Phosphorus Flows, Surpluses, and N/P Agronomic Balancing When Using Manure from Pig and Poultry Farms
Abstract
:1. Introduction
1.1. Pig and Poultry Farming in the European Union
1.2. Objectives of the Paper and Central Research Questions
1.3. Monogastrics Are P-Inefficient in Digesting Feed
1.4. Manure Production, Storage, and Reuse—Impacts on N and P Content
1.5. Phosphorus Loading and Runoff
1.6. Managing Nitrogen in Manure Applications
1.7. Critical Phosphorus Ranges for Safe Application of Manure
2. Methods
2.1. Mass Balance of P for Typical Pig and Poultry Farms and Scenarios to Increase PUE and Reduce P Losses
2.2. Relating Manure P Input to Crop P Output to Determine Safe Levels of Manure Spreading without Excess P
2.3. The Role of N/P Ratios in Stored Manure to Determine Safe Loading Rates of P
2.4. Taking a Systems Overview on P Management in Pig and Poultry Farming
- The available area for manure spreading.
- Feed P variables: phytase additions to feed, phase-feeding, and low phytate feed.
- Animal P physiology variables: retention of P, digestibility of P.
- Manure N variables: attempts through improved housing, storage, and spreading to reduce N losses from ammonia, nitrous oxide, nitrogen gas, and nitrate in order to increase the N/P ratio of the final manure in the soil.
- Manure P variables: varying the intensity of manure application to crops on the basis of their P or N requirements, resulting in different numbers of hectares fertilized.
- Soil and crop P variables: crop offtake, cover crop, and soil retention.
- Drainage and runoff P losses: precipitation levels, tiling of fields, controlled flows, green ditching, sedimentation ponds, buffer zones, and constructed wetlands.
3. Results
3.1. Phosphorus Mass Balance Flows in Typical Pig and Poultry Farms
3.2. Determining Safe Levels of P Loading from Manure
3.3. Calculation of Critical N/P Ratios in using Manure as a Soil Amendment
3.4. Taking a Systems View on Nutrient Management in Pig and Poultry Farms
4. Discussion
4.1. Feed Modification to Avoid P Balances and Increase PUEs
4.2. Importance of Housing, Manure Treatment and Storage Factors Preventing N Losses to Optimize N/P Ratios and Minimize Excess P
4.3. Policy Aspects Relating to P Surpluses
4.4. Relevance to Baltic Sea Region Nutrient Management
4.5. Practical Impacts of Using P-, along with N-Based Manure Applications
- Larger areas of cropland would need to be used to meet the P requirements of the target crops. In some cases, this could mean doubling the area. In worst cases, no manure would be spread on fields until the soil P levels were mined down (e.g., 5 years depending on the local situation).
- Alternatively, if cropland areas cannot be increased, animal farms would need to produce less manure by reducing animal density and downsizing their operations.
- Cutting back on manure applications to reduce excessive farmgate P balances could require additional N fertilizer to meet the needs of the crops. This would create added costs, e.g., in the purchase of N fertilizer or crop rotating with green manure.
- Manure could be transported to farms that have P deficits. For this to be economical, the manure would need to be separated (for slurry) or dried and pelleted (for litter). These would be added costs, but presumably the products would increase in value.
- Farmers especially, running large intensive animal farms, would value manure more as a fertilizer instead of as a waste product from animal production.
- By focusing more on the importance of N/P ratios, N would end up being managed better with incentives to reduce N losses in manure handling, storage, and spreading.
- P wastage would be reduced significantly by upwards of 50% in many cases.
- The new EU CAP (Common Agriculture Policy) could take on some of these costs by building in provisions for improved P management of soils.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marquer, P.; Rabade, T.; Forti, R. Pig farming in the European Union, considerable variations from one Member State to another. Eurostat Stat. Focus 2014, 15, 1–12. [Google Scholar]
- Schoumans, O.F.; Bouraoui, F.; Kabbe, C.; Oenema, O.; van Dijk, K.C. Phosphorus management in Europe in a changing world. Ambio 2015, 44, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Santonja, G.G.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs; EUR 28674 EN; JRC: Seville, Spain, 2017. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow—Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- van Krimpen, M.; Sebek, L.; Bikker, P.; van Vuuren, A.M. Default Phosphorus excretion factors of farm animals. Trends Plant Sci. 2002, 7, 118–125. [Google Scholar]
- Sharpley, A.N.; Bergström, L.; Aronsson, H.; Bechmann, M.; Bolster, C.H.; Börling, K.; Djodjic, F.; Jarvie, H.P.; Schoumans, O.F.; Stamm, C.; et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio 2015, 44, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Oster, M.; Reyer, H.; Ball, E.; Fornara, D.; McKillen, J.; Sørensen, K.U.; Poulsen, H.D.; Andersson, K.; Ddiba, D.; Rosemarin, A.; et al. Bridging gaps in the agricultural phosphorus cycle from an animal husbandry perspective-The case of pigs and poultry. Sustainability 2018, 10, 1825. [Google Scholar] [CrossRef] [Green Version]
- Leinweber, P.; Bathmann, U.; Buczko, U.; Douhaire, C.; Eichler-Löbermann, B.; Frossard, E.; Ekardt, F.; Jarvie, H.; Krämer, I.; Kabbe, C.; et al. Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P. Ambio 2018, 47, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, S.C. Elemental Composition of Swine Manure from 1997 to 2017: Changes Relevant to Environmental Consequences. J. Environ. Qual. 2018, 48, 164. [Google Scholar] [CrossRef] [PubMed]
- Reyer, H.; Oster, M.; Wittenburg, D.; Murani, E.; Ponsuksili, S.; Wimmers, K. Genetic contribution to variation in blood calcium, phosphorus, and alkaline phosphatase activity in pigs. Front. Genet. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, D.; Yang, T.; Bryden, W. Phosphorus Bioavailability: A Key Aspect for Conserving this Critical Animal Feed Resource with Reference to Broiler Nutrition. Agriculture 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. (Berl.) 2015, 99, 605–625. [Google Scholar] [CrossRef]
- Oster, M.; Just, F.; Büsing, K.; Wolf, P.; Polley, C.; Vollmar, B.; MurÁni, E.; Ponsuksili, S.; Wimmers, K. Toward improved phosphorus efficiency in monogastrics—interplay of serum, minerals, bone, and immune system after divergent dietary phosphorus supply in swine. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2016, 310, R917–R925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, D.; Bryden, W.L. Calcium and phosphorus metabolism and nutrition of poultry: Are current diets formulated in excess? Anim. Prod. Sci. 2017, 57, 2304–2310. [Google Scholar] [CrossRef]
- Nahm, K.H. Feed formulations to reduce N excretion and ammonia emission from poultry manure. Bioresour. Technol. 2007, 98, 2282–2300. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Bai, Z.; Ma, L.; Oenema, O. Global animal production and nitrogen and phosphorus flows. Soil Res. 2017, 55, 451–462. [Google Scholar] [CrossRef] [Green Version]
- AMEC Environment & Infrastructure UK limited. Collection and Analysis of Data for the Control of Emissions from the Spreading of Manure; AMEC Environment & Infrastructure UK Ltd.: Shropshire, UK, 2014. [Google Scholar]
- Foged, H.L.; Flotats, X.; Blasi, A.B.; Palatsi, J.; Magri, A.; Schelde, K.M. Inventory of Manure Processing Activities in Europe. European Commission, DG Env: Brussels, Belgium, 2011; 34p. [Google Scholar]
- Augère-Granier, M.-L. The EU Poultry Meat and Egg Sector—Main Features, Challenges and Prospects; European Parliament: Brussels, Belgium, 2019. [Google Scholar]
- Sharpley, A.; Beegle, D. Managing Phosphorus for Agriculture and the Environment; College of Agricultural Sciences, The Pennsylvania State University: University Park, PA, USA, 2001; pp. 1–16. [Google Scholar]
- Toth, J.D.; Dou, Z.; Ferguson, J.D.; Galligan, D.T.; Ramberg, C.F. Nitrogen- vs. phosphorus-based dairy manure applications to field crops: Nitrate and phosphorus leaching and soil phosphorus accumulation. J. Environ. Qual. 2006, 35, 2302. [Google Scholar] [CrossRef]
- Komiyama, T.; Ito, T.; Saigusa, M. Effects of phosphorus-based application of animal manure compost on the yield of silage corn and on soil phosphorus accumulation in an upland Andosol in Japan. Soil Sci. Plant Nutr. 2014, 60, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Velthof, G.L.; Oudendag, D.; Witzke, H.P.; Asman, W.A.H.; Klimont, Z.; Oenema, O. Integrated Assessment of Nitrogen Losses from Agriculture in EU-27 using MITERRA-EUROPE. J. Environ. Qual. 2009, 38, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Couto, R.D.; Ferreira, P.A.; Ceretta, C.A.; Lourenzi, C.R.; Facco, D.B.; Tassinari, A.; Piccin, R.; de Conti, L.; Gatiboni, L.C.; Schapanski, D.; et al. Phosphorus fractions in soil with a long history of organic waste and mineral fertilizer addition. Bragantia 2017, 76, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Keplinger, K.O.; Hauck, L.M. The economics of manure utilization: Model and application. J. Agric. Resour. Econ. 2006, 31, 414–440. [Google Scholar]
- Haneklaus, S.; Schick, J.; Kratz, S.; Schnug, E.; Rückamp, D. Variable rate application of manure-Gain or pain? Landbauforsch. Volkenrode 2016, 66, 11–19. [Google Scholar] [CrossRef]
- Eghball, B.; Gilley, J.E.; Baltensperger, D.D.; Blumenthal, J.M. Long–term manure and fertilizer application effects on phosphorus and nitrogen in runoff. Am. Soc. Agric. Eng. 2002, 45, 687–694. [Google Scholar] [CrossRef]
- Field, J.A.; Reneau, R.B.; Kroontje, W.; Caldwell, J.S. Nutrient recoveries from plug-flow anaerobic digestion of poultry manure. Agric. Wastes 1985, 13, 207–216. [Google Scholar] [CrossRef]
- Kingery, W.; Wood, C.; Delaney, D.; Williams, J.; Mullins, G. Impact of Long-term Land Application of Broiler Litter on Environmentally Related Soil Properties. J. Environ. Qual. 1994, 23, 139–147. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Smith, S.J.; Bain, W.R. Nitrogen and phosphorus fate from long-term poultry litter applications to Oklahoma soils. Soil Sci. Soc. Am. J. 1993, 57, 1131–1137. [Google Scholar] [CrossRef]
- Adeli, A.; Bolster, C.H.; Rowe, D.E.; McLaughlin, M.R.; Brink, G.E. Effect of long-term swine effluent application on selected soil properties. Soil Sci. 2008, 173, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Hassby, O. Restriction of Manure Application on High Phosphorus Soils—Is Current Research Supporting a Restriction and What Measures Are in Effect in Different European Countries? Master’s Thesis, Lund University, Lund, Sweden, 2016. [Google Scholar]
- Maguire, R. Importance of Farm Phosphorus Mass Balance and Management Options. In Viriginia Cooperative Extension CSES-98P; Virginia State University: Petersburg, VA, USA, 2020; p. 5. [Google Scholar]
- Chastain, J.P.; Camberato, J.J.; Skewes, P. Poultry Manure Production and Nutrient Content. Production 2010, 1–17. Available online: www.clemson.edu/extension/camm/manuals/poultry/pch3b_00.pdf (accessed on 24 October 2021).
- Petersen, J.; Sørensen, P. Loss of nitrogen and carbon during storage of the fibrous fraction of separated pig slurry and influence on nitrogen availability. J. Agric. Sci. 2008, 146, 403–413. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K.; Zaeen, A.A. A case study of potential reasons of increased soil phosphorus levels in the Northeast United States. Agronomy 2017, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Beegle, D.; Durst, P. Managing Phosphorus for Crop Production—Agronony Facts 13. Agron. Facts. PennState Extension. 2002, 6. Available online: https://extension.psu.edu/managing-phosphorus-for-crop-production (accessed on 24 October 2021).
- Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Boitt, G. Phosphorus Legacy: Role of Long-Term Soil Phosphorus Accumulation in the Sustainable Management of Intensive Agroecosystems. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2017. [Google Scholar]
- Rutkowska, A.; Skowron, P. Productive and Environmental Consequences of Sixteen Years of Unbalanced Fertilization with Nitrogen and Phosphorus—Trials in Poland with. Agronomy 2020, 10, 1747. [Google Scholar] [CrossRef]
- Maguire, R.O.; Mullins, G.L.; Brosius, M. Evaluating Long-Term Nitrogen- versus Phosphorus-Based Nutrient Management of Poultry Litter. J. Environ. Qual. 2008, 37, 1810–1816. [Google Scholar] [CrossRef]
- Poulsen, H.D.; Moller, H.B.; Klingmair, M.; Thomsen, M. Fosfor i Dansk Landbrug—Ressource og Miljöudfordring; Aarhus University: Aarhus, Denmark, 2019; 39p. [Google Scholar]
- Marquer, P. Pig farming in the EU, a changing sector. Agric. Fish. Stat. Focus Eurostat. 2010, 8, 1–12. [Google Scholar]
- Tóth, G.; Guicharnaud, R.A.; Tóth, B.; Hermann, T. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur. J. Agron. 2014, 55, 42–52. [Google Scholar] [CrossRef]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef]
- Fertilizer Europe. Forecast of Food, Farming and Fertilizer Use in the European Union 2020–2030; Fertilizer Europe: Brussels, Belgium, 2021; 20p. [Google Scholar]
- Funkey, C.P.; Conley, D.J.; Reuss, N.S.; Humborg, C.; Jilbert, T.; Slomp, C.P. Hypoxia sustains cyanobacteria blooms in the Baltic Sea. Environ. Sci. Technol. 2014, 48, 2598–2602. [Google Scholar] [CrossRef]
- Wasmund, N.; Nausch, G.; Schneider, B.; Nagel, K.; Voss, M. Comparison of nitrogen fixation rates determined with different methods: A study in the Baltic Proper. Mar. Ecol. Prog. Ser. 2005, 297, 23–31. [Google Scholar] [CrossRef]
- Fraser, H.; Fleming, R. Environmental Benefits of Tile Drainage—Literature Review; University of Guelph: Guelph, ON, Canada, 2001; Volume 23, Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.7086&rep=rep1&type=pdf#:~:text=Because%20tile%20drainage%20removes%20excess,Van%20Vlack%20and%20Norton%201944 (accessed on 24 October 2021).
- Moore, J. Tile Drainage and Phosphorus Losses from Agricultural Land; Tech Report no. 8; Lake Champlain Basin Program; The Lake Champlain Basin Program: Grand Isle, VT, USA, 2016; 77p, Available online: http://www.lcbp.org/wp-content/uploads/2017/01/83_TileDrainage_LitReview.pdf (accessed on 24 October 2021).
- Monteny, G.J. The EU Nitrates Directive: A European Approach to Combat Water Pollution from Agriculture. Sci. World J. 2005, 1, 927–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE—An Indicator for the Utilization of Nitrogen in Agriculture and Food Systems; Wageningen University: Wageningen, The Netherlands, 2015; 47p, Available online: www.researchgate.net/publication/312554339_Nitrogen_Use_Efficiency_NUE_-_an_indicator_for_the_utilization_of_nitrogen_in_agriculture_and_food_systems_Prepared_by_the_EU_Nitrogen_Expert_Panel (accessed on 24 October 2021).
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105, 275–281. [Google Scholar] [CrossRef]
- Dhillon, J.; Torres, G.; Driver, E.; Figueiredo, B.; Raun, W.R. World phosphorus use efficiency in cereal crops. Agron. J. 2017, 109, 1670–1677. [Google Scholar] [CrossRef] [Green Version]
- Oster, M.; Gerlinger, C.; Heide, K.; Just, F.; Borgelt, L.; Wolf, P.; Polley, C.; Vollmar, B.; Muráni, E.; Ponsuksili, S.; et al. Lower dietary phosphorus supply in pigs match both animal welfare aspects and resource efficiency. Ambio 2018, 47, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foged, H. Phosphorus Indices—Status, Relevance and Requirements for a Wider Use as Efficient Phosphorus Management Measures in the Baltic Sea Region. BalticSea2020 2011. 27p. Available online: http://www.balticsea2020.org/english/images/Bilagor/pindex_report.pdf (accessed on 24 October 2021).
- Amery, F.; Schoumans, O.F. Agricultural Phosphorus Legislation in Europe; ILVO: Merelbeke, Belgium, 2014; 45p, Available online: https://ilvo.vlaanderen.be/uploads/migration/public/Mediatheek/Phosphorus_legislation_Europe.pdf (accessed on 24 October 2021).
- Amery, F.; Rger, M.B.E.; Arrufat, B.; Fertinagro, J.M.; Meers, E.; Assaker, A.; Ent, U.G.; Leitat, A.L. Fertimanure’s Report on BBF Regulatory Framework in the EU and CELAC Countries; UVIC: Victoria, BC, Canada, 2021. [Google Scholar]
- Rothwell, S.A.; Doody, D.G.; Johnston, C.; Forber, K.J.; Cencic, O.; Rechberger, H.; Withers, P.J.A. Phosphorus stocks and flows in an intensive livestock dominated food system. Resour. Conserv. Recycl. 2020, 163, 105065. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.K. Phosphorus in agricultural soils around the Baltic Sea—Comparisons of different laboratory methods as indices for phosphorus leaching to waters. Swedish University of Agricultural Sciences: Uppsala, Switzerland, 2009. [Google Scholar]
- D’Haene, K.; Hofman, G. Phosphorus offtake and optimal phosphorus fertilisation rate of some fodder crops and potatoes in temperate regions. Agrokem. es Talajt. 2015, 64, 403–420. [Google Scholar] [CrossRef] [Green Version]
- Weimers, K. Growth and Phosphorus Uptake of Potato (Solanum tuberosum L.) in an Alkaline Soil as Affected by Mineral Nitrogen Forms and Inoculation with Phosphate-Solubilizing Bacteria and Mycorrhizal fungi; SLU, Swedish University of Agricultural Sciences: Alnarp, Sweden, 2017; 37p. [Google Scholar]
- Swedish Board of Agriculture. Rekommendationer för Gödsling och Kalkning 2020; Swedish Board of Agriculture: Stockholm, Sweden, 2019; 113p, Available online: https://www2.jordbruksverket.se/download/18.6fd5d28c16f8ba7a70b48310/1578649240143/jo19_12v2.pdf (accessed on 24 October 2021).
- Nahm, K.H. Efficient phosphorus utilization in poultry feeding to lessen the environmental impact of excreta. Worlds. Poult. Sci. J. 2007, 63, 625–654. [Google Scholar] [CrossRef]
- Kebreab, E.; Strathe, A.B.; Yitbarek, A.; Nyachoti, C.M.; Dijkstra, J.; Lopez, S.; France, J. Modeling the efficiency of phosphorus utilization in growing pigs. J. Anim. Sci. 2011, 89, 2774–2781. [Google Scholar] [CrossRef]
- Kuhn, T. The revision of the German Fertiliser Ordinance in 2017. Food Resour. Econ. Discuss. Pap. 2017, 2, 1–25. [Google Scholar] [CrossRef]
- Klages, S.; Heidecke, C.; Osterburg, B.; Bailey, J.; Calciu, I.; Casey, C.; Dalgaard, T.; Frick, H.; Glavan, M.; D’Haene, K.; et al. Nitrogen surplus-a unified indicator for water pollution in Europe? Water 2020, 12, 1197. [Google Scholar] [CrossRef] [Green Version]
- Oster, M.; Reyer, H.; Keiler, J.; Ball, E.; Mulvenna, C.; Muráni, E.; Ponsuksili, S.; Wimmers, K. Comfrey (Symphytum spp.) as an alternative field crop contributing to closed agricultural cycles in chicken feeding. Sci. Total Environ. 2020, 742, 140490. [Google Scholar] [CrossRef]
- Otten, D.; Van den Weghe, H.F.A. Nitrogen and phosphorus management on pig farms in Northwest Germany nutrient balances and challenges for better sustainability. Int. J. Livest. Prod. 2014, 4, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, H.D.; Jongbloed, A.W.; Latimier, P.; Fernández, J.A. Nitrogen and phosphorus consumption, utilisation and losses in pig production: The Netherlands. Livest. Prod. Sci. 1999, 58, 213–224. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Herron, S.; Daniel, T. Overcoming the challenges of phosphorus-based management in poultry farming. J. Soil Water Conserv. 2007, 62, 375–389. [Google Scholar]
- Anzai, H.; Wang, L.; Oishi, K.; Irbis, C.; Li, K.; Kumagai, H.; Inamura, T.; Hirooka, H. Estimation of nitrogen and phosphorus flows in livestock production in Dianchi Lake basin, China. Anim. Sci. J. 2016, 87, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Meehan, M.; Franzen, D.; Scherer, T. Phosphorus Behavior In the Environment. North Dak. State Univ. 2018, 1298, 1–4. [Google Scholar]
- Fink, J.R.J.R.; Inda, A.V.; Tiecher, T.; Barrón, V.; Vasconcellos Inda, A.; Barrón, V. Iron oxides and organic matter on soil phosphorus availability. Ciência E Agrotecnologia 2016, 40, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Makovníková, J.; Širáň, M.; Houšková, B.; Pálka, B.; Jones, A. Comparison of different models for predicting soil bulk density. Case study—Slovakian agricultural soils. Int. Agrophys. 2017, 31, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Vadas, P.A.; Mallarino, A.P.; McFarland, A.N.N.E. The Importance of Sampling Depth When Testing Soils for Their Potential to Supply Phosphorus to Surface Runoff; USDA: Washington, DC, USA, 2003. [Google Scholar]
- Lory, J. Managing Manure Phosphorus to Protect Water Quality; University of Missouri Columbia: Columbia, MI, USA, 2018; 6p, Available online: https://extension.missouri.edu/media/wysiwyg/Extensiondata/Pub/pdf/agguides/soils/g09182.pdf (accessed on 24 October 2021).
- Bai, Z.; Li, H.; Yang, X.; Zhou, B.; Shi, X.; Wang, B.; Li, D.; Shen, J.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; O’Halloran, I.P.; Tan, C.S.; Hu, Q.C.; Reid, D.K. Soil Tests as Risk Indicators for Leaching of Dissolved Phosphorus from Agricultural Soils in Ontario. Soil Sci. Soc. Am. J. 2012, 76, 220–229. [Google Scholar] [CrossRef]
- Hu, Z.; Ding, Z.; Al-yasi, H.M.; Ali, E.F.; Eissa, M.A.; Abou-elwafa, S.F.; Sayed, M.A.; Said, M.T.; Said, A.A. Modeling of Phosphorus Nutrition to Obtain Maximum Yield, High P Use Efficiency and Low P-Loss Risk for Wheat Grown in Sandy Calcareous Soils. Agronomy 2021, 11, 1950. [Google Scholar] [CrossRef]
- do Carmo Horta, M.; Roboredo, M.; Coutinho, J.; Torrent, J. Relationship between Olsen P and ammonium lactate-extractable P in Portuguese acid soils. Commun. Soil Sci. Plant Anal. 2010, 41, 2358–2370. [Google Scholar] [CrossRef]
- Rowe, H.; Withers, P.J.A.; Baas, P.; Chan, N.I.; Doody, D.; Holiman, J.; Jacobs, B.; Li, H.; MacDonald, G.K.; McDowell, R.; et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 2016, 104, 393–412. [Google Scholar] [CrossRef]
- Johnston, A.E.; Syers, J.K. A New Approach to Assessing Phosphorus Use Efficiency in Agriculture. Better Crop. 2009, 93, 14–16. [Google Scholar]
- Piccoli, I.; Sartori, F.; Polese, R.; Borin, M.; Berti, A. Can Long-Term Experiments Predict Real Field N and P Balance and System Sustainability? Results from Maize, Winter Wheat, and Soybean Trials Using Mineral and Organic Fertilisers. Agronomy 2021, 11, 1472. [Google Scholar] [CrossRef]
- Roy, R.N.; Finck, A.; Blair, G.J.; Tandon, H.L.S. Plant nutrition for food security. In FAO Fertilizer and Plant Nutrition Bulletin; FAO: Rome, Italy, 2006; Volume 16, 368p, Available online: https://www.fao.org/fileadmin/templates/soilbiodiversity/Downloadable_files/fpnb16.pdf (accessed on 24 October 2021).
- Crooks, W.; Sinclair, A.; Edwards, A.; Coull, M. Phosphate and potash recommendations for crops grown in Highlands and Islands. Scotl. Rural Dev. Program. Farm Advis. Serv. 2020, 10. Available online: https://www.sruc.ac.uk/media/8d8ef82fd2ead51/tn715-phosphate-and-potash-recommendations-for-crops-grown-in-highland-and-islands-16-3-2020.pdf (accessed on 24 October 2021).
- Leikam, D.F.; Lamond, R.E. Estimating Manure Nutrient Availability; Kansas State University: Manhattan, KS, USA, 2003; Volume MF-2562. [Google Scholar]
- Sullivan, D.M. Estimating Plant—Available Nitrogen from Manure; Oregon State University Extension Service: Corvallis, OR, USA, 2008. [Google Scholar]
- Zhang, H.; Johnson, G. Managing Phosphorus from Animal Manure. Oklahoma Coop. Ext. Serv. 2010, PSS-2249, 1–4. [Google Scholar]
- Petersen, S.O.; Lind, A.M.; Sommer, S.G. Nitrogen and organic matter losses during storage of cattle and pig manure. J. Agric. Sci. 1998, 130, 69–79. [Google Scholar] [CrossRef]
- Sörensen, P.; Poulsen, H.D.; Holton Rubaek, G.; Pilgaard Vinther, F.; Pedersen, B.F.; Kristensen, I.B.S. Udredning om Anvendelse af Gødning i Dansk Landbrug i Relation til Indførslen af Fosforlofter; DCA-Nationalt Center for Fødevarer og Jordbrug, Aarhus University: Aarhus, Denmark, 2019. [Google Scholar]
- Luostarinen, S.; Grönroos, J.; Hellstedt, M.; Nousiainen, J.; Munther, J. Modeling Manure Quantity and Quality in Finland. Front. Sustain. Food Syst. 2018, 2, 60. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Svihus, B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim. Feed Sci. Technol. 2013, 179, 1–23. [Google Scholar] [CrossRef]
- Luostarinen, S.; Grönroos, J.; Hellstedt, M.; Nousiainen, J.; Munther, J. Finnish Normative Manure System: System Documentation and First Results. Natural Resources Bioeconomy Studies 48/2017; Natural Resources Inst.: Helsinki, Finland, 2017; 74p. [Google Scholar]
- Kebreab, E.; Hansen, A.V.; Strathe, A.B. Animal production for efficient phosphate utilization: From optimized feed to high efficiency livestock. Curr. Opin. Biotechnol. 2012, 23, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Houlton, B.Z.; Almaraz, M.; Aneja, V.; Austin, A.T.; Bai, E.; Cassman, K.G.; Compton, J.E.; Davidson, E.A.; Erisman, J.W.; Galloway, J.N.; et al. A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth’s Future 2019, 7, 865–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Sommer, S.G.; Knudsen, L. Impact of Danish Livestock and Manure Management Regulations on Nitrogen Pollution, Crop Production, and Economy. Front. Sustain. 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Deloitte Sustainability, British Geological Survey, Bureau de Recherches Géologiques et Minieres, N.O.A.S.R. Study on the Review of the List of Critical Raw Materials; European Commission: Brussels, Belgium, 2017; 92p. [Google Scholar] [CrossRef]
- European Commission. EU Agricultural Outlook for the Agricultural Markets and Income 2017–2030; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Bomans, E.; Fransen, K.; Gobin, A.; Mertens, J.; Michiels, P.; Vandendriessche, H.; Vogels, N. Addressing Phosphorus Related Problems in Farm Practice: Final Report to the European Comission; European Commission: Brussels, Belgium, 2005; Volume 32. [Google Scholar]
- Withers, P.J.A.; van Dijk, K.C.; Neset, T.S.S.; Nesme, T.; Oenema, O.; Rubæk, G.H.; Schoumans, O.F.; Smit, B.; Pellerin, S. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 2015, 44, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Buczko, U.; Kuchenbuch, R.O. Review Article: Phosphorus indices as risk-assessment tools in the U.S.A. and Europe—A review. J. Plant Nutr. Soil Sci. 2007, 170, 445–460. [Google Scholar] [CrossRef]
- Rosemarin, A.; Ekane, N. The governance gap surrounding phosphorus. Nutr. Cycl. Agroecosyst. 2016, 104, 265–279. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Rulkens, W.H.; Oenema, O.; Ehlert, P.A.I. Phosphorus recovery from animal manure; Technical opportunities and agro-economical perspectives. Alterra Rep. 2010, 2158, 110, ISSN 1566-7197. [Google Scholar]
- McCrackin, M.L.; Muller-Karulis, B.; Gustafsson, B.G.; Howarth, R.W.; Humborg, C.; Svanbäck, A.; Swaney, D.P. A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Global Biogeochem. Cycles 2018, 32, 1107–1122. [Google Scholar] [CrossRef]
- Svanbäck, A.; McCrackin, M.L.; Swaney, D.P.; Linefur, H.; Gustafsson, B.G.; Howarth, R.W.; Humborg, C. Reducing agricultural nutrient surpluses in a large catchment—Links to livestock density. Sci. Total Environ. 2019, 648, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
Scenario | ha | kg P/ha/Year | PUE (%) | ||
---|---|---|---|---|---|
P Load | Crop Offtake | Surplus | |||
Actual baseline * | 183 | 40 | 28 | 12 | 82.5 |
Max legal 170 kgN/ha/year | 97 | 75 | 28 | 47 | 67.3 |
Based on P crop requirement | 260 | 28 | 28 | 0 | 100 |
Scenario | ha | kg P/ha/Year | PUE (%) | ||
---|---|---|---|---|---|
P Load | Crop Offtake | Surplus | |||
Based on max legal 170 kgN/ha/year | 100 | 95 | 28 | 67 | 52.1 |
Based on P crop requirement | 339 | 28 | 28 | 0 | 100 |
Animal Type | Farm Size Heads/Year | Max Heads/ha to Conform with the Nitrates Directive | Computed Minimum ha at a Spreading Rate of 170 kgN/ha/Year |
---|---|---|---|
Sows with piglets | 300 | 5.3–8.1 | 37–56 |
Fattening pigs | 1000 | 13–23 | 44–77 |
Broilers | 50,000 | 327–739 | 68–152 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosemarin, A.; Ekane, N.; Andersson, K. Phosphorus Flows, Surpluses, and N/P Agronomic Balancing When Using Manure from Pig and Poultry Farms. Agronomy 2021, 11, 2228. https://doi.org/10.3390/agronomy11112228
Rosemarin A, Ekane N, Andersson K. Phosphorus Flows, Surpluses, and N/P Agronomic Balancing When Using Manure from Pig and Poultry Farms. Agronomy. 2021; 11(11):2228. https://doi.org/10.3390/agronomy11112228
Chicago/Turabian StyleRosemarin, Arno, Nelson Ekane, and Kim Andersson. 2021. "Phosphorus Flows, Surpluses, and N/P Agronomic Balancing When Using Manure from Pig and Poultry Farms" Agronomy 11, no. 11: 2228. https://doi.org/10.3390/agronomy11112228
APA StyleRosemarin, A., Ekane, N., & Andersson, K. (2021). Phosphorus Flows, Surpluses, and N/P Agronomic Balancing When Using Manure from Pig and Poultry Farms. Agronomy, 11(11), 2228. https://doi.org/10.3390/agronomy11112228