Physiology, Growth, and Productivity of Spring–Summer Black Gram (Vigna mungo L. Hepper) as Influenced by Heat and Moisture Stresses in Different Dates of Sowing and Nutrient Management Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Details of Experimental Site
2.2. Weather Conditions
2.3. Experimental Design and Treatment Details
2.4. Crop Management Practices
2.5. Estimation of Crop Growth, Phenology, Physiological Parameters, and Yield Attributes
2.6. Statistical Analysis
3. Results
3.1. Thermal Regime and Rainfall Pattern during Black Gram Growth
3.2. Effect of Date of Sowing, Soil Application, and Foliar Spray of Nutrients on Phenology
3.3. Effect of Date of Sowing, Soil Application, and Foliar Spray of Nutrients on Growth Traits
3.4. Effect of Date of Sowing, Soil Application, and Foliar Spray of Nutrients on Relative Leaf Water Content
3.5. Effect of Date of Sowing, Soil Application, and Foliar Spray of Nutrients on Leaf Chlorophyll and Carotenoid Contents
3.6. Effect of Date of Sowing, Soil Application, and Foliar Spray of Nutrients on Proline Profile
3.7. Effect of Date of Sowing, Soil Application, and Foliar Spray of Nutrients on Nitrate Reductase Activity
3.8. Effect of Date of Sowing, Soil Application, and Foliar Spray of Nutrients on Cell Membrane Stability
3.9. Black gram Yield as Influenced by Date of Sowing, Soil Application, and Foliar Spray of Nutrients
4. Discussion
4.1. Phenology
4.2. Growth Traits
4.3. Relative Leaf Water Content
4.4. Leaf Chlorophyll and Carotenoid Contents
4.5. Proline Profile and Cell Membrane Stability
4.6. Nitrate Reductase (NR) Activity
4.7. Yield Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akter, N.; Islam, M.R. Heat stress effects and management in wheat: A review. Agron. Sustain. Dev. 2017, 37, 37. [Google Scholar] [CrossRef]
- Venugopalan, V.K.; Nath, R.; Sengupta, K.; Nalia, A.; Banerjee, S.; Chandran, M.A.S.; Ibrahimova, U.; Dessoky, E.S.; Attia, A.O.; Hassan, M.M.; et al. The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Front. Plant Sci. 2021, 12, 679469. [Google Scholar] [CrossRef]
- Mahilane, C.; Singh, V.; Kumar, M.; Singh, A.C. Response of different levels of zinc and molybdenum on growth and yield of blackgram (Vigna mungo L.) under agroclimatic East Uttar Pradesh. J. Plant Dev. Sci. 2017, 9, 497–500. [Google Scholar]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [Green Version]
- Maheswari, M.; Vijaya Lakshmi, T.; Varalaxmi, Y.; Sarkar, B.; Yadav, S.K.; Singh, J.; Seshu Babu, G.; Kumar, A.; Sushma, A.; Jyothilakshmi, N.; et al. Functional mechanisms of drought tolerance in maize through phenotyping and genotyping under well-watered and water stressed conditions. Eur. J. Agron. 2016, 79, 43–57. [Google Scholar] [CrossRef]
- Gaur, P.M.; Samineni, S.; Krishnamurthy, L.; Varshney, R.K.; Kumar, S.; Ghanem, M.E.; Beebe, S.; Rao, I.; Chaturvedi, S.K.; Basu, P.S.; et al. High temperature tolerance in grain legumes. Legume Perspect. 2015, 7, 23–24. [Google Scholar]
- Baroowa, B.; Gogoi, N.; Farooq, M. Changes in physiological, biochemical and antioxidant enzyme activities of green gram (Vigna radiata L.) genotypes under drought. Acta Physiol. Plant 2016, 38, 219. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synthesis Report. Contribution of Working Group I, II and III to the Fifth Assessment Report of the Inter-Governmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Baroowa, B.; Gogoi, N. Changes in plant water status, biochemical attributes and seed quality of black gram and green gram genotypes under drought. Int. Lett. Nat. Sci. 2015, 42, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Anitha, Y.; Vanaja, M.; Vijay Kumar, G. Identification of attributes contributing to high temperature tolerance in blackgram (Vigna mungo L. Hepper) genotypes. Int. J. Sci. Res. 2016, 5, 1021–1025. [Google Scholar]
- Mane, R.B.; Asewar, B.V.; Kadam, Y.E.; Deshmukh, K.V. Correlation studies in weather parameters and yield of black gram varieties under changing weather conditions. Bull. Env. Pharmacol. Life Sci. 2018, 7, 37–42. [Google Scholar]
- Kumar, Y.S.; Hemalatha, S.; Chandrika, V.; Latha, P.; Sagar, G.K. Growth and yield of summer blackgram (Vigna mungo L.) as influenced by moisture stress and foliar nutrition. Andhra Pradesh J. Agril. Sci. 2020, 6, 111–114. [Google Scholar]
- Joseph, J.; Francies, R.M.; Santhosh Kumar, A.V.; Sunil, K.M.; Dayalakshmi, E.M. Stability of blackgram (Vigna mungo L. Hepper) varieties for seed yield. Electron. J. Plant Breed. 2015, 6, 899–903. [Google Scholar]
- Singh, S.; Singh, Y.P.; Tomar, S.S. Review on climatic abnormalities impact on area, productivity of central India and strategies of mitigating technology on yield and benefits of black gram. J. Pharm. Phytochem. 2018, 7, 1048–1056. [Google Scholar]
- Majumdar, D.K. Pulse Crop Production: Principles and Technologies; PHI Learning Pvt. Ltd.: New Delhi, India, 2011; p. 175. [Google Scholar]
- Singh, G.; Sekhon, H.S.; Ram, H.; Gill, K.K.; Sharma, P. Effect of date of sowing on nodulation, growth, thermal requirement and grain yield of kharif mungbean genotypes. J. Food Legume 2010, 23, 132–134. [Google Scholar]
- Singh, G.; Kaur, H.; Aggarwal, N.; Ram, H.; Gill, K.K.; Khanna, V. Symbiotic efficiency, thermal requirement and yield of blackgram (Vigna mungo) genotypes as influenced by sowing time. Indian J. Agric. Sci. 2013, 83, 953–958. [Google Scholar]
- Thakur, V.; Patil, R.P.; Patil, J.R.; Suma, T.C.; Umesh, M.R. Physiological approaches for yield improvement of blackgram under rainfed condition. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 4114–4122. [Google Scholar] [CrossRef]
- Ganapathy, M.; Baradhan, G.; Ramesh, N. Effect of foliar nutrition on reproductive efficiency and grain-yield of rice fallow pulses. Legume Res. 2008, 31, 142–144. [Google Scholar]
- Patra, P.K.; Bhattacharya, C. Effect of different levels of boron and molybdenum on growth and yield of mung bean [Vigna radiata (L.) Wilczek (cv. Baisakhi Mung)] in Red and Laterite Zone of West Bengal. J. Crop Weed 2009, 5, 111–114. [Google Scholar]
- Math, G.; Vijayakumar, A.G.; Hegde, Y.; Basamma, K. Study of different moisture stress mitigation techniques for Rabi Urdbean (Vigna mungo (L.) Hepper). Indian J. Dryland Agric. Res. Dev. 2014, 29, 45–48. [Google Scholar] [CrossRef]
- Marimuthu, S.; Surendran, U. Efect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone, India. Cogent Food Agric. 2015, 1, 1010415. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhattacharya, P. Investigating Cobalt in Soil-plant-animal-human system: Dynamics, impact and management. J. Soil Sci. Plant Nutr. 2021, 21, 2339–2354. [Google Scholar] [CrossRef]
- Iram, A.; Awan, T.H.; Tanveer, A.; Akbar, N.; Saleem, M.F.; Safdar, M.E. Optimization of cobalt and nitrogen for improving seed yield, protein content and nitrogen use efficiency in mungbean. J. Environ. Agric. 2017, 2, 173–179. [Google Scholar]
- Srivastava, S.; Shukla, A.K. Differential response of black gram towards heavy Metal Stress. Environ. Pollut. Prot. 2016, 1, 89–96. [Google Scholar]
- Jaleel, A.; Jayakumar, K.; Chang-Xing, Z.; Azooz, M.M. Antioxidant potentials protect Vigna radiata (L.) Wilczek plants from soil cobalt stress and improve growth and pigment omposition. Plant Omics 2009, 2, 120–126. [Google Scholar]
- Abd El–Mageed, T.A.; El-Sherif, A.M.A.; Ali, M.M.; Abd El-Wahed, M.H. Combined effect of deficit irrigation and potassium fertilizer on physiological response, plant water status and yield of soybean in calcareous soil. Arch. Agron. Soil Sci. 2016, 63, 827–840. [Google Scholar] [CrossRef]
- Kataria, N.; Rani, P.; Dar, M.H.; Singh, N. Potassium to alleviate the adverse effect of water deficit in mungbean [Vigna radiata (L.) Wilczek]. Int. J. Curr. Res. Biosci. Plant Biol. 2014, 1, 33–40. [Google Scholar]
- Shabalaa, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant 2014, 151, 257–259. [Google Scholar] [CrossRef]
- Thalooth, A.T.; Tawfik, M.M.; Mohamed, M.H. A comparative study on the effect of foliar application of zinc, potassium and magnesium on growth, yield and some chemical constituents of mungbean plants grown under water stress conditions. World J. Agril. Sci. 2006, 2, 37–46. [Google Scholar]
- Pandey, N.; Gupta, B. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J. Trace Elem. Med. Biol. 2013, 27, 58–64. [Google Scholar] [CrossRef]
- Maqbool, R.; Ali, W.; Nadeem, M.A.; Abbas, T. Boron application in clay-loam soil for improved growth, yield and protein contents of mungbean in water-stresses. Sains Malays. 2018, 47, 51–58. [Google Scholar] [CrossRef]
- Sritharan, N.; Rajavel, M.; Senthilkumar, R. Physiological approaches: Yield improvement in blackgram. Legume Res. 2015, 38, 91–95. [Google Scholar] [CrossRef]
- Waraich, E.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A Review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Sangakkara, U.R.; Frehner, M.; Nosberger, J. Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea. J. Agron. Crop Sci. 2000, 185, 201–207. [Google Scholar] [CrossRef]
- Praveena, R.; Ghosh, G.; Singh, V. Effect of foliar spray of boron and different zinc levels on growth and yield of kharif greengram (Vigna radiata). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1422–1428. [Google Scholar] [CrossRef]
- Watson, D.J. The physiological basis of variation in yield. Adv. Agron. 1952, 6, 103–109. [Google Scholar]
- Gregory, F.G. The effect of climatic conditions on the growth of barley. Ann. Bot. 1926, 40, 1–26. [Google Scholar] [CrossRef]
- Donald, C.M. In search of yield. J. Aust. Inst. Agric. Sci. 1962, 28, 171–178. [Google Scholar]
- Perez, N.; GarcÍa-Espinosa, R.; LÓpez-CastaÑeda, C.; Acosta-Gallegos, J.A.; Simpson, J. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol. Mol. Plant Pathol. 2002, 60, 185–195. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Singh, B.; Nair, T.V.R. Effect of nitrogen fertilisation on nodulation and nitrogen assimilation in cowpea. Crop Improv. 1995, 22, 133–137. [Google Scholar]
- Deshmukh, P.S.; Sairam, R.K.; Sukla, D.K. Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes. Indian J. Plant Physiol. 1991, 35, 85–91. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Willey and Sons, Inc.: New York, NY, USA, 1984; p. 180. [Google Scholar]
- Parya, M.; Nath, D.; Mazumdar, D.; Chakraborty, P.K. Effect of thermal stress on wheat productivity in West Bengal. J. Agromet. 2010, 12, 217–220. Available online: http://agrimetassociation.org/journal/fullpage/fullpage20200125829028484.pdf (accessed on 10 September 2021).
- Rani, N.; Kumar, P.; Singh, A. Crop weather relationship of summer irrigated black gram (Vigna mungo) at coastal areas of Karaikal. Technofame 2014, 3, 1–9. [Google Scholar]
- Mane, R.B.; Asewar, B.V.; Chavan, K.K.; Kadam, Y.E. Study of agrometeorological indices on black gram as affected by different dates of sowing and varieties. J. Agric. Res. Technol. 2017, 42, 126–131. [Google Scholar]
- Kumari, V.V.; Banerjee, P.; Vijayan, R.; Nath, R.; Sengupta, K.; Chandran, M.A.S. Effects of micronutrient foliar spray on thermal indices, phenology and yield of lentil in new alluvial zone of West Bengal. J. AgriSearch 2020, 7, 202–205. [Google Scholar] [CrossRef]
- Talukdar, D. Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress. J. Nat. Sci. Bio. Med. 2013, 4, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Yohan, Y.; Sudhakar, P.; Umamahesh, V.; Reddy, D.M.; Sumathi, V. Evaluation of blackgram (Vigna mungo L. Hepper) genotypes for growth parameters under imposed moisture stress condition. J Pharm. Phytochem. 2018, 7, 981–986. [Google Scholar]
- Uddin, S.; Parvin, S.; Awal, M.A. Morpho-Physiological aspects of Mungbean (Vigna radiata L.) in response to water stress. Int. J. Agric. Sci. Res. 2013, 3, 137–148. [Google Scholar]
- Vyas, S.P.; Garg, B.K.; Kathju, S.; Lahiri, A.N. Influence of potassium on water relations, photosynthesis, nitrogen metabolism and yield of cluster bean under soil moisture stress. Indian J. Plant Physiol. 2001, 6, 30–37. [Google Scholar]
- Virdi, K.S.; Sidhu, P.S.; Singh, S. Relationship of morpho-physiological traits with yield and its components for identifying efficient plant types in pigeonpea. J. Res. Punjab Agric. Univ. 2004, 41, 175–182. [Google Scholar]
- El-Baz, E.E.T.; Lo’ay, A.A.; Ibrahium, E.G.; El-Deeb, M.R.I. Effect of cobalt and some vitamins as foliar application treatments on productivity and quality of williams banana cultivar. J. Plant Prod. Mansoura Univ. 2016, 7, 777–786. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Muchow, R.C. Radiation use efficiency. Adv. Agron. 1999, 65, 215–265. [Google Scholar] [CrossRef]
- Barrs, H.D.; Weatherly, P.E. A re-examination of relative turgidity for estimating water deficit in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Baroowa, B.; Gogoi, N. Biochemical changes in black gram and green gram genotypes after imposition of drought stress. J. Food Legume 2014, 27, 350–353. [Google Scholar]
- Banerjee, P.; Visha Kumari, V.; Nath, R.; Bandopadhyay, P. Seed primary and foliar nutrition studies on relay grass pea after winter rice in lower Gangetic plain. J. Crop Weed 2019, 15, 72–78. [Google Scholar] [CrossRef]
- Banerjee, P.; Ghosh, A.; Visha Kumari, V.; Nath, R. Effect of canopy temperature on physiological processes of grass pea as influenced by seed priming and foliar fertilization. J. Agromet. 2021, 23, 340–343. [Google Scholar] [CrossRef]
- Pegu, L.; Kalita, P.; Das, K.; Alam, S.; Dekabarua, H.P.; Konwar, P.B. Performance of some blackgram genotypes in relation to physio-chemical, root parameters and yield as influence by foliar feeding with boron. Legume Res. 2013, 36, 505–510. [Google Scholar]
- Gurumurthy, S.; Sarkar, B.; Vanaja, M.; Lakshmi, J.; Yadav, S.K.; Maheswar, M. Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiol. Plant 2019, 41, 42. [Google Scholar] [CrossRef]
- Yokota, A.; Takahara, K.; Akashi, K. Water stress. In Physiology and Molecular Biology of Stress Tolerance in Plants; Rao, K.M., Raghavendra, A.S., Reddy, K.J., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 15–39. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Baroowa, B.; Gogoi, N. Effect of induced drought on different growth and biochemical attributes of black gram (Vigna mungo L.) and green gram (Vigna radiata L.). J. Environ. Res. Dev. 2012, 6, 584–593. [Google Scholar]
- Caruso, C.; Chilosi, G.; Caporale, C.; Leonardo, L.; Bertini, L.; Margo, P.; Bunonocore, V. Induction of path hogensis-related proteins in germination wheat seeds infected with Fusarius culmorum. Plant Sci. 1999, 140, 87–97. [Google Scholar] [CrossRef]
- Singh, B.; Usha, K. Nodulation and symbiotic nitrogen fixation by genotypes of blackgram [Vigna mungo (L.) Hepper] as affected by fertiliser nitrogen. Aust. J. Agric. Res. 2002, 53, 453–457. [Google Scholar] [CrossRef]
- Singh, A.; Jain, N. The effect of Different water regimes on yield, nodulation and nitrate reductase activity in blackgram. Int. Med. Leg. Report. J. 2020, 3, 52–55. [Google Scholar]
- Sita, K.; Sehgal, A.; HanumanthaRao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017, 8, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Georgii, E.; Jin, M.; Zhao, J.; Kanawati, B.; Schmitt-Kopplin, P.; Albert, A.; Winkler, J.B.; Schäffner, A.R. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and drought stresses in crops and approaches for their mitigations. Front. Chem. 2018, 6, 26. [Google Scholar] [CrossRef]
- Panotra, N.; Kumar, A.; Singh, O.P. Effect of varieties and dates of sowing on growth parameters, yield attributes & yield of black gram (Vigna mungo L.). Int. J. Sci. Environ. Technol. 2016, 5, 3821–3826. [Google Scholar]
- Gad, N. Increasing the efficiency of nitrogen fertilization through cobalt application to pea plant. Res. J. Agric. Biol. Sci. 2006, 2, 433–442. [Google Scholar]
- Rao, D.S.N.; Naidu, T.C.M.; Rani, Y.A. Effect of foliar nutrition on antioxidant enzymes, photosynthetic rate, dry matter production and yield of Mung Bean under receding soil moisture condition. Int. J. Pure Appl. Biosci. 2015, 3, 115–123. [Google Scholar]
- Gowthami, P.; Rao, G.R.; Rao, K.L.N.; Ahamed, M.L. Effect of foliar application of potassium, boron and zinc on quality and seed yield in soybean. Int. J. Chem. Stud. 2018, 6, 142–144. [Google Scholar]
- Kaisher, M.S.; Rahman, M.T.; Amin, M.H.A.; Amanullah, A.S.M.; Ahsanullah, A.S.M. Effects of sulphur and boron on the seed yield and protein content of mungbean. Bangladesh Res. Publ. J. 2010, 3, 1181–1186. [Google Scholar]
- Sahay, N.; Singh, S.P.; Sharma, V.K. Effect of cobalt and potassium application on growth, yield and nutrient uptake in lentil (Lens culinaris L.). Legume Res. 2013, 36, 259–262. [Google Scholar]
Parameter | Year | Temperature (°C) | |||
---|---|---|---|---|---|
At Sowing | Flowering | Pod Initiation | Maturity | ||
Maximum temperature (°C) | 2020 | 29.1 | 36.6 | 34.0 | 33.5 |
32.5 | 37.1 | 35.5 | 33.8 | ||
2021 | 30.2 | 36.2 | 36.9 | 35.9 | |
36.7 | 36.5 | 37.9 | 32.3 | ||
Minimum temperature (°C) | 2020 | 15.2 | 22.9 | 23.7 | 25.5 |
16.8 | 23.4 | 24.3 | 24.6 | ||
2021 | 19.2 | 23.8 | 24.6 | 26.4 | |
19.5 | 24.8 | 25.0 | 25.6 | ||
Rainfall (mm) | 2020 | 7.1 | 0.0 | 0.0 | 24.6 |
2.7 | 0.2 | 0.0 | 14.2 | ||
2021 | 0.0 | 1.3 | 1.9 | 6.5 | |
0.0 | 2.1 | 0.7 | 31.3 | ||
Maximum relative humidity (%) | 2020 | 91.3 | 91.5 | 91.0 | 90.7 |
90.8 | 90.7 | 89.4 | 90.1 | ||
2021 | 89.2 | 87.9 | 87.3 | 86.5 | |
84.8 | 86.0 | 85.4 | 86.4 | ||
Minimum relative humidity (%) | 2020 | 50.2 | 54.7 | 54.1 | 59.9 |
47.1 | 54.0 | 52.7 | 57.2 | ||
2021 | 34.5 | 39.1 | 37.7 | 44.9 | |
27.4 | 35.6 | 36.6 | 44.1 |
Abbreviation | Treatment Description |
---|---|
Main Plot: Date of sowing (D) | |
D1 | First week of March (2 March 2020 and 1 March 2021) |
D2 | Third week of March (16 March 2020 and 15 March 2021) |
Subplot: Soil application (S) | |
S1 | No Cobalt application |
S2 | Soil application of Co @ 4 kg ha−1 (as Co(NO3)2·6 H2O with 20% Co) |
Sub–sub plot: Foliar spray (F) | |
F1 | No spray |
F2 | Foliar spray of tap water @ 500 lit ha−1 |
F3 | Foliar spray of K @ 1.25% (as Mureate of Potash with 60% K2O) |
F4 | Foliar spray of B @ 0.2% (as Borax with 11.5% B) |
F5 | Foliar spray of K @ 1.25% + B @ 0.2% |
Treatment | Days to Emergence | Days to Branching | Days to Flowering | Days to Pod Initiation | Days to Maturity | |||||
---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Date of Sowing (D) | ||||||||||
D1 | 6.5 ± 0.12 b | 5.8 ± 0.03 b | 11.7 ± 0.11 b | 11.2 ± 0.11 b | 33.6 ± 0.13 b | 34.2 ± 0.06 b | 41.1 ± 0.03 b | 41.1 ± 0.06 b | 82.0 ± 0.03 b | 81.8 ± 0.17 b |
D2 | 6.9 ± 0.06 a | 6.6 ± 0.03 a | 12.5 ± 0.01 a | 12.5 ± 0.05 a | 32.7 ± 0.11 a | 33.3 ± 0.05 a | 40.2 ± 0.07 a | 40.2 ± 0.03 a | 78.2 ± 0.04 a | 78.8 ± 0.15 a |
Soil Application of Cobalt (S) | ||||||||||
S1 | 7.9 ± 0.10 a | 7.2 ± 0.03 a | 14.3 ± 0.10 a | 13.8 ± 0.11 a | 31.7 ± 0.27 a | 32.5 ± 0.09 a | 39.0 ± 0.06 a | 39.0 ± 0.03 a | 78.5 ± 0.15 a | 77.8 ± 0.12 a |
S2 | 6.0 ± 0.06 b | 6.1 ± 0.09 b | 10.8 ± 0.09 b | 11.6 ± 0.12 b | 33.7 ± 0.30 b | 34.1 ± 0.12 b | 41.4 ± 0.10 b | 41.4 ± 0.09 b | 81.7 ± 0.13 b | 81.6 ± 0.19 b |
Foliar Spray (F) | ||||||||||
F1 | 7.0 ± 0.14 a | 6.9 ± 0.08 a | 12.3 ± 0.012 b | 12.4 ± 0.14 b | 32.9 ± 0.05 b | 33.5 ± 0.05 b | 38.6 ± 0.30 d | 38.6 ± 0.14 d | 78.1 ± 0.17 e | 75.8 ± 0.00 e |
F2 | 7.1 ± 0.08 a | 6.3 ± 0.14 a | 13.0 ± 0.14 a | 12.3 ± 0.09 b | 32.5 ± 0.14 b | 32.8 ± 0.14 b | 39.5 ± 0.14 c | 39.5 ± 0.14 c | 79.4 ± 0.08 d | 78.5 ± 0.14 d |
F3 | 6.8 ± 0.17 a | 6.9 ± 0.08 a | 12.5 ± 0.08 a | 12.6 ± 0.14 a | 32.7 ± 0.17 a | 33.3 ± 0.14 a | 40.2 ± 0.30 b | 40.2 ± 0.17 b | 80.4 ± 0.22 c | 79.8 ± 0.25 c |
F4 | 6.8 ± 0.17 a | 6.3 ± 0.17 a | 12.3 ± 0.09 b | 12.9 ± 0.07 a | 32.8 ± 0.17 a | 33.8 ± 0.22 a | 41.0 ± 0.14 a | 41.0 ± 0.00 a | 81.1 ± 0.22 b | 81.8 ± 0.25 b |
F5 | 7.0 ± 0.00 a | 6.8 ± 0.17 a | 12.7 ± 0.12 a | 12.5 ± 0.10 b | 33.3 ± 0.17 a | 34.6 ± 0.17 a | 41.8 ± 0.14 a | 41.8 ± 0.00 a | 81.8 ± 0.08 a | 83.6 ± 0.17 a |
Phenological Parameters | Seasons | Statistical Significance | Factor Wise Effect | Interaction Effect of All Treatments | |||||
---|---|---|---|---|---|---|---|---|---|
D | S | F | D × S | D × F | S × F | D × S × F | |||
Days to emergence | 2020 | SEm(±) | 0.09 | 0.08 | 0.17 | 0.15 | 0.23 | 0.23 | 0.33 |
LSD | 0.58 | 0.32 | NS | NS | NS | NS | NS | ||
2021 | SEm(±) | 0.08 | 0.07 | 0.16 | 0.22 | 0.09 | 0.22 | 0.35 | |
LSD | 0.52 | 0.26 | NS | 0.64 | NS | NS | NS | ||
Days to branching | 2020 | SEm(±) | 0.08 | 0.34 | 0.29 | 0.48 | 0.42 | 0.42 | 0.59 |
LSD | 0.52 | 1.34 | NS | NS | NS | NS | NS | ||
2021 | SEm(±) | 0.17 | 0.14 | 0.24 | 0.21 | 0.33 | 0.33 | 0.47 | |
LSD | 1.05 | 0.57 | NS | NS | NS | NS | NS | ||
Days to flowering | 2020 | SEm(±) | 0.06 | 0.32 | 0.21 | 0.23 | 0.37 | 0.37 | 0.52 |
LSD | 0.38 | 1.26 | 0.60 | 0.67 | NS | NS | NS | ||
2021 | SEm(±) | 0.04 | 0.12 | 0.13 | 0.18 | 0.02 | 0.18 | 0.26 | |
LSD | 0.25 | 0.47 | 0.38 | 0.05 | NS | NS | NS | ||
Days to pod initiation | 2020 | SEm(±) | 0.15 | 0.06 | 0.17 | 0.08 | 0.24 | 0.24 | 0.33 |
LSD | 0.95 | 0.22 | 0.48 | NS | NS | 0.68 | NS | ||
2021 | SEm(±) | 0.05 | 0.10 | 0.13 | 0.16 | 0.18 | 0.18 | 0.26 | |
LSD | 0.29 | 0.41 | 0.37 | NS | NS | NS | NS | ||
Days to maturity | 2020 | SEm(±) | 0.07 | 0.14 | 0.17 | 0.20 | 0.25 | 0.25 | 0.35 |
LSD | 0.44 | 0.55 | 0.50 | 0.43 | 0.71 | 0.72 | 1.01 | ||
2021 | SEm(±) | 0.02 | 0.06 | 0.13 | 0.09 | 0.08 | 0.18 | 0.25 | |
LSD | 0.14 | 0.24 | 0.36 | 0.34 | 0.51 | 0.51 | 0.73 |
Treatment | Total Dry Matter (g m−2) | LAI (m2 m−2) | CGR (g m−2 day−1) | NAR (g m−2 Leaf Area day−1) | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Date of Sowing (D) | ||||||||
D1 | 237.3 ± 0.41 a | 235.9 ± 0.62 a | 3.18 ± 0.02 a | 3.12 ± 0.01 a | 4.42 ± 0.06 a | 4.43 ± 0.10 a | 0.76 ± 0.01 a | 0.79 ± 0.01 a |
D2 | 225.5 ± 0.62 b | 228.9 ± 0.39 b | 3.12 ± 0.00 b | 3.08 ± 0.01 b | 4.27 ± 0.06 b | 4.46 ± 0.07 a | 0.75 ± 0.01 a | 0.78 ± 0.01 a |
Soil Application of Cobalt (S) | ||||||||
S1 | 221.2 ± 1.25 b | 225.1 ± 0.66 b | 3.04 ± 0.01 b | 2.98 ± 0.02 b | 4.12 ± 0.03 b | 4.43 ± 0.06 a | 0.74 ± 0.01 a | 0.76 ± 0.02 a |
S2 | 228.5 ± 0.29 a | 232.0 ± 0.53 a | 3.19 ± 0.01 a | 3.18 ± 0.01 a | 4.40 ± 0.011 a | 4.50 ± 0.07 a | 0.77 ± 0.01 a | 0.80 ± 0.01 a |
Foliar Spray (F) | ||||||||
F1 | 203.5 ± 0.30 e | 212.1 ± 0.72 e | 2.94 ± 0.01 e | 2.91 ± 0.01 d | 3.71 ± 0.06 e | 4.15 ± 0.12 d | 0.67 ± 0.02 b | 0.72 ± 0.01 b |
F2 | 214.0 ± 1.46 d | 222.1 ± 0.30 d | 3.03 ± 0.02 d | 3.00 ± 0.01 cd | 4.01 ± 0.09 c | 4.38 ± 0.08 c | 0.71 ± 0.01 ab | 0.76 ± 0.02 ab |
F3 | 225.4 ± 1.63 c | 229.7 ± 0.90 c | 3.13 ± 0.01 c | 3.09 ± 0.01 c | 4.29 ± 0.13 c | 4.49 ± 0.12 b | 0.76 ± 0.02 a | 0.78 ± 0.02 a |
F4 | 234.8 ± 0.28 b | 234.8 ± 1.39 b | 3.20 ± 0.01 b | 3.17 ± 0.01 b | 4.58 ± 0.07 b | 4.52 ± 0.26 b | 0.80 ± 0.02 a | 0.80 ± 0.01 a |
F5 | 246.6 ± 0.52 a | 244.3 ± 0.87 a | 3.28 ± 0.01 a | 3.22 ± 0.02 a | 4.72 ± 0.05 a | 4.78 ± 0.13 a | 0.83 ± 0.01 a | 0.82 ± 0.01 a |
Growth Parameters | Seasons | Statistical Significance | Factor Wise Effect | Interaction Effect of All Treatments | |||||
---|---|---|---|---|---|---|---|---|---|
D | S | F | D × S | D × F | S × F | D × S × F | |||
Total dry matter | 2020 | SEm(±) | 0.34 | 0.72 | 0.89 | 1.03 | 1.27 | 1.27 | 1.79 |
LSD | 2.08 | 2.83 | 2.58 | 3.03 | 3.65 | 3.65 | 5.16 | ||
2021 | SEm(±) | 0.42 | 0.58 | 0.89 | 0.82 | 1.26 | 1.26 | 1.78 | |
LSD | 2.62 | 2.26 | 2.56 | 2.60 | 3.62 | 3.60 | 5.12 | ||
LAI | 2020 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
LSD | 0.07 | 0.02 | 0.02 | 0.03 | NS | 0.02 | 0.06 | ||
2021 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | |
LSD | 0.02 | 0.02 | 0.02 | 0.02 | NS | 0.03 | 0.04 | ||
CGR | 2020 | SEm(±) | 0.04 | 0.03 | 0.07 | 0.04 | 0.11 | 0.11 | 0.15 |
LSD | 0.10 | 0.08 | 0.22 | 0.17 | 0.30 | 0.30 | 0.31 | ||
2021 | SEm(±) | 0.01 | 0.03 | 0.05 | 0.04 | 0.07 | 0.07 | 0.10 | |
LSD | 0.09 | 0.10 | 0.14 | 0.14 | 0.20 | 0.20 | 0.28 | ||
NAR | 2020 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
LSD | 0.02 | 0.02 | 0.02 | NS | 0.03 | NS | 0.05 | ||
2021 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | |
LSD | 0.01 | 0.02 | 0.03 | NS | 0.02 | NS | 0.04 |
Treatment | Relative Leaf Water Content (%) | |||||||
---|---|---|---|---|---|---|---|---|
15 DAS | 30 DAS | 45 DAS | 60 DAS | |||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Date of Sowing (D) | ||||||||
D1 | 97.4 ± 0.1 a | 97.9 ± 0.1 a | 94.3 ± 0.4 a | 94.1 ± 0.1 a | 89.7 ± 0.1 a | 89.7 ± 0.1 a | 86.9 ± 0.0 a | 87.8 ± 0.1 a |
D2 | 96.9 ± 0.1 b | 97.5 ± 0.1 a | 93.6 ± 0.2 b | 93.4 ± 0.1b | 89.0 ± 0.1 a | 89.0 ± 0.0 a | 86.0 ± 0.1 a | 87.5 ± 0.1 a |
Soil Application of Cobalt (S) | ||||||||
S1 | 95.4 ± 0.1 b | 96.4 ± 0.1 b | 92.1 ± 0.2 b | 92.5 ± 0.3 b | 87.4 ± 0.1 b | 87.8 ± 0.1 b | 83.9 ± 0.1 b | 86.7 ± 0.1 b |
S2 | 98.4 ± 0.1 a | 98.5 ± 0.1 a | 94.9 ± 0.3 a | 94.2 ± 0.2 a | 90.7 ± 0.1 a | 90.0 ± 0.1 a | 88.0 ± 0.2 a | 88.2 ± 0.1 a |
Foliar Spray (F) | ||||||||
F1 | 94.2 ± 0.1 b | 95.6 ± 0.1 b | 93.4 ± 0.4 a | 93.1 ± 0.3 a | 88.3 ± 0.1 b | 88.3 ± 0.1 a | 85.2 ± 0.1 b | 86.6 ± 0.1 c |
F2 | 96.6 ± 0.1 a | 97.3 ± 0.1 a | 93.6 ± 0.3 a | 93.4 ± 0.4 a | 88.7 ± 0.1 ab | 88.6 ± 0.1 a | 85.6 ± 0.2 b | 87.1 ± 0.2 b |
F3 | 96.8 ± 0.1 a | 97.6 ± 0.1 a | 93.5 ± 0.3 a | 93.5 ± 0.1 a | 89.3 ± 0.1 a | 89.1 ± 0.2 a | 86.3 ± 0.1 a | 87.8 ± 0.1 b |
F4 | 97.1 ± 0.1 a | 97.6 ± 0.1 a | 93.7 ± 0.4 a | 93.4 ± 0.1 a | 89.0 ± 0.1 a | 89.1 ± 0.1 a | 85.9 ± 0.1 b | 87.5 ± 0.1 b |
F5 | 96.9 ± 0.1 a | 97.6 ± 0.0 a | 93.5 ± 0.1 a | 93.3 ± 0.1 a | 89.8 ± 0.1 a | 89.5 ± 0.1 a | 86.8 ± 0.1 a | 88.2 ± 0.1 a |
RLWC at Time Interval | Seasons | Statistical Significance | Factor Wise Effect | Interaction Effect of All Treatments | |||||
---|---|---|---|---|---|---|---|---|---|
D | S | F | D × S | D × F | S × F | D × S × F | |||
15 DAS | 2020 | SEm(±) | 0.09 | 0.07 | 0.18 | 0.10 | 0.25 | 0.25 | 0.36 |
LSD | 0.53 | 0.29 | NS | NS | NS | NS | NS | ||
2021 | SEm(±) | 0.08 | 0.25 | 0.15 | 0.09 | 0.21 | 0.21 | 0.30 | |
LSD | 0.49 | 0.06 | NS | NS | NS | NS | NS | ||
30 DAS | 2020 | SEm(±) | 0.14 | 0.13 | 0.18 | 0.18 | 0.26 | 0.26 | 0.37 |
LSD | 0.84 | 0.51 | NS | 0.72 | NS | NS | NS | ||
2021 | SEm(±) | 0.10 | 0.11 | 0.15 | 0.16 | 0.21 | 0.21 | 0.30 | |
LSD | 0.64 | 0.45 | NS | NS | NS | NS | NS | ||
45 DAS | 2020 | SEm(±) | 0.22 | 0.15 | 0.25 | 0.22 | 0.35 | 0.35 | 0.50 |
LSD | 0.53 | 0.41 | 0.72 | 0.85 | 1.01 | 1.01 | 1.44 | ||
2021 | SEm(±) | 0.15 | 0.09 | 0.19 | 0.14 | 0.27 | 0.27 | 0.38 | |
LSD | 0.92 | 0.37 | 0.54 | 0.53 | 0.77 | 0.77 | 1.09 | ||
60 DAS | 2020 | SEm(±) | 0.26 | 0.18 | 0.30 | 0.25 | 0.42 | 0.42 | 0.59 |
LSD | 0.48 | 0.49 | 0.85 | 0.99 | 1.21 | 1.21 | 1.71 | ||
2021 | SEm(±) | 0.15 | 0.09 | 0.19 | 0.14 | 0.27 | 0.27 | 0.38 | |
LSD | 0.92 | 0.37 | 0.53 | 0.54 | 0.77 | 0.77 | 1.09 |
Treatment | Proline Content (mg g−1 Leaf Fresh Weight) | Nitrate Reductase Content (µmol g−1 Leaf Fresh Weight hour−1) | Cell Membrane Stability (%) | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Date of Sowing (D) | ||||||
D1 | 4.59 ± 0.01 a | 4.30 ± 0.2 a | 1.76 ± 0.02 a | 1.97 ± 0.02 a | 55.67 ± 0.72 a | 52.77 ± 0.23 a |
D2 | 4.41 ± 0.01 b | 4.21 ± 0.03 b | 1.60 ± 0.02 b | 1.83 ± 0.02 b | 51.53 ± 0.57 b | 50.59 ± 0.31 b |
Soil Application of Cobalt (S) | ||||||
S1 | 4.42 ± 0.01 b | 4.42 ± 0.01 a | 1.48 ± 0.01 b | 1.69 ± 0.02 b | 46.98 ± 0.41 b | 48.19 ± 0.41 b |
S2 | 4.77 ± 0.01 a | 4.46 ± 0.02 a | 1.71 ± 0.03 a | 1.96 ± 0.02 a | 55.67 ± 0.72 a | 52.77 ± 0.23 a |
Foliar Spray (F) | ||||||
F1 | 4.38 ± 0.01 d | 4.16 ± 0.03 e | 1.41 ± 0.02 d | 1.67 ± 0.03 d | 45.08 ± 0.68 e | 46.69 ± 0.29 e |
F2 | 4.49 ± 0.01 cd | 4.25 ± 0.03 d | 1.51 ± 0.03 c | 1.75 ± 0.03 c | 47.81 ± 0.56 d | 48.49 ± 0.59 d |
F3 | 4.71 ± 0.01 b | 4.43 ± 0.03 b | 1.68 ± 0.03 b | 1.89 ± 0.02 b | 51.75 ± 0.75 c | 50.38 ± 0.36 c |
F4 | 4.59 ± 0.01 c | 4.34 ± 0.01 c | 1.61 ± 0.02 b | 1.83 ± 0.0 b | 54.66 ± 0.29 b | 52.53 ± 0.13 b |
F5 | 4.80 ± 0.01 a | 4.53 ± 0.01 a | 1.77 ± 0.01 a | 1.98 ± 0.03 a | 57.33 ± 0.74 a | 54.31 ± 0.34 a |
Parameters | Seasons | Statistical Significance | Factor Wise Effect | Interaction Effect of All Treatments | |||||
---|---|---|---|---|---|---|---|---|---|
D | S | F | D × S | D × F | S × F | D × S × F | |||
Proline content | 2020 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 |
LSD | 0.03 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | ||
2021 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
LSD | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | NS | 0.02 | ||
Nitrate reductase content | 2020 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
LSD | 0.05 | 0.02 | 0.02 | NS | 0.02 | 0.02 | NS | ||
2021 | SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
LSD | 0.04 | 0.02 | 0.02 | NS | 0.03 | 0.03 | NS | ||
Cell membrane stability | 2020 | SEm(±) | 0.13 | 0.17 | 0.19 | 0.24 | 0.27 | 0.27 | 0.39 |
LSD | 0.79 | 0.67 | 0.56 | 0.95 | 0.79 | 0.75 | 1.12 | ||
2021 | SEm(±) | 0.09 | 0.13 | 0.15 | 0.19 | 0.22 | 0.22 | 0.31 | |
LSD | 0.53 | 0.51 | 0.44 | 0.61 | 0.62 | 0.63 | 0.64 |
Treatment | Pods per Plant | Seed Yield (kg ha−1) | Stover Yield (kg ha−1) | Harvest Index (%) | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Date of Sowing (D) | ||||||||
D1 | 33.3 ± 0.1 a | 34.2 ± 0.4 a | 1378.4 ± 11.74 a | 1325.4 ± 6.45 a | 1676.7 ± 19.4 a | 1464.4 ± 35.0 a | 43.1 ± 0.7 a | 45.9 ± 0.5 a |
D2 | 30.8 ± 0.2 b | 30.9 ± 0.8 b | 1126.0 ± 7.62 b | 1152.8 ± 2.14 b | 1525.1 ± 8.4 b | 1353.2 ± 22.5 b | 42.7 ± 0.4 b | 45.3 ± 0.5 b |
Soil Application of Cobalt (S) | ||||||||
S1 | 26.9 ± 0.6 b | 28.0 ± 0.6 b | 1138.7 ± 9.05 b | 1052.2 ± 5.78 b | 1592.7 ± 10.6 b | 1276.5 ± 36.6 b | 41.5 ± 0.5 b | 44.9 ± 0.5 b |
S2 | 34.4 ± 0.8 a | 33.5 ± 1.0 a | 1308.2 ± 6.48 a | 1246.1 ± 8.09 a | 1652.3 ± 10.6 a | 1416.9 ± 9.2 a | 44.4 ± 0.3 a | 46.9 ± 0.4 a |
Foliar Spray (F) | ||||||||
F1 | 20.0 ± 0.6 e | 19.5 ± 0.7 e | 878.7 ± 10.61 e | 838.3 ± 4.64 e | 1257.6 ± 30.1 e | 1043.3 ± 19.9 e | 41.0 ± 0.5 c | 44.7 ± 0.2 c |
F2 | 25.8 ± 0.4 d | 24.9 ± 0. 5d | 1075.7 ± 6. 54 d | 1021.1 ± 5.53 d | 1478.1 ± 11.3 d | 1187.0 ± 7.7 d | 42.0 ± 0.8 b | 45.5 ± 0.4 b |
F3 | 31.3 ± 0.6 c | 30.8 ± 0.8 c | 1239.4 ± 10.93 c | 1161.1 ± 9.53 c | 1642.6 ± 26.1 c | 1373.3 ± 44.6 c | 42.9 ± 0.5 b | 45.8 ± 0.9 b |
F4 | 36.5 ± 0.3 b | 36.3 ± 1.2 b | 1392.7 ± 4.55 b | 1293.0 ± 8.77 b | 1801.8 ± 19.9 b | 1501.3 ± 11.8 b | 43.6 ± 0.2 ab | 46.4 ± 0.7 a |
F5 | 39.8 ± 0.1 a | 42.0 ± 0.9 a | 1530.6 ± 5.74 a | 1432.2 ± 8.78 a | 1932.4 ± 53.2 a | 1635.8 ± 59.0 a | 44.2 ± 0.8 a | 47.1 ± 0.6 a |
Parameter | Seasons | Statistical Significance | Factor Wise Effect | Interaction Effect of All Treatments | |||||
---|---|---|---|---|---|---|---|---|---|
D | S | F | D × S | D × F | S × F | D × S × F | |||
Number of pods per plant | 2020 | SEm(±) | 0.18 | 0.33 | 0.49 | 0.47 | 0.69 | 0.69 | 0.98 |
LSD | 1.10 | 1.29 | 1.41 | 1.83 | 1.61 | 1.62 | 2.12 | ||
2021 | SEm(±) | 0.45 | 0.38 | 0.56 | 0.53 | 0.79 | 0.79 | 1.13 | |
LSD | 2.80 | 1.47 | 1.62 | 2.08 | 2.22 | 2.19 | 2.54 | ||
Seed yield | 2020 | SEm(±) | 8.69 | 6.42 | 10.15 | 9.08 | 14.36 | 14.36 | 20.31 |
LSD | 53.61 | 18.43 | 29.13 | 26.06 | 43.02 | 43.02 | 56.27 | ||
2021 | SEm(±) | 9.89 | 7.01 | 11.80 | 9.91 | 16.69 | 16.69 | 23.60 | |
LSD | 61.06 | 27.37 | 34.00 | 23.60 | 48.09 | 48.00 | 71.03 | ||
Stover yield | 2020 | SEm(±) | 9.57 | 4.97 | 18.02 | 7.03 | 25.48 | 25.48 | 36.04 |
LSD | 59.03 | 19.41 | 51.93 | 27.46 | 73.43 | 74.36 | 84.43 | ||
2021 | SEm(±) | 12.48 | 11.33 | 14.07 | 16.02 | 19.89 | 19.89 | 28.14 | |
LSD | 76.99 | 44.24 | 40.54 | 44.58 | 52.49 | 52.49 | 78.32 | ||
Harvest index | 2020 | SEm(±) | 0.28 | 0.21 | 0.32 | 0.29 | 0.46 | 0.46 | 0.65 |
LSD | NS | 0.80 | 0.94 | 1.14 | 1.32 | NS | NS | ||
2021 | SEm(±) | 0.22 | 0.13 | 0.26 | 0.18 | 0.36 | 0.36 | 0.51 | |
LSD | NS | 0.50 | 0.74 | 0.71 | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, P.; Venugopalan, V.K.; Nath, R.; Althobaiti, Y.S.; Gaber, A.; Al-Yasi, H.; Hossain, A. Physiology, Growth, and Productivity of Spring–Summer Black Gram (Vigna mungo L. Hepper) as Influenced by Heat and Moisture Stresses in Different Dates of Sowing and Nutrient Management Conditions. Agronomy 2021, 11, 2329. https://doi.org/10.3390/agronomy11112329
Banerjee P, Venugopalan VK, Nath R, Althobaiti YS, Gaber A, Al-Yasi H, Hossain A. Physiology, Growth, and Productivity of Spring–Summer Black Gram (Vigna mungo L. Hepper) as Influenced by Heat and Moisture Stresses in Different Dates of Sowing and Nutrient Management Conditions. Agronomy. 2021; 11(11):2329. https://doi.org/10.3390/agronomy11112329
Chicago/Turabian StyleBanerjee, Purabi, Visha Kumari Venugopalan, Rajib Nath, Yusuf S. Althobaiti, Ahmed Gaber, Hatim Al-Yasi, and Akbar Hossain. 2021. "Physiology, Growth, and Productivity of Spring–Summer Black Gram (Vigna mungo L. Hepper) as Influenced by Heat and Moisture Stresses in Different Dates of Sowing and Nutrient Management Conditions" Agronomy 11, no. 11: 2329. https://doi.org/10.3390/agronomy11112329
APA StyleBanerjee, P., Venugopalan, V. K., Nath, R., Althobaiti, Y. S., Gaber, A., Al-Yasi, H., & Hossain, A. (2021). Physiology, Growth, and Productivity of Spring–Summer Black Gram (Vigna mungo L. Hepper) as Influenced by Heat and Moisture Stresses in Different Dates of Sowing and Nutrient Management Conditions. Agronomy, 11(11), 2329. https://doi.org/10.3390/agronomy11112329