Estimation of Evapotranspiration and Crop Coefficient of Rain-Fed Tea Plants under a Subtropical Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Measurement
2.3. Calculations and Statistical Analysis
3. Results
3.1. Reference Evapotranspiration (ET0)
3.2. Precipitation and Drainage
3.3. Changes of ETc and Kc during the Experiment Period
3.4. Monthly Variation in ET0, ETc and Adjusted Kc
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hasimoto, M. The origin of the tea plant. In Proceedings of the 2001 International Conference on O-CHA (Tea) Culture and Science, Shizuoka, Japan, 5–8 October 2001; Session I. pp. J5–J7. [Google Scholar]
- Piyashee, M.; Tuhin, G. Impact of Climate on Tea Production: A Study of the Dooars Region in India. Res. Square 2021, 1–21. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhuang, C.G.; He, Y.F.; Wang, L.; Han, G.Q.; Chen, C. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatments. Agric. Water Manag. 2010, 97, 419–425. [Google Scholar] [CrossRef]
- Sikka, A.; Madegowda, M.; Sahoo, D.C. Determination of crop evapotranspiration of tea (Thea sinensis) using weighing lysimeter for the Nilgiris. J. Agrometeorol. 2009, 11, 144–147. [Google Scholar]
- Ruiming, F.; Shijie, S. Daily reference evapotranspiration prediction of Tieguanyin tea plants based on mathematical morphology clustering and improved generalized regression neural network. Agric. Water Manag. 2020, 236, 106177. [Google Scholar] [CrossRef]
- Ma, J.; Jia, X.; Zha, T.; Bourque, C.P.A.; Tian, Y.; Bai, Y.; Zhou, C. Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. Agric. For. Meteorol. 2019, 275, 1–10. [Google Scholar] [CrossRef]
- Ahmed, S.; Griffin, T.; Cash, S.B.; Han, W.Y.; Matyas, C.; Long, C.; Xue, D. Global Climate Change, Ecological Stress, and Tea Production. In Stress Physiology of Tea in the Face of Climate Change; Springer: Singapore, 2018; pp. 1–23. [Google Scholar] [CrossRef]
- Ahmed, S.; Orians, C.M.; Griffin, T.S.; Buckley, S.; Unachukwu, U.; Stratton, A.E.; Kennelly, E.J. Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality. AoB Plants 2014, 6, plt054. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C.; Robbat, A.; Kennelly, E. Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China. PLoS ONE 2014, 9, e109126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijeratne, M.A. Vulnerability of Sri Lanka tea production to global climate change. Water Air Soil Pollut. 1996, 92, 87–94. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Pu, J. Statistical Characteristics of Raindrop Size Distribution in the Meiyu Season Observed in Eastern China. J. Meteorol. Soc. Jpn. Ser. II 2013, 91, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Samuel, A.; Girma, A.; Zenebe, A.; Ghebreyohannes, T. Spatio-temporal variability of evapotranspiration and crop water requirement from space. J. Hydrol. 2018, 567, 732–742. [Google Scholar] [CrossRef]
- Payero, J.O.; Irmak, S. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric. Water Manag. 2013, 129, 31–43. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; pp. 2–15. [Google Scholar]
- Bhantana, P.; Lazarovitch, N. Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress. Agric. Water Manag. 2010, 97, 715–722. [Google Scholar] [CrossRef]
- Jiang, X.; Kang, S.; Tong, L.; Li, F.; Li, D.; Ding, R.; Qiu, R. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agric. Water Manag. 2014, 142, 135–143. [Google Scholar] [CrossRef]
- Kang, S.; Gu, B.; Du, T.; Zhang, J. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 2003, 59, 239–254. [Google Scholar] [CrossRef]
- Buttar, N.; Hu, Y.; Shabbir, A.; Lakhiar, I.; Ullah, I.; Ali, A. Estimation of Evapotranspiration Using Bowen Ratio Method. IFAC-PapersOnLine 2018, 51, 807–810. [Google Scholar] [CrossRef]
- Lv, W.; Yang, G.; Wan, R. Daily variations of evapotranspiration rates of different ages tea plantation in Yixing city based on static chamber/igra. Res. Environ. Yangtze Basin 2012, 21, 1370. (In Chinese) [Google Scholar]
- Geng, J.; Li, H.; Pang, J.; Zhang, W.; Chen, D. Dynamics and environmental controls of energy exchange and evapotranspiration in a hilly tea plantation, China. Agric. Water Manag. 2020, 241, 106364. [Google Scholar] [CrossRef]
- Allen, R.G.; Masahiro, T.; Ricardo, T. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; González-Dugo, M.P.; Cammalleri, C.; d’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.; Mhawej, M.; Meng, Q.; Faour, G.; Abunnasr, Y.; Fadel, A.; Xinli, H. Monthly 10-m evapotranspiration rates re trieved by SEBALI with Sentinel-2 and MODIS LST data. Agric. Water Manag. 2021, 243, 106432. [Google Scholar] [CrossRef]
- Mhawej, M.; Nasrallah, A.; Abunnasr, Y.; Fadel, A.; Faour, G. Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA. Agric. Water Manag. 2021, 256, 107059. [Google Scholar] [CrossRef]
- Dagg, M. A study of the water use of tea in East Africa using a hydraulic lysimeter. Agric. Meteorol. 1970, 7, 303–320. [Google Scholar] [CrossRef]
- Sikka, K.; Sahoo, D.C.; Madhu, M.; Selvi, V. Determination of Crop Coefficient of Tea. J. Agric. Eng. 2009, 46, 41–45. [Google Scholar]
- Lv, W.; Yang, G.; Wan, R.R.; Li, W.L. Comparative analysis of evapotranspiration rates of tea crops before and after pruning in the Western Hills of the Tai Lake Basin. Chin. J. Eco-Agric. 2013, 21, 184–191. [Google Scholar] [CrossRef]
- Villoro, A.; Latorre, B.; Tormo, J.; José Jiménez, J.; Victoria López, M.; Manuel Nicolau, J.; Moret-Fernández, D. A TDR wireless device for volumetric water content sensing. Comput. Electron. Agric. 2021, 181, 105939. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Brown, R.E.; Jurgensen, M.F.; Mroz, G.D. Comparison of Methods for Determining Bulk Densities of Rocky Forest Soils. Soil Sci. Soc. Am. J. 1999, 63, 379–383. [Google Scholar] [CrossRef]
- Walinga, I.; Kithome, M.; Novozamsky, I.; Houba, V.J.G.; van der Lee, J.J. Spectrophotometric determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1992, 23, 1935–1944. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Andam, M. Crop coefficient of sesame in a semi-arid region of I.R. Iran. Agric. Water Manag. 2001, 49, 51–63. [Google Scholar] [CrossRef]
- Flumignan, D.L.; de Faria, R.T.; Prete, C.E.C. Evapotranspiration components and dual crop coefficients of coffee trees during crop production. Agric. Water Manag. 2011, 98, 791–800. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; ASCE Manuals and Reports on Engineering Practice No. 70; American Society of Civil Engineers: New York, NY, USA, 1990; p. 332. [Google Scholar]
- Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Muñoz-Carpena, R. Monitoring of Nitrate Leaching in Sandy Soils. J. Environ. Qual. 2007, 36, 953–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dexter, A.R. Advances in characterization of soil structure. Soil Tillage Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.E.; Zhang, M.; Li, X.; Zhang, S.; Jia, L. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. CATENA 2015, 127, 80–91. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, F.; Jia, L.; Jia, Y.; Zhang, X.; Hu, F.; Zhang, J. Interactive effects of raindrop impact and groundwater seepage on soil erosion. J. Hydrol. 2019, 578, 124066. [Google Scholar] [CrossRef]
- Alizadehtazi, B.; Gurian, P.L.; Montalto, F.A. Impact of successive rainfall events on the dynamic relationship between vegetation canopies, infiltration, and recharge in engineered urban green infrastructure systems. Ecohydrology 2020, 13, e2185. [Google Scholar] [CrossRef]
- Cuomo, S.; Della Sala, M. Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Eng. Geol. 2013, 162, 118–127. [Google Scholar] [CrossRef]
- Assouline, S.; Ben-Hur, M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. CATENA 2006, 66, 211–220. [Google Scholar] [CrossRef]
- Rao, K.P.; Steenhuis, T.; Cogle, A.; Srinivasan, S.; Yule, D.; Smith, G. Rainfall infiltration and runoff from an Alfisol in semi-arid tropical India. II. No-till systems. Soil Tillage Res. 1998, 48, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, L.; Yu, Z. Modeling rainfall infiltration on hillslopes using Flux-concentration relation and time compression approximation. J. Hydrol. 2018, 557, 243–253. [Google Scholar] [CrossRef]
- Hueso-González, P.; Martínez-Murillo, J.F.; Ruiz-Sinoga, J.D. Benefits of adding forestry clearance residues for the soil and vegetation of a Mediterranean mountain forest. Sci. Total Environ. 2018, 615, 796–804. [Google Scholar] [CrossRef]
- Dabral, P.P.; Rao, K.A. Estimation of crop coefficient and irrigation requirement under various irrigation levels for tea during dry period. Indian J. Soil Conserv. 1997, 25, 233–235. [Google Scholar]
- Wang, T.; Melton, F.S.; Pôças, I.; Johnson, L.F.; Thao, T.; Post, K.; Cassel-Sharma, F. Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry. Agric. Water Manag. 2021, 244, 106533. [Google Scholar] [CrossRef]
- Alves, J., Jr.; Folegatti, M.V.; Parsons, L.R.; Bandaranayake, W.; da Silva, C.R.; da Silva, T.J.A.; Campeche, L.F.S.M. Determination of the crop coefficient for grafted ‘Tahiti’ lime trees and soil evaporation coefficient of rhodic kandiudalf clay soil in Sao Paulo, Brazil. Irrig. Sci. 2007, 25, 419–428. [Google Scholar] [CrossRef]
- Netzer, Y.; Yao, C.; Shenker, M.; Bravdo, B.A.; Schwartz, A. Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrig. Sci. 2009, 27, 109–120. [Google Scholar] [CrossRef]
- Squire, G.R. Weather, physiology and seasonality of tea (Camellia sinensis L.) yields of Malawi. Exp. Agric. 1979, 15, 321–330. [Google Scholar] [CrossRef]
- Kato, T.; Kamichika, M. Determination of a crop coefficient for evapotranspiration in a sparse sorghum field. Irrig. Drain. 2006, 55, 165–175. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- De Medeiros, G.A.; Arruda, F.B.; Sakai, E.; Fujiwara, M. The influence of crop canopy on evapotranspiration and crop coefficient of bean (Phaseolus vulgaris L.). Agric. Water Manag. 2001, 49, 211–224. [Google Scholar] [CrossRef]
- Gong, D.; Kang, S.; Yao, L.; Zhang, L. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods. Hydrol. Process. 2007, 21, 931–938. [Google Scholar] [CrossRef]
- Wang, J.; Sammis, T.W.; Andales, A.A.; Simmons, L.J.; Gutschick, V.P.; Miller, D.R. Crop coefficient of open-canopy pecan orchards. Agric. Water Manag. 2007, 88, 253–262. [Google Scholar] [CrossRef]
Depth (cm) | Particle Size Distribution (%) | pH | Organic C (mg g−1) | Bulk Density (g cm−3) | ||
---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||
0–20 | 1.07 | 28.94 | 69.99 | 4.47 | 5.71 | 1.17 |
20–40 | 1.91 | 31.06 | 67.03 | 4.66 | 5.47 | 1.12 |
40–60 | 2.58 | 30.99 | 66.43 | 4.40 | 4.09 | 1.13 |
60–80 | 3.14 | 34.32 | 62.53 | 4.37 | 5.02 | 1.19 |
80–100 | 1.46 | 32.82 | 65.73 | 4.34 | 4.77 | 1.16 |
Months | ET0 (mm Day−1) | ETc (mm Day−1) | Adjusted Kc | ||
---|---|---|---|---|---|
BY1 | LJ43 | BY1 | LJ43 | ||
March 2019 | 2.35 ± 0.02 | 1.59 ± 0.07 | 1.71 ± 0.08 | 0.68 ± 0.03 | 0.73 ± 0.03 |
April 2019 | 3.47 ± 0.05 | 2.23 ± 0.14 | 2.30 ± 0.13 | 0.65 ± 0.05 | 0.68 ± 0.05 |
May 2019 | 4.35 ± 0.09 | 2.36 ± 0.04 | 2.77 ± 0.05 | 0.54 ± 0.01 | 0.64 ± 0.02 |
June 2019 | 3.66 ± 0.00 | 1.58 ± 0.02 | 2.01 ± 0.01 | 0.43 ± 0.01 | 0.55 ± 0.00 |
July 2019 | 4.46 ± 0.23 | 3.59 ± 0.26 | 4.06 ± 0.16 | 0.79 ± 0.02 | 0.92 ± 0.01 |
August 2019 | 4.72 ± 0.03 | 3.66 ± 0.31 | 3.89 ± 0.14 | 0.77 ± 0.06 | 0.82 ± 0.03 |
September 2019 | 3.23 ± 0.06 | 2.42 ± 0.21 | 2.95 ± 0.09 | 0.73 ± 0.05 | 0.91 ± 0.01 |
October 2019 | 2.78 ± 0.00 | 1.20 ± 0.05 | 2.05 ± 0.06 | 0.43 ± 0.02 | 0.74 ± 0.02 |
November/December 2019 | 1.19 ± 0.00 | 0.52 ± 0.01 | 0.75 ± 0.00 | 0.44 ± 0.01 | 0.63 ± 0.00 |
January 2020 | 0.99 ± 0.00 | 0.56 ± 0.05 | 0.76 ± 0.07 | 0.56 ± 0.05 | 0.76 ± 0.07 |
Feburary/March 2020 | 1.34 ± 0.00 | 0.97 ± 0.02 | 1.17 ± 0.00 | 0.72 ± 0.01 | 0.87 ± 0.00 |
April 2020 | 2.96 ± 0.15 | 2.30 ± 0.04 | 2.59 ± 0.06 | 0.82 ± 0.05 | 0.93 ± 0.07 |
May 2020 | 4.16 ± 0.05 | 3.42 ± 0.10 | 3.57 ± 0.12 | 0.83 ± 0.04 | 0.87 ± 0.04 |
June 2020 | 3.98 ± 0.03 | 3.67 ± 0.07 | 4.55 ± 0.04 | 0.92 ± 0.02 | 1.15 ± 0.02 |
July 2020 | 3.46 ± 0.06 | 3.02 ± 0.05 | 3.43 ± 0.13 | 0.87 ± 0.03 | 1.00 ± 0.05 |
August 2020 | 4.64 ± 0.06 | 3.42 ± 0.12 | 4.11 ± 0.09 | 0.73 ± 0.02 | 0.88 ± 0.01 |
September 2020 | 2.84 ± 0.00 | 1.92 ± 0.03 | 2.31 ± 0.01 | 0.68 ± 0.01 | 0.81 ± 0.00 |
Monthly total | 1033.63 ± 18.94 | 701.60 ± 29.67 | 830.24 ± 26.76 | 0.68 ± 0.037 | 0.82 ± 0.036 |
Monthly mean | 3.21 ± 0.29 | 2.26 ± 0.26 | 2.65 ± 0.29 | 0.68 ± 0.04 | 0.82 ± 0.04 |
Tea Cultivars | Plant Height (cm) | Plant Width (cm) | Leaf Thickness (cm) | LAI (m2 m−2) |
---|---|---|---|---|
DG | 94.53 ± 1.22 a | 111.58 ± 1.43 a | 41.22 ± 0.63 a | 8.65 ± 0.13 a |
LJ43 | 88.83 ± 1.01 b | 110.14 ± 1.23 a | 39.94 ± 0.48 a | 8.72 ± 0.17 a |
BY1 | 77.22 ± 1.03 c | 95.08 ± 1.47 b | 33.89 ± 0.70 b | 7.64 ± 0.12 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Ni, K.; Ji, L.; Zhao, C.; Chai, H.; Yi, X.; He, W.; Ruan, J. Estimation of Evapotranspiration and Crop Coefficient of Rain-Fed Tea Plants under a Subtropical Climate. Agronomy 2021, 11, 2332. https://doi.org/10.3390/agronomy11112332
Zheng S, Ni K, Ji L, Zhao C, Chai H, Yi X, He W, Ruan J. Estimation of Evapotranspiration and Crop Coefficient of Rain-Fed Tea Plants under a Subtropical Climate. Agronomy. 2021; 11(11):2332. https://doi.org/10.3390/agronomy11112332
Chicago/Turabian StyleZheng, Shenghong, Kang Ni, Lingfei Ji, Chenguang Zhao, Hongling Chai, Xiaoyun Yi, Weizhong He, and Jianyun Ruan. 2021. "Estimation of Evapotranspiration and Crop Coefficient of Rain-Fed Tea Plants under a Subtropical Climate" Agronomy 11, no. 11: 2332. https://doi.org/10.3390/agronomy11112332
APA StyleZheng, S., Ni, K., Ji, L., Zhao, C., Chai, H., Yi, X., He, W., & Ruan, J. (2021). Estimation of Evapotranspiration and Crop Coefficient of Rain-Fed Tea Plants under a Subtropical Climate. Agronomy, 11(11), 2332. https://doi.org/10.3390/agronomy11112332