Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewage Sludge Collection and Preparation
2.2. Seedling Transfer
2.3. Sample Collection and Preparation
2.4. Total and Bioavailable Metal Quantification
2.5. pH and Conductivity Analysis
2.6. Total Organic Carbon and Total Nitrogen Determination
2.7. Plant Growth Parameters
2.8. Statistical Analysis
3. Results
3.1. Sewage Sludge Physico-Chemical Characterization
3.2. Plant Growth Performance on Sewage Sludge
3.3. Species Efficiency in Metal Uptake
3.4. Effects of Phytoremediation on Physico-Chemical Parameters
3.5. Metal Removal from Sewage Sludge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grobelak, A.; Czerwińska, K.; Murtaś, A. General considerations on sludge disposal, industrial and municipal sludge. In Industrial and Municipal Sludge, Emerging Concerns and Scope for Resource Recovery; Vara Prasad, M.N., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 135–153. [Google Scholar]
- Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemiere, S. Sanitary and environmental aspects of sewage sludge management. In Industrial and Municipal Sludge, Emerging Concerns and Scope for Resource Recovery; Vara Prasad, M.N., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 155–180. [Google Scholar]
- Siebielska, I. Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures. Water Sci. Technol. 2014, 70, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Goberna, M.; Simón, P.; Hernández, M.T.; García, C. Prokaryotic communities and potential pathogens in sewage sludge: Response to wastewaster origin, loading rate and treatment technology. Sci. Total Environ. 2018, 615, 360–368. [Google Scholar] [CrossRef]
- OECD. Water: Sewage Sludge production and Disposal (Edition 2019). 2020. Available online: https://www.oecd-ilibrary.org/environment/data/oecd-environment-statistics/water-sewage-sludge-production-and-disposal-edition-2019_1900ef98-en (accessed on 3 June 2021).
- Kacprzak, M.; Neczaj, E.; Fijalkowski, K.; Grobelak, A.; Grosser, A.; Worwąg, M.; Rorat, A.; Brattebø, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Akintola, O.; Aderounmu, A.; Abiola, I.; Bodede, I. Remediation potential of Baobab (Adansonia digitata L.) Seedlings grown in sewage sludge contaminated by Heavy Metals. J. Appl. Sci. Environ. Manag. 2019, 23, 1691. [Google Scholar] [CrossRef]
- Kominko, H.; Gorazda, K.; Wzorek, Z. The Possibility of Organo-Mineral Fertilizer Production from Sewage Sludge. Waste Biomass-Valorization 2017, 8, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Eurostat. Sewage Sludge Production and Disposal from Urban Wastewater (in Dry Substance (d.s)). 2015. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=env_ww_spd (accessed on 5 May 2021).
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Directive 86/278/EEC. Protection of the Environment, and in Particular of the Soil, when Sewage Sludge Is Used in Agriculture (12 June 1986). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31986L0278 (accessed on 13 June 2021).
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- D.Lgs. 99/1992. Decreto legislativo n. 99 del 27 Gennaio 1992 (Pubblicato nella Gazzetta Ufficiale n.38 del 15-02-1992). Available online: https://www.gazzettaufficiale.it/eli/id/1992/02/15/092G0139/sg (accessed on 13 June 2021).
- D.Lgs. 109/2018. Decreto Legislativo 28 Settembre 2018, n. 109 (Pubblicato nella Gazzetta Ufficiale n.269 del 19 Novembre 2018). Available online: https://www.gazzettaufficiale.it/eli/id/2018/09/28/18G00137/sg (accessed on 14 June 2021).
- Sorme, L.; Lagerkvist, R. Sources of heavy metals in urban wastewater in Stockholm. Sci. Total Environ. 2002, 298, 131–145. [Google Scholar] [CrossRef]
- Duan, B.; Zhang, W.; Zheng, H.; Wu, C.; Zhang, Q.; Bu, Y. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China. Int. J. Environ. Res. Public Health 2017, 14, 823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Raskin, I. Plant genetic engineering may help with environmental cleanup. Proc. Natl. Acad. Sci. USA 1996, 93, 3164–3166. [Google Scholar] [CrossRef] [Green Version]
- Perrino, E.V.; Brunetti, G.; Farrag, K. Plant Communities in Multi-Metal Contaminated Soils: A Case Study in the National Park of Alta Murgia (Apulia Region - Southern Italy). Int. J. Phytoremediation 2014, 16, 871–888. [Google Scholar] [CrossRef] [PubMed]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aladesanmi, O.T.; Oroboade, J.G.; Osisiogu, C.P.; Osewole, A.O. Bioaccumulation factor of selected heavy metals in Zea mays. J. Health Pollut. 2019, 9, 191207. Available online: https://www.journalhealthpollution.org/doi/pdf/10.5696/2156-9614-9.24.191207 (accessed on 19 October 2020). [PubMed]
- Angelova, V.R.; Perifanova-Nemska, M.N.; Uzunova, G.P.; Ivanov, K.I.; Lee, H.Q. Potential of sunflower (Helianthus annuus L.) for phytoremediation of soils contaminated with heavy metals. Int. J. Environ. Ecol. Eng. 2016, 10, 576–583. [Google Scholar] [CrossRef]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Martins, L.L. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land. A review. Environ. Chem. Lett. 2009, 8, 1–17. [Google Scholar] [CrossRef]
- Belhaj, D.; Elloumi, N.; Jerbi, B.; Zouari, M.; Ben Abdallah, F.; Ayadi, H.; Kallel, M. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ. Sci. Pollut. Res. 2016, 23, 20168–20177. [Google Scholar] [CrossRef]
- Bai, Y.-C.; Zuo, W.-G.; Zhao, H.-T.; Mei, L.-J.; Gu, C.-H.; Guan, Y.-X.; Wang, X.-K.; Gu, M.-J.; Zang, C.-Y.; Shan, Y.-H.; et al. Distribution of heavy metals in maize and mudflat saline soil amended by sewage sludge. J. Soils Sediments 2017, 17, 1565–1578. [Google Scholar] [CrossRef]
- Dar, M.I.; Naikoo, M.I.; Khan, F.A.; Green, I.D. Assessing the feasibility of sewage sludge applications for the cultivation of Brassica juncea L.: Metal accumulation, growth, biochemical and yield responses. J. Environ. Sci. Nat. Resour. 2018, 1, 104. [Google Scholar]
- Nissim, W.G.; Cincinelli, A.; Martellini, T.; Alvisi, L.; Palm, E.; Mancuso, S.; Azzarello, E. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environ. Res. 2018, 164, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Dede, G.; Ozdemir, S.; Dede, O.H. Effect of soil amendments on phytoextraction potential of Brassica juncea growing on sewage sludge. Int. J. Environ. Sci. Technol. 2012, 9, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Grobelak, A.; Placek, A.; Grosser, A.; Singh, B.R.; Almås Åsgeir, R.; Napora, A.; Kacprzak, M. Effects of single sewage sludge application on soil phytoremediation. J. Clean. Prod. 2017, 155, 189–197. [Google Scholar] [CrossRef]
- Towolawi, A.; Arowolo, T.; Bada, B.; Badejo, A.; Taiwo, A. Phytoextraction assessment of green amaranth (Amaranthus viridis Linn.) grown on soil amended with sewage sludge. Ife J. Sci. 2017, 19, 133. [Google Scholar] [CrossRef] [Green Version]
- Almasi, A.; Mohammadi, M.; Mosavi, S.A.; Eghbali, S. Phytoremediation potential of sewage sludge using native plants: Gossypium hirsutum L. and Solanum lycopersicum L. Int. J. Environ. Sci. Technol. 2019, 16, 6237–6246. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- EPA-ROC. The Standard Methods for Determination of Heavy Metals in Soils and Plants; National Institute of Environmental Analysis of EPA-ROC: Taipei, Taiwan, 1994.
- Tüzen, M. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem. J. 2003, 74, 289–297. [Google Scholar] [CrossRef]
- Černe, M.; Palčić, I.; Pasković, I.; Major, N.; Romić, M.; Filipović, V.; Igrc, M.D.; Perčin, A.; Ban, S.G.; Zorko, B.; et al. The effect of stabilization on the utilization of municipal sewage sludge as a soil amendment. Waste Manag. 2019, 94, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Nielsen, M.P.; Scheutz, C.; Jensen, L.S.; Christensen, T.H.; Nielsen, S.; Bruun, S. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application. Acta Agric. Scand. Sect. B Plant Soil Sci. 2015, 65, 506–516. [Google Scholar] [CrossRef]
- Tarpani, R.R.Z.; Alfonsín, C.; Hospido, A.; Azapagic, A. Life cycle environmental impacts of sewage sludge treatment methods for resource recovery considering ecotoxicity of heavy metals and pharmaceutical and personal care products. J. Environ. Manag. 2020, 260, 109643. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Esteban, J.; Escolástico, C.; Masaguer, A.; Vargas, C.; Moliner, A. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere 2014, 103, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.R.; Guo, X.F.; Cai, Q.Y.; Liu, W.; Zhang, M.W.; Wei, Z.B.; Wu, Q.-T. Phytotreatment of Sewage Sludge Contaminated by Heavy Metals and Pahs by Co-PlantingSedum AlfrediiandAlocasia Marorrhiza. Int. J. Phytoremediation 2013, 16, 1–13. [Google Scholar] [CrossRef]
- Barbosa Érica, S.; Cacique, A.P.; De Pinho, G.P.; Silvério, F.O. Catharanthus roseus potential for phyto-stabilizing metals in sewage sludge. J. Environ. Sci. Health Part A 2019, 55, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Zaier, H.; Ghnaya, T.; Ben Rejeb, K.; Lakhdar, A.; Rejeb, S.; Jemal, F. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour. Technol. 2010, 101, 3978–3983. [Google Scholar] [CrossRef] [PubMed]
- Suchkova, N.; Tsiripidis, I.; Alifragkis, D.; Ganoulis, J.; Darakas, E.; Sawidis, T. Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. Ecol. Eng. 2014, 69, 160–169. [Google Scholar] [CrossRef]
- Fallovo, C.; Schreiner, M.; Schwarz, D.; Colla, G.; Krumbein, A. Phytochemical Changes Induced by Different Nitrogen Supply Forms and Radiation Levels in Two Leafy Brassica Species. J. Agric. Food Chem. 2011, 59, 4198–4207. [Google Scholar] [CrossRef] [PubMed]
- Mbangi, A.; Muchaonyerwa, P.; Zengeni, R. Accumulation of multiple heavy metals in plants grown on soil treated with sewage sludge for more than 50 years presents health risks and an opportunity for phyto-remediation. Water SA 2018, 44, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Xie, F.; Wei, Z.; Zeng, S.; Wu, Q.-T. Phytoremediation of sewage sludge and use of its leachate for crop production. Environ. Technol. 2014, 36, 3000–3007. [Google Scholar] [CrossRef] [PubMed]
- Remigio, A.C.; Chaney, R.L.; Baker, A.J.M.; Edraki, M.; Erskine, P.D.; Echevarria, G.; van der Ent, A. Phytoextraction of high value elements and contaminants from mining and mineral wastes: Opportunities and limitations. Plant Soil 2020, 449, 11–37. [Google Scholar] [CrossRef]
- Brunetti, G.; Farrag, K.; Rovira, P.S.; Nigro, F.; Senesi, N. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma 2011, 160, 517–523. [Google Scholar] [CrossRef]
Parameter | Control | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|---|
pH | 7.2 ± 0.5 a | 6.7 ± 0.2 b | 6.8 ± 0.3 a | 7 ± 0.3 a | 6.5 ± 0.2 b | 6.8 ± 0.3 a | 7.0 ± 0.2 a |
EC (dS/m) | 0.7 ± 0.2 a | 2.8 ± 0.3 b | 2.8 ± 0.5 b | 2.7 ± 0.1 b | 2.5 ± 0.2 b | 2.6 ± 0.3 b | 3.1 ± 0.2 c |
DM (%) | 30.9 ± 0.8 a | 26.9 ± 0.8 b | 25 ± 1 b | 16.4 ± 0.6 c | 29 ± 3 a | 24 ± 4 b | 20 ± 1 c |
N (%) | 0.59 ± 0.07 a | 4.9 ± 0.1 b | 4.5 ± 0.6 b | 6.5± 0.5 c | 5.9 ± 0.4 c | 6 ± 1 c | 6.2 ± 0.7 c |
TOC (%) | 27 ± 2 a | 28 ± 1 a | 28 ± 2 a | 33 ± 2 b | 33 ± 2 b | 32 ± 6 b | 33 ± 3 b |
P (%) | 0.06 ± 0.01 a | 2.7 ± 0.2 b | 2.5 ± 0.1 b | 3.1 ± 0.1 b | 2.5 ± 0.1 b | 2.3 ± 0.1 c | 2.2 ± 0.1 c |
Metal | Control | P1 | P2 | P3 | P4 | P5 | P6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tot (mg/kg) | Bioavailable Fraction (%) | Tot (mg/kg) | Bioavailable Fraction (%) | Tot (mg/kg) | Bioavailable Fraction (%) | Tot (mg/kg) | Bioavailable Fraction (%) | Tot (mg/kg) | Bioavailable Fraction (%) | Tot (mg/kg) | Bioavailable Fraction (%) | Tot (mg/kg) | Bioavailable Fraction (%) | |
As | 3.3 ± 0.4 a | <LOD | 4.5 ± 0.4 b | <LOD | 6.4 ± 0.3 c | <LOD | 4.6 ± 0.5 b | <LOD | 4.0 ± 0.1 b | <LOD | 6.6 ± 0.8 c | <LOD | 4.4 ± 0.5 b | <LOD |
Cd | 1.0 ± 0.2 a | 66 ± 11 A | 2.4 ± 0.1 b | 14 ± 4 B | 1.4 ± 0.1 b | 19 ± 2 B | 0.60 ± 0.01 a | <LOD | 0.92 ± 0.04 a | <LOD | 0.74 ± 0.09 a | 1.9 ± 0.9 C | 0.70 ± 0.08 a | 29 ± 5 B |
Cr | 53 ± 1 a | 0.08 ± 0.02 A | 100 ± 6 b | 0.4 ± 0.2 B | 98 ± 1 b | 0.88 ± 0.04 B | 2450 ± 31 c | 0.11 ± 0.05 A | 115 ± 5 b | 0.3 ± 0.1 B | 170 ± 65 b | 0.9 ± 0.7 B | 68 ± 16 a | 0.6 ± 0.2 B |
Cu | 27 ± 1 a | 19 ± 4 A | 603 ± 32 b | 23 ± 4 A | 653 ± 11 b | 29 ± 2 B | 250 ± 10 c | 34 ± 4 B | 285 ± 6 c | 18 ± 5 A | 386 ± 50 b | 29 ± 5 B | 321 ± 14 b | 31 ± 10 B |
Ni | 26 ± 3 a | 23 ± 3 A | 88 ± 5 b | 40 ± 3 B | 61 ± 1 b | 38 ± 2 B | 766 ± 63 c | 42 ± 7 B | 36.0 ± 0.6 a | 23 ± 1 A | 88 ± 33 b | 40 ± 5 B | 40 ± 2 a | 32 ± 3 C |
Pb | 42 ± 4 a | 54 ± 2 A | 85 ± 3 b | 22 ± 4 B | 114 ± 12 c | 27 ± 1 C | 41.6 ± 0.2 a | 27 ± 2 C | 75 ± 3 b | 20 ± 2 B | 45 ± 7 a | 23 ± 5 B | 46 ± 11 a | 31 ± 5 C |
Se | 0.07 ± 0.02 a | <LOD | 6.9 ± 0.2 b | <LOD | 3.8 ± 0.3 c | <LOD | 3.3 ± 0.2 c | <LOD | 3.1 ± 0.2 c | <LOD | 4.9 ± 0.5 b | <LOD | 5.3 ± 0.7 b | <LOD |
Zn | 120 ± 14 a | 56 ± 9 A | 1263 ± 34 b | 41 ± 3 B | 1403 ± 8 b | 38 ± 4 B | 1128 ± 205 b | 45 ± 2 A | 1901 ± 74 d | 38 ± 6 B | 502± 44 c | 42 ± 4 B | 686 ± 42 c | 46 ± 4 A |
As | Cd | Cr | Cu | Ni | Se | Zn | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Conc. | BAF | TF | Conc. | BAF | TF | Conc. | BAF | TF | Conc. | BAF | TF | Conc. | BAF | TF | Conc. | BAF | TF | Conc. | BAF | TF |
H. annuus | 0.5 ± 0.3 a | 0.2 ± 0.1 A | 0.40 ± 0.2 x | 0.1 ± 0.1 a | 0.13 ± 0.06 A | 1.5 ± 0.9 x | 0.5 ± 0.5 a | <LOD | 2 ± 1 x | 15 ± 8 a | 0.06 ± 0.04 A | 0.8 ± 0.8 x | 9 ± 9 a | 0.04 ± 0.03 A | 1 ± 1 x | 0.7 ± 0.4 a | 0.2 ± 0.2 A | 3 ± 2 x | 182 ± 80 a | 0.2 ± 0.2 A | 2 ± 1 x |
B. juncea | 0.5 ± 0.2 a | 0.09 ± 0.05 A | 0.6 ± 0.4 x | 0.1 ± 0.1 a | 0.12 ± 0.04 A | 1 ± 1 x | 0.3 ± 0.3 a | <LOD | 0.6 ± 0.6 x | 15 ± 8 a | 0.06 ± 0.04 A | 1.3 ± 0.9 x | 15 ± 7 a | 0.4 ± 0.2 B | 1 ± 1 x | 0.8 ± 0.3 a | 2 ± 2 A | 3 ± 3 x | 173 ± 60 a | 0.2 ± 0.1 A | 1.0 ± 0.8 y |
Z. mays | 0.3 ± 0.2 a | 0.03 ± 0.03 A | 0.3 ± 0.3 x | 0.2 ± 0.2 a | 0.16 ± 0.3 A | 2.0 ± 0.7 x | 0.7 ± 0.5 a | 0.01 ± 0.01 A | 2 ± 2 x | 18 ± 10 a | 0.06 ± 0.03 A | 1.6 ± 0.8 y | 7 ± 5 a | 0.05 ± 0.02 A | 1.1 ± 0.6 x | 0.8 ± 0.4 a | 0.3 ± 0.1 A | 1.0 ± 0.2 x | 147 ± 70 a | 0.2 ± 0.1 A | 2 ± 2 x |
B. napus | 0.3 ± 0.2 a | 0.03 ± 0.03 A | 0.1 ± 0.1 x | 0.2 ± 0.24 a | 0.3 ± 0.3 A | 1 ± 1 x | 0.2 ± 0.2 a | <LOD | 0.2 ± 0.2 x | 18 ± 11 a | 0.07 ± 0.04 A | 2 ± 1 y | 9 ± 6 a | 0.04 ± 0.03 A | 1.2 ± 0.9 x | 0.9 ± 0.4 a | 3± 3 A | 0.8 ± 0.4 x | 223 ± 140 a | 0.4 ± 0.3 B | 2 ± 1 x |
WWTP | Species | As (%) | Cd (%) | Cr (%) | Cu (%) | Ni (%) | Pb (%) | Se (%) | Zn (%) |
---|---|---|---|---|---|---|---|---|---|
Control | H. annuus | 0.05 ± 0.01 | 0.4 ± 0.1 | <LOD | 0.52 ± 0.04 | 0.03 ± 0.01 | <LOD | 2.4 ± 0.6 | 0.90 ± 0.1 |
Control | B. juncea | 0.03 ± 0.01 | 0.5 ± 0.1 | <LOD | 0.24 ± 0.02 | 0.01 ± 0.01 | <LOD | 22 ± 3 | 0.57 ± 0.06 |
Control | Z. mays | 0.09 ± 0.01 | 0.19 ± 0.02 | 0.26 ± 0.08 | 0.7 ± 0.1 | 0.35 ± 0.09 | <LOD | 3.6 ± 0.3 | 1.2 ± 0.2 |
Control | B. napus | 0.05 ± 0.01 | 0.12 ± 0.02 | <LOD | 0.38 ± 0.01 | 0.01 ± 0.01 | <LOD | 47 ± 10 | 1.32 ± 0.07 |
P1 | H. annuus | 0.01 ± 0.01 * | 0.08 ± 0.02 * | <LOD | 0.05 ± 0.01 * | 0.06 ± 0.01 * | <LOD | 0.20 ± 0.01 * | 0.13 ± 0.01 * |
P1 | B. juncea | 0.09 ± 0.02 * | 0.05 ± 0.02 * | <LOD | 0.01 ± 0.01 * | 0.5 ± 0.2 | <LOD | 0.03 ± 0.01 * | 0.05 ± 0.01 * |
P1 | Z. mays | 0.30 ± 0.03 * | 2.7 ± 0.25 * | 0.09 ± 0.03 | 0.62 ± 0.08 | 0.33 ± 0.06 | <LOD | 1.6 ± 0.2 * | 1.8 ± 0.2 |
P1 | B. napus | <LOD | 0.11 ± 0.01 | <LOD | 0.03 ± 0.01 * | 0.04 ± 0.01 * | <LOD | 0.10 ± 0.01 * | 0.18 ± 0.01 * |
P2 | H. annuus | 0.04 ± 0.01 | 0.11 ± 0.01 * | 0.01 ± 0.01 | 0.14 ± 0.01 * | 0.3 ± 0.1 * | <LOD | 1.2 ± 0.2 | 0.40 ± 0.03 * |
P2 | B. juncea | 2.1 ± 0.21 * | 0.17 ± 0.01 * | <LOD | 0.14 ± 0.01 * | 0.25 ± 0.06 * | <LOD | 1.9 ± 0.4 * | 1.0 ± 0.1 * |
P2 | Z. mays | 0.09 ± 0.01 | 0.30 ± 0.01 * | <LOD | 0.23 ± 0.02 * | 0.40 ± 0.04 | <LOD | 3.1 ± 0.4 | 1.3 ± 0.1 |
P2 | B. napus | 0.16 ± 0.01 * | <LOD | 0.03 ± 0.01 | 0.31 ± 0.01 | 0.16 ± 0.05 | <LOD | 1.4 ± 0.4 | 1.27 ± 0.05 * |
P3 | H. annuus | 0.20 ± 0.02 * | 2.0 ± 0.1 * | 0.01 ± 0.01 | 1.0 ± 0.5 | 1.3 ± 0.3 * | <LOD | 4.4 ± 0.8 * | 3 ± 2 |
P3 | B. juncea | 0.10 ± 0.01 * | 3.5 ± 0.8 * | <LOD | 1.1 ± 0.5 * | 0.9 ± 0.2 * | <LOD | 2.6 ± 0.3 * | 3 ± 1 |
P3 | Z. mays | 0.09 ± 0.01 | <LOD | <LOD | 0.39 ± 0.04 * | 0.43 ± 0.09 | <LOD | 2.1 ± 0.4 * | 1.4 ± 0.3 |
P3 | B. napus | 0.18 ± 0.02 * | 3.1 ± 0.5 * | <LOD | 0.91 ± 0.08 * | 0.97 ± 0.06 * | <LOD | 4.0 ± 0.3 * | 4.4 ± 0.8 * |
P4 | H. annuus | 0.21 ± 0.05 * | 0.4 ± 0.2 | 0.02 ± 0.01 | 0.14 ± 0.04 * | 0.05 ± 0.03 | <LOD | 0.48 ± 0.05 * | 0.5 ± 0.2 |
P4 | B. juncea | 0.22 ± 0.02 * | 0.65 ± 0.01 | 0.18 ± 0.06 | 0.83 ± 0.04 * | 0.97 ± 0.44 | <LOD | 4.8 ± 0.5 * | 1.5 ± 0.2 * |
P4 | Z. mays | 0.04 ± 0.01 * | 0.5 ± 0.2 | <LOD | 0.26 ± 0.01 * | 0.33 ± 0.04 | <LOD | 1.1 ± 0.2 * | 0.29 ± 0.01 * |
P4 | B. napus | 0.13 ± 0.02 * | 0.39 ± 0.03 * | <LOD | 0.44 ± 0.02 | 0.35 ± 0.07 * | <LOD | 2.4 ± 0.9 * | 0.77 ± 0.05 * |
P5 | H. annuus | 0.8 ± 0.2 | 0.24 ± 0.09 | <LOD | 0.10 ± 0.05 * | 0.09 ± 0.07 | <LOD | 0.34 ± 0.06 * | 0.80 ± 0.09 |
P5 | B. juncea | 0.01 ± 0.01 | <LOD | <LOD | 0.07 ± 0.01 * | 1.0 ± 0.5 | <LOD | 0.09 ± 0.02 * | 0.14 ± 0.03 * |
P5 | Z. mays | 0.01 ± 0.01 * | <LOD | <LOD | 0.10 ± 0.01 * | 0.07 ± 0.01 * | <LOD | 0.35 ± 0.02 * | 0.8 ± 0.2 |
P5 | B. napus | 0.01 ± 0.01 * | 0.21 ± 0.09 | <LOD | 0.04 ± 0.01 * | 0.02 ± 0.01 | <LOD | 0.13 ± 0.01 * | 0.45 ± 0.04 * |
P6 | H. annuus | <LOD | 1.3 ± 0.3 * | 0.23 ± 0.03 | 0.33 ± 0.02 * | 0.18 ± 0.03 * | <LOD | 0.9 ± 0.5 * | 1.6 ± 0.2 * |
P6 | B. juncea | 0.08 ± 0.02 | 0.34 ± 0.01 | 0.04 ± 0.02 | 0.45 ± 0.09 | 0.5 ± 0.1 * | <LOD | 1.1± 0.1 * | 1.6 ± 0.1 * |
P6 | Z. mays | 0.40 ± 0.07 * | 1.6 ± 0.2 * | 0.05 ± 0.02 * | 0.24 ± 0.03 * | 0.16 ± 0.04 | <LOD | 0.8 ± 0.2 * | 0.5 ± 0.2 * |
P6 | B. napus | 0.15 ± 0.04 * | 1.1 ± 0.2 * | 0.02 ± 0.01 | 0.13 ± 0.01 * | 0.11 ± 0.03 * | <LOD | 0.27 ± 0.05 * | 0.5 ± 0.1 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinitro, M.; Montanari, S.; Simoni, A.; Ciavatta, C.; Tassoni, A. Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge. Agronomy 2021, 11, 2456. https://doi.org/10.3390/agronomy11122456
Salinitro M, Montanari S, Simoni A, Ciavatta C, Tassoni A. Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge. Agronomy. 2021; 11(12):2456. https://doi.org/10.3390/agronomy11122456
Chicago/Turabian StyleSalinitro, Mirko, Sofia Montanari, Andrea Simoni, Claudio Ciavatta, and Annalisa Tassoni. 2021. "Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge" Agronomy 11, no. 12: 2456. https://doi.org/10.3390/agronomy11122456
APA StyleSalinitro, M., Montanari, S., Simoni, A., Ciavatta, C., & Tassoni, A. (2021). Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge. Agronomy, 11(12), 2456. https://doi.org/10.3390/agronomy11122456