar] [CrossRef]
- Bonini, P.; Rouphael, Y.; Miras-Moreno, B.; Lee, B.; Cardarelli, M.; Erice, G.; Cirino, V.; Lucini, L.; Colla, G. A microbial-based biostimulant enhances sweet pepper performance by metabolic reprogramming of phytohormone profile and secondary metabolism. Front. Plant Sci. 2020, 11, 567388. [Google Scholar] [CrossRef]
- Duc, N.H.; Mayer, Z.; Pék, Z.; Helyes, L.; Posta, K. Combined inoculation of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Trichoderma spp. for enhancing defense enzymes and yield of three pepper cultivars. Appl. Ecol. Environ. Res. 2017, 15, 1815–1829. [Google Scholar] [CrossRef]
- Buczkowska, H.; Michałojć, Z.; Konopińska, J.; Kowalik, P. Content of macroand microelements in sweet pepper fruits depending on foliar feeding with calcium. J. Elem. 2014, 20, 261–272. [Google Scholar] [CrossRef]
- Najda, A.; Klimek, K.; Buczkowska, H.; Balant, S.; Wrzesińska-Jędrusiak, E.; Piekarski, W. Effect of ozonated water on the content of bioactive phenolic compounds and shelf-life of fresh coriander (Coriandrum sativum L.). Przem. Chem. 2019, 98, 1286–1289. [Google Scholar] [CrossRef]
- Lees, R. Food Analysis: Analytical and Quality Control Methods for the Manufacturer and Buyer; Leonard Hill Books: London, UK, 1975; pp. 145–146. [Google Scholar]
- Polski Komitet Normalizacyjny. PN-90/A-75101.02. Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań Fizykochemicznych. Oznaczanie Zawartości Ekstraktu Ogólnego. (Fruit and Vegetable Preserves. Preparation of Samples and Methods of Physicochemical tests. Determination of the Total Extract Content); Polski Komitet Normalizacyjny: Warsaw, Poland, 2002. [Google Scholar]
- Mínguez-Mosquera, M.I.; Jaren-Galán, M.; Garrido-Fernández, J. Color quality in paprika. J. Agric. Food Chem. 1992, 40, 2384–2388. [Google Scholar] [CrossRef]
- Chin, Y.G.; Duh, P.D.; Chuang, D.Y. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000, 70, 437–441. [Google Scholar]
- Balog, A.; Loxdale, H.D.; Balint, J.; Benedek, K.; Szabo, K.A.; Janosi-Rancz, K.T.; Domokos, E. The arbuscular mycorrhizal fungus Rhizophagus irregularis affects arthropod colonization on sweet pepper in both the field and greenhouse. J. Pest. Sci. 2017, 90, 935–994. [Google Scholar] [CrossRef]
- Adamec, S.; Andrejiová, A. Mycorrhiza and stress tolerance of vegetables: A review. Acta Hortic. Regiotect. 2018, 2, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, A.M.; El-Shraiy, A.M.; Ghoname, A.A. Mitigation of Salt Stress Negative Effects on Sweet Pepper Using Arbuscular Mycorrhizal Fungi (AMF), Bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanz. 2017, 69, 91–102. [Google Scholar] [CrossRef]
- Regvar, M.; Vogel-Mikuš, K.; Ševerkar, T. Effect of AMF inoculum from field isolates on the yield of green pepper, parsley, carrot, and tomato. Folia Geobot. 2003, 38, 223–234. [Google Scholar] [CrossRef]
- Castillo, C.R.; Sotomayor, L.S.; Ortiz, C.O.; Leonelli, G.C.; Borie, F.B.; Rubio, R.H. Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annuum L.). Chillean J. Agric. Res. 2009, 69, 79–87. [Google Scholar]
- Lodhi, A.S.; Kaushal, A.; Singh, K.G. Impact of irrigation regimes on growth, yield and water use efficiency of sweet pepper. Indian J. Sci. Technol. 2014, 7, 790–794. [Google Scholar] [CrossRef]
- Adeoye, P.; Adesiji, R.A.; Oloruntade, A.J.; Njemanze, C.F. Effect of irrigation intervals on growth and yield of bell pepper (Capsicum annuum) in a Tropical Semi-arid Region. Am. J. Exp. Agric. 2014, 4, 515–524. [Google Scholar] [CrossRef]
- Inculet, C.S.; Mihalache, G.; Sellitto, V.M.; Hlihor, R.M.; Stoleru, V. The effects of a microorganisms-based commercial product on the morphological, biochemical and yield of tomato plants under two different water regimes. Microorganisms 2019, 7, 706. [Google Scholar] [CrossRef] [Green Version]
- Sensoy, S.; Demir, S.; Turkmen, O.; Erdinc, C.; Savur, O.C. Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Sci. Hort. 2007, 113, 92–95. [Google Scholar] [CrossRef]
Years | Soil Humidity (%) | Soil Density (g cm−3) | Total Porosity (%) | Mineral Components (mg dcm−3) | pH | Salinity (mgKCl dcm−3) | ||||
---|---|---|---|---|---|---|---|---|---|---|
N-NO3 | P | K | Ca | Mg | ||||||
2016 | 18.2 | 1.47 | 43.2 | 40 | 90 | 160 | 1540 | 110 | 6.7 | 0.30 |
2017 | 16.3 | 1.48 | 42.9 | 25 | 68 | 140 | 1280 | 95 | 6.4 | 0.25 |
2018 | 18.0 | 1.47 | 43.4 | 37 | 75 | 128 | 1480 | 105 | 6.5 | 0.17 |
Treatment | Average Fruit Weight (g) | Average Pericarp Thickness (mm) | Average Fruit Length (cm) | Average Fruit Width (cm) | Shape Ratio |
---|---|---|---|---|---|
AMF and irrigation | 136.7 ± 1.8 a | 5.3 ± 0.6 a | 10.7 ± 1.6 a | 6.9 ± 0.9 a | 1.55 |
AMF and non-irrigation | 30.9 ± 2.5 a | 5.0 ± 0.6 b | 10.9 ± 1.7 a | 7.1 ± 1.4 a | 1.54 |
non-AMF and irrigation | 121.1 ± 2.8 b | 5.0 ± 0.2 b | 10.0 ± 1.3 b | 6.5 ± 1.0 b | 1.54 |
non-AMF and non irrigation | 124.2 ± 3.0 b | 5.0 ± 0.3 b | 10.2 ± 0.9 b | 6.6 ± 1.0 b | 1.55 |
Mean for AMF | 133.8 ± 2.3 A | 5.1 ± 0.6 A | 10.8 ± 1.6 A | 7.0 ± 1.1 A | 1.54 |
Mean for non-AMF | 122.7 ± 2.9 B | 5.0 ± 0.2 A | 10.1 ± 1.1 B | 6.5 ± 1.0 B | 1.55 |
Mean for irrigation | 128.9 ± 2.5 A | 5.1 ± 0.5 A | 10.8 ± 1.5 A | 6.7 ± 0.9 A | 1.55 |
Mean for non-irrigation | 127.5 ± 2.7 A | 5.0 ± 0.4 A | 10.1 ± 1.4 B | 6.9 ± 1.2 B | 1.54 |
Treatment | Dry Matter (%) | Vitamin C (mg·100 g−1 FM) | Reducing Sugars (g·100 g−1 FM) | Extract (%) | Carotenoids (mg·100 g−1 FM) | DPPH• (%) |
---|---|---|---|---|---|---|
AMF and irrigation | 7.11 ± 0.57 b | 110.96 ± 9.44 c | 4.84 ± 0.07 a | 7.52 ± 0.14 a | 3.32 ± 0.11 c | 63.4 ± 6.2 d |
AMF and non-irrigation | 6.65 ± 0.34 c | 135.31 ± 4.23 a | 4.17 ± 0.16 d | 7.19 ± 0.81 b | 2.37 ± 0.09 d | 64.6 ± 3.4 b |
non-AMF and irrigation | 7.40 ± 0.29 a | 118.82 ± 6.89 b | 4.33 ± 0.24 c | 7.53 ± 0.31 a | 4.64 ± 0.15 a | 69.7 ± 1.2 a |
non-AMF and non irrigation | 7.37 ± 0.31 a | 134.10 ± 4.23 a | 4.78 ± 0.10 b | 7.60 ± 0.71 a | 3.50 ± 0.10 b | 64.2 ± 1.4 c |
Mean for AMF | 6.88 ± 0.52 B | 123.13 ± 15.29 B | 4.51 ± 0.37 B | 7.35 ± 0.59 B | 2.85 ± 0.11 B | 64.0 ± 4.9 B |
Mean for non-AMF | 7.36 ± 0.29 A | 126.46 ± 9.60 A | 4.56 ± 0.29 A | 7.56 ± 0.54 A | 4.07 ± 0.16 A | 67.0 ± 3.1 A |
Mean for irrigation | 7.26 ± 0.47 A | 114.89 ± 9.03 B | 4.59 ± 0.31 A | 7.52 ± 0.24 A | 3.98 ± 0.15 A | 66.5 ± 5.4 A |
Mean for non-irrigation | 7.01 ± 0.49 B | 134.71 ± 6.69 A | 4.48 ± 0.34 B | 7.40 ± 0.77 B | 2.94 ± 0.11 B | 64.4 ± 2.5 B |
Treatment | Macro and Micronutrients (mg·100 g−1 FM) | |||||
---|---|---|---|---|---|---|
P | K | Ca | Mg | Fe | Na | |
AMF and irrigation | 32.10 ± 2.96 a | 187.49 ± 3.76 b | 14.96 ± 0.50 a | 10.96 ± 0.18 a | 0.29 ± 0.04 b | 1.22 ± 0.17 b |
AMF and non-irrigation | 30.64 ± 1.60 b | 190.86 ± 4.00 a | 12.56 ± 0.44 c | 10.52 ± 0.23 c | 0.25 ± 0.06 c | 1.14 ± 0.05 c |
non-AMF and irrigation | 31.01 ± 1.60 b | 190.61 ± 4.95 a | 14.14 ± 0.45 b | 10.84 ± 0.38 b | 0.33 ± 0.06 a | 1.44 ± 0.20 a |
non-AMF and non irrigation | 27.10 ± 2.08 c | 148.50 ± 2.69 c | 12.92 ± 0.82 c | 9.51 ± 0.20 d | 0.26 ± 0.02 c | 0.84 ± 0.31 d |
Mean for AMF | 31.37 ± 2.95 A | 189.18 ± 4.09 A | 13.80 ± 1.29 A | 10.74 ± 0.31 A | 0.27 ± 0.05 B | 1.18 ± 0.13 A |
Mean for non-AMF | 29.05 ± 2.79 B | 169.55 ± 2.93 B | 13.53 ± 0.90 A | 10.17 ± 0.75 B | 0.29 ± 0.06 A | 1.14 ± 0.40 A |
Mean for irrigation | 31.56 ± 2.34 A | 189.05 ± 9.10 A | 14.55 ± 0.692 A | 10.90 ± 0.29 A | 0.31 ± 0.05 A | 1.33 ± 0.21 A |
Mean for non-irrigation | 28.87 ± 3.08 B | 169.68 ± 2.65 B | 12.79 ± 0.64 B | 10.02 ± 0.57 B | 0.25 ± 0.04 B | 0.99 ± 0.26 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzyńska-Wierdak, R.; Buczkowska, H.; Sałata, A. Do AMF and Irrigation Regimes Affect Sweet Pepper Fruit Quality under Open Field Conditions? Agronomy 2021, 11, 2349. https://doi.org/10.3390/agronomy11112349
Nurzyńska-Wierdak R, Buczkowska H, Sałata A. Do AMF and Irrigation Regimes Affect Sweet Pepper Fruit Quality under Open Field Conditions? Agronomy. 2021; 11(11):2349. https://doi.org/10.3390/agronomy11112349
Chicago/Turabian StyleNurzyńska-Wierdak, Renata, Halina Buczkowska, and Andrzej Sałata. 2021. "Do AMF and Irrigation Regimes Affect Sweet Pepper Fruit Quality under Open Field Conditions?" Agronomy 11, no. 11: 2349. https://doi.org/10.3390/agronomy11112349
APA StyleNurzyńska-Wierdak, R., Buczkowska, H., & Sałata, A. (2021). Do AMF and Irrigation Regimes Affect Sweet Pepper Fruit Quality under Open Field Conditions? Agronomy, 11(11), 2349. https://doi.org/10.3390/agronomy11112349