Reduction of Nitrogen Losses in Winter Wheat Grown on Light Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Measurements and Determinations
Crop Sampling
2.3. Data and Statistical Analysis
If F ≥ C; Yd = Ymax = a + b × C
2.4. Data from Survey Research
3. Results
3.1. Descriptive Statistics for Experimental Data
3.2. Effect of N Rate on Yield
3.3. Effect of N Rate on Gross Margin
3.4. Effect of N Rates on NUE and Ns Values
3.5. Effect of N Rates on Yield-Scaled N Losses
3.6. Data Optimization for NUE and N Rate Targets
3.7. Nitrogen Indicators for Farm Fields
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marschner, H.; Kirkby, E.A.; Cakmak, I. Effects of mineral nutrition status on shoot-root partitioning of photo assimilates and cycling of mineral nutrients. J. Exp. Bot. 1996, 47, 1255–1263. [Google Scholar] [CrossRef]
- Muller, N.B.; Gerber, J.S.; Johnson, M.; Ray, D.K.; Ramankuty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.S.; Rosiello, R.O.P. Mineral nitrogen in plant physiology and plant nutrition. Crit. Rev. Plant Sci. 1995, 14, 111–148. [Google Scholar] [CrossRef]
- Vojvodic, A.; Medford, A.J.; Studt, F.; Pedersen, F.A.; Khan, T.S.; Bligaard, T.; Nørskov, J.K. Exploring the limits: A low pressure, low-temperature Haber-Bosch process. Chem. Phys. Lett. 2014, 598, 108–112. [Google Scholar] [CrossRef]
- Smill, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Wood Production; MIT Press: Cambridge, MA, USA, 2004; p. 360. [Google Scholar]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, S.P.; Seitzinger, L.A.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizzetti, B. (Eds.) The European nitrogen Assessment: Sources, Eeffects and Policy Perspectives; Cambridge University Press: Cambridge, MA, USA, 2011; pp. 1–607. [Google Scholar]
- Jones, L.; Provins, A.; Holland, M.; Mills, G.; Hayes, F.; Emmetta, B.; Halla, J.; Sheppard, L.; Smith, R.; Sutton, M.; et al. A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst. Serv. 2014, 7, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- OECD. Gross Nitrogen Balances. Handbook. OECD and EUROSTAT. 2007. Available online: https://www.oecd.org/greengrowth/sustainable-agriculture/40820234.pdf (accessed on 1 October 2021).
- Piccoli, I.; Sartori, F.; Polese, R.; Borin, M.; Berti, A. Can long-term experiments predict real field N and P balance and system sustainability? Results from maize, winter wheat, and soybean trials using mineral and organic fertilisers. Agronomy 2021, 11, 1472. [Google Scholar] [CrossRef]
- McLellan, E.L.; Cassman, K.G.; Eagle, A.J.; Woodbury, P.B.; Sela, S.; Tonitto, C.; Marjerison, R.D.; van Es, H.M. The nitrogen balancing act: Tracking the environmental performance of food production. BioScience 2018, 68, 194–203. [Google Scholar] [CrossRef]
- Schulte-Uebbing, L.; de Vries, W. Reconciling food production and environmental boundaries for nitrogen in the European Union. Sci. Total Environ. 2021, 786, 147427. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef] [PubMed]
- EU Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE) an Indicator for the Utilization of Nitrogen in Food Systems; Wageningen University, Alterra: Wageningen, The Netherlands, 2015. [Google Scholar]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. 2013, 368, 20130165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, R.; Caraco, N.; Jordan, T.; et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen Cycling in the North Atlantic Ocean and Its Watersheds; Howarth, R.W., Ed.; Springer: Dordrecht, The Netherlands, 1996; pp. 75–139. [Google Scholar]
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- De Vries, W.; Schulte-Uebbing, L.; Kros, H.; Voogd, J.C.; Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 2021, 786, 147283. [Google Scholar] [CrossRef]
- Van Grinsven, H.J.M.; Spiertz, J.H.J.; Westhoek, H.J.; Bouwman, A.F.; Erisman, J.W. Nitrogen use and food production in European regions from a global perspective. J. Agric. Sci. 2014, 152, S9–S19. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M.; Lassaletta, L.; Jensen, L.S.; Godinot, O.; Brentrup, F.; Buckley, C.; Foray, S.; Hvid, S.K.; Oenema, J.; Richards, K.G.; et al. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric. Syst. 2020, 177, 102689. [Google Scholar] [CrossRef]
- Young, M.D.; Ros, G.H.; de Vries, W. Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis. Agric. Ecosyst. Environ. 2021, 319, 107551. [Google Scholar] [CrossRef]
- Oenema, O.; Witzke, H.P.; Klimont, Z.; Lesschen, J.P.; Velthof, G.L. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric. Ecosyst. Environ. 2009, 133, 280–288. [Google Scholar] [CrossRef]
- Snyder, C.S.; Davidson, E.A.; Smith, P.; Venterea, R.T. Agriculture: Sustainable crop and animal production to help mitigate nitrous oxide emissions. Curr. Opin. Environ. Sustain. 2014, 9–10, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Snyder, C.S. Enhanced nitrogen fertiliser technologies support the “4R” concept to optimise crop production and minimise environmental losses. Soil Res. 2017, 55, 463. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A Review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Jin, Y.; Chen, J.; Yu, K.; Zheng, Y.; Wu, S.; Liu, S.; Zou, J. Nitrogen use efficiency exhibits a trade-off relationship with soil N2O and NO emissions from wheat-rice rotations receiving manure substitution. Geoderma 2021, 403, 115374. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Toosi, E.R.; Guber, A.K.; Ostrom, N.E.; Yu, J.; Azeem, K.; Rivers, M.L.; Robertson, G.P. Hotspots of soil N2O emission enhanced through water absorption by plant residue. Nat. Geosci. 2017, 10, 496–500. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Genetic variation in traits for nitrogen use efficiency in wheat. J. Exp. Bot. 2017, 68, 2627–2632. [Google Scholar] [CrossRef]
- Silva, J.V.; van Ittersum, M.K.; ten Berge, H.F.M.; Spätjens, L.; Tenreiro, T.R.; Niels, P.R.; Anten, N.P.R.; Reidsma, P. Agronomic analysis of nitrogen performance indicators in intensive arable cropping systems: An appraisal of big data from commercial farms. Field Crop. Res. 2021, 269, 108176. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Helmut Wagentrist, H. Efficiency of mineral nitrogen fertilization in winter wheat under Pannonian climate conditions. Agriculture 2020, 10, 541. [Google Scholar] [CrossRef]
- Faber, A.; Jarosz, Z.; Jędrejek, A.; Rutkowska, A. Yield-scaled nitrous oxide emission from soils depending on nitrogen use efficiency characteristics. Pol. J. Environ. Stud. 2019, 28, 3155–3162. [Google Scholar] [CrossRef]
- Lasaletta, L.; Billen, G.; Grizetti, B.; Garnier, J.; Leach, A.M.; Galloway, J.N. 50 year trends in nitrogen use efficiency of world cropping systems: The relationships between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 9. [Google Scholar] [CrossRef]
- Kühling, I.; Beiküfner, M.; Vergara, M.; Trautz, D. Effects of adapted N-fertilisation strategies on nitrate leaching and yield performance of arable crops in North-Western Germany. Agronomy 2021, 11, 64. [Google Scholar] [CrossRef]
- Meissner, R.; Rupp, H.; Seeger, J.; Schonert, P. Influence of mineral fertilizers and different soil types on nutrient leaching: Results of lysimeter studies in East Germany. Land Degrad. Dev. 1995, 6, 163–170. [Google Scholar] [CrossRef]
- Köhler, K.; Duynisveld, W.H.M.; Böttcher, J. Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J. Plant Nutr. Soil Sci. 2006, 169, 185–195. [Google Scholar] [CrossRef]
- Pondel, H.; Ruszkowska, M.; Sykut, S.; Terelak, H. Leaching of fertilizer nutrients from cultivated soils based on researches carried out by the Institute of Soil Science and Cultivation of Plants. Roczniki Gleboznawcze 1991, XLII (¾), 97–107. (In Polish) [Google Scholar]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors That influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Fowler, D.; Steadman, C.E.; Stevenson, D.; Coyle, M.; Rees, R.M.; Skiba, U.M.; Sutton, M.A.; Cape, J.N.; Dore, A.J.; Vieno, M.; et al. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys. 2015, 15, 13849–13893. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Smith, P.; Williams, M. Emissions of nitrous oxide from agriculture: Responses to management and climate change. In Understanding Greenhouse Gas Emissions from Agricultural Management; American Chemical Society (ACS): Washington, DC, USA, 2011; pp. 343–370. [Google Scholar]
- Wójcik-Gront, E. Variables influencing yield-scaled global warming potential and yield of winter wheat production. Field Crop. Res. 2018, 227, 19–29. [Google Scholar] [CrossRef]
- Wan, X.; Wu, W.; Liao, Y. Mitigating ammonia volatilization and increasing nitrogen use efficiency through appropriate nitrogen management under supplemental irrigation and rain–fed condition in winter wheat. Agric. Water Manag. 2021, 225, 107050. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, C.; Chen, F.; Qiao, Y.; Du, S.; Cao, C.; Zhang, W. Less N2O emission from newly high-yielding cultivars of winter wheat. Agric. Ecosyst. Environ. 2021, 320, 107557. [Google Scholar] [CrossRef]
- Zhao, X.; Nafziger, E.D.; Pittelkow, C.M. Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize. Environ. Res. Lett. 2017, 12, 124006. [Google Scholar] [CrossRef]
- Bizimana, F.; Timilsina, A.; Dong, W.; Uwamungu, J.Y.; Li, X.; Wang, Y.; Pandey, B.; Qin, S.; Hu, C. Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem. J. Soils Sediments 2021, 21, 1659–1671. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; Van Groenigen, K.J.; Van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Guzman-Bustamante, I.; Winkler, T.; Schulz, R.; Müller, T.; Mannheim, T.; Laso Bayas, J.C.; Ruser, R. N2O emissions from a loamy soil cropped with winter wheat as affected by N-fertilizer amount and nitrification inhibitor. Nutr. Cycl. Agroecosysts. 2019, 114, 173–191. [Google Scholar] [CrossRef]
- Kim, D.-G.; Giltrap, D. Determining optimum nitrogen input rate and optimum yield-scaled nitrous oxide emissions: Theory, field observations, usage, and limitations. Agric. Ecosyst. Environ. 2017, 247, 371–378. [Google Scholar] [CrossRef]
- Swarbreck, S.M.; Wang, M.; Wang, Y.; Kindred, D.; Sylvester-Bradley, R.; Shi, W.; Varinderpal-Singh; Bentley, A.R.; Griffiths, H. A roadmap for lowering crop nitrogen requirement. Trends Plant Sci. 2019, 24, 892–904. [Google Scholar] [CrossRef]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Yang, H. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Nigon, T.J.; Yang, C.; Mulla, D.J.; Kaiser, D.E. Computing uncertainty in the optimum nitrogen rate using a generalized cost function. Comput. Electron. Agric. 2019, 167, 105030. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy. For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020; pp. 1–23. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; COM(2020) 381 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- SegReg: Calculator for Segmented Linear Regression with Breakpoint. Available online: https://www.waterlog.info/segreg.htm (accessed on 1 October 2021).
- Chukalla, A.D.; Reidsma, P.; Michelle, T.H.; van Vliet, M.T.H.; Silva, J.V.; van Ittersum, M.K.; Jomaa, S.; Rode, M.; Merbach, I.; van Oel, P.R. Balancing indicators for sustainable intensification of crop production at field and river basin levels. Sci. Total Environ. 2020, 705, 135925. [Google Scholar] [CrossRef] [PubMed]
- BIOGRACE, Harmonised Calculation of Biofuel Greenhouse Gas Emission in Europe. 2015. Available online: http://www.biograce.net/content/ghgcalculationtools/recognisedtool (accessed on 1 October 2021).
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/4-agriculture/3-d-crop-production-and/view (accessed on 1 October 2021).
- STATGRAPHICS® Centurion XVI User Manual. Available online: https://cdn2.hubspot.net/hubfs/402067/PDFs/user-manual.pdf (accessed on 1 October 2021).
- Evolver. The Genetic Algorithm Solver for Microsoft Excel; Ver. 5.7; Palisade Corp: Ithaca, NY, USA, 2010. [Google Scholar]
- Krasowicz, S.; Stuczyński, T.; Doroszewski, A. Crops production in Poland on the background of the natural, economic and organizational conditions. Studia i Raporty IUNG-PIB 2009, 14, 27–54. (In Polish) [Google Scholar]
- Noworolnik, K. Effect of some soil properties on yielding of winter wheat and winter barley. Acta Agrophys. 2008, 12, 477–485. (In Polish) [Google Scholar]
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). New Food Balances. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 5 October 2021).
- Zhang, S.; Gao, P.; Tong, Y.; Norse, D.; Lu, Y.; Powlson, D. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: A case study from Shaanxi Province, northwest China. Agric. Ecosyst. Environ. 2015, 209, 89–99. [Google Scholar] [CrossRef]
- Weiser, C.; Fuß, R.; Kage, H.; Flessa, H. Do farmers in Germany exploit the potential yield and nitrogen benefits from preceding oilseed rape in winter wheat cultivation? Arch. Agron. Soil Sci. 2017, 64, 1–13. [Google Scholar] [CrossRef]
- Rutkowska, A.; Skowron, P. Productive and environmental consequences of sixteen years of unbalanced fertilization with nitrogen and phosphorus—Trials in Poland with oilseed rape, wheat, maize and barley. Agronomy 2020, 10, 1747. [Google Scholar] [CrossRef]
- OECD. Environmental Performance of Agriculture—Nutrients Balances. OECD Agriculture Statistics (Database). 2021. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics/environmental-performance-of-agriculture-nutrients-balances_d327d2a9-en (accessed on 17 November 2021).
- Eagle, A.J.; McLellan, E.L.; Brawner, E.M.; Chantigny, M.H.; Davidson, E.A.; Dickey, J.B.; Linquist, B.A.; Maaz, T.M.; Pelster, D.E.; Pittelkow, C.M.; et al. Quantifying on-farm nitrous oxide emission reductions in food supply chains. Earths Future 2020, 8, e2020EF001504. [Google Scholar] [CrossRef]
- Zhou, M.; Butterbach-Bahl, K. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant Soil. 2014, 374, 977–991. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Lassaletta, L.; Estellés, F.; Del Prado, A.; Guardia, G.; Abalos, D.; Aguilera, E.; Pardo, G.; Vallejo, A.; Sutton, M.A.; et al. Yield-scaled mitigation of ammonia emission from N fertilization: The Spanish case. Environ. Res. Lett. 2014, 9, 125005. [Google Scholar] [CrossRef]
- Skarżyńska, A. Costs and profitability. Unit costs and income from selected products in 2018: Research results in the Agrokoszty System. Probl. Agric. Econ. 2020, 2, 142–162. [Google Scholar]
Statistics | Yd | Yn | NUE | Ns | Yield-Scaled | GM | |||
---|---|---|---|---|---|---|---|---|---|
Ns | N2O | NH3 | |||||||
Me | 132 | 5.40 | 120 | 97 | 1 | 0.14 | 0.34 | 0.32 | 669 |
MAD | 42 | 1.42 | 38 | 28 | 31 | 5.95 | 0.09 | 0.11 | 227 |
* rMAD | 32 | 26 | 31 | 29 | 3100 | 424 | 26 | 34 | 34 |
Min | 50 | 1.34 | 24 | 37 | −126 | −15.56 | 0.13 | 0.08 | 34 |
Max | 213 | 10.71 | 283 | 340 | 127 | 50.73 | 1.06 | 1.16 | 1517 |
Parameter | Target | F | Yd | NUE | Yield-Scaled | GM | ||
---|---|---|---|---|---|---|---|---|
Ns | N2O | NH3 | ||||||
Data from optimizations | ||||||||
NUE | 90 | 141 | 6.27 | 90 | 0 | 0.25 | 0.26 | 779 |
F | 112 | 112 | 5.07 | 115 | 2.0 | 0.27 | 0.28 | 758 |
Data from regressions | ||||||||
F | Critical F for Yd | 149 | 5.99 | 93 | 3.5 | 0.35 | 0.31 | 693 |
F | Critical F for GM | 112 | 5.26 | 108 | −0.2 | 0.29 | 0.25 | 693 |
Statistics | F | Yd | Yn | NUE | Ns | Yield-Scaled | GM | ||
---|---|---|---|---|---|---|---|---|---|
Ns | N2O | NH3 | |||||||
Me | 111 | 6.00 | 142 | 118 | −26 | −4.2 | 0.30 | 0.23 | 746 |
MAD | 20 | 1.00 | 23 | 18 | 18 | 3.1 | 0.03 | 0.04 | 158 |
rMAD | 18 | 17 | 16 | 15 | −69 | −73.0 | 10 | 17 | 21 |
Min | 38 | 2.50 | 59 | 90 | −111 | −16.1 | 0.16 | 0.08 | 192 |
Max | 241 | 11.00 | 261 | 304 | 15 | 2.0 | 0.37 | 0.33 | 1537 |
Statistics | F | Yd | Yn | NUE | Ns | Yield-Scaled | GM | ||
---|---|---|---|---|---|---|---|---|---|
Ns | N2O | NH3 | |||||||
Me | 151 | 5.00 | 119 | 79 | 27 | 5.5 | 0.41 | 0.37 | 587 |
MAD | 20 | 1.00 | 23 | 6 | 11 | 2.3 | 0.03 | 0.03 | 158 |
rMAD | 13 | 20 | 19 | 8 | 41 | 42 | 7 | 8 | 27 |
Min | 71 | 2.00 | 47 | 36 | 8 | 2.1 | 0.37 | 0.31 | 112 |
Max | 291 | 8.50 | 201 | 89 | 165 | 40.1 | 0.81 | 0.79 | 1142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faber, A.; Jarosz, Z.; Rutkowska, A.; Jadczyszyn, T. Reduction of Nitrogen Losses in Winter Wheat Grown on Light Soils. Agronomy 2021, 11, 2337. https://doi.org/10.3390/agronomy11112337
Faber A, Jarosz Z, Rutkowska A, Jadczyszyn T. Reduction of Nitrogen Losses in Winter Wheat Grown on Light Soils. Agronomy. 2021; 11(11):2337. https://doi.org/10.3390/agronomy11112337
Chicago/Turabian StyleFaber, Antoni, Zuzanna Jarosz, Agnieszka Rutkowska, and Tamara Jadczyszyn. 2021. "Reduction of Nitrogen Losses in Winter Wheat Grown on Light Soils" Agronomy 11, no. 11: 2337. https://doi.org/10.3390/agronomy11112337
APA StyleFaber, A., Jarosz, Z., Rutkowska, A., & Jadczyszyn, T. (2021). Reduction of Nitrogen Losses in Winter Wheat Grown on Light Soils. Agronomy, 11(11), 2337. https://doi.org/10.3390/agronomy11112337