Labile Soil Organic Matter Pools Are Influenced by 45 Years of Applied Farmyard Manure and Mineral Nitrogen in the Wheat—Pearl Millet Cropping System in the Sub-Tropical Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Weather and Experimental Soils
2.3. Treatments and Experimental Design
2.4. Collection of Soil Samples and Analysis
2.5. Dissolved Organic Matter
2.6. Microbial Biomass
2.7. Light Fraction
2.8. Statistical Analysis
3. Results
3.1. FYM Modes and Rates Interaction
3.1.1. Organic Carbon and Total Nitrogen Build-Up
3.1.2. Labile Soil Organic Matter Pools
3.2. Mineral N Interaction with FYM Modes and Rates
3.3. Modes and Rates of FYM and Mineral N Interaction
3.3.1. Soil Organic Carbon and Total Nitrogen
3.3.2. Dissolved Organic Matter
3.3.3. Microbial Biomass
3.3.4. Light Fraction
4. Discussion
4.1. SOC and TN Build-Up
4.2. Dissolve Organic Matter
4.3. Microbial Biomass Carbon
4.4. Light Fraction of SOM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOC | Dissolved organic carbon |
DOM | Dissolved organic matter |
DON | Dissolved organic nitrogen |
FYM | Farmyard manure |
LF | Light fraction |
LFC | Light fraction carbon |
LFN | Light fraction nitrogen |
LSD | Least significant difference |
LSOMp | Labile soil organic matter pool |
MB | Microbial biomass |
MBC | Microbial biomass carbon |
MBN | Microbial biomass nitrogen |
SOC | Soil organic carbon |
SOM | Soil organic matter |
TN | Total nitrogen |
References
- McLauchlan, K.K.; Hobbie, S.E. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 2004, 68, 1616–1625. [Google Scholar] [CrossRef]
- Bünemanna, E.K.; Bongiornoa, G.; Bai, Z.; Creamer, R.E.; Deyn, G.D.; Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Haynes, R. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar]
- Strosser, E. Methods for determination of labile soil organic matter: An overview. J. Agrobiol. 2010, 27, 49–60. [Google Scholar] [CrossRef]
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes that influence dissolved organic matter in the soil: A review. Sci. Agric. 2020, 77, 1–10. [Google Scholar] [CrossRef]
- Nath, A.J.; Brahma, B.; Sileshi, G.W.; Dash, A.K. Impact of land use changes on storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Sci. Total Environ. 2018, 624, 908–917. [Google Scholar] [CrossRef]
- Kalbitz, K.; Solinger, S.; Park, J.M.; Michalzik, H.B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 164, 277–304. [Google Scholar] [CrossRef]
- Liu, J.; Dai, J.; Wang, Z.; Zhai, B. Effects of fallow or planting wheat (Triticum aestivum L.) and fertilizing P or fertilizing P and N practices on soil carbon and nitrogen in a low-organic-matter soil. Soil Sci. Plant Nutr. 2016, 62, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Gregorich, E.G.; Rochette, P.; McGuire, S.; Liang, B.C.; Lessard, R. Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring applied manure. J. Environ. Qual. 1998, 27, 209–214. [Google Scholar] [CrossRef]
- Rochette, P.; Gregorich, E.G. Dynamics of microbial biomass C, soluble organic C and CO2 evolution after three years of manure application. Canadian. J. Soil Sci. 1998, 78, 283–290. [Google Scholar]
- Kalbitz, K.; Meyer, A.; Yang, R.; Gerstberger, P. Response of dissolved organic matter in the forest floor to long-term manipulation of litter and through fall inputs. Biogeochemistry 2007, 86, 301–318. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreal, C.M.; Ellert, B.H. Towards a minimum data set to assess soil organic matter quality. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Malhi, S.S.; Brandt, S.; Gill, K.S. Cultivation and grass type effects on light fraction and total organic C and N in a Dark Brown Chernozemic soil. Can. J. Soil Sci. 2003, 83, 145–153. [Google Scholar] [CrossRef]
- de Souza, G.P.; de Figueiredo, C.C.; de Sousa, D.M.G. Relationships between labile soil organic carbon fractions under different soil management systems. Sci. Agric. 2016, 73, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Balota, E.L.; Auler, P.A.M. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard. Rev. Bras. Ciênc. Solo. 2011, 35, 1873–1883. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, D.S.; Ladd, J.N. Microbial biomass in soil: Measurement and turnover. In Soil Biochemistry; Paul, A.E., Ladd, J.N., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 415–471. [Google Scholar]
- Kar, S.; Pramanick, B.; Brahmachari, K.; Saha, G.; Mahapatra, B.S.; Saha, A.; Kumar, A. Exploring the best tillage option in rice based diversified cropping systems in alluvial soil of eastern India. Soil Till. Res. 2021, 205, 104761. [Google Scholar] [CrossRef]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.K.; Gangopadhyay, A.; Mani, P.K.; Kundu, A.L.; Mazumdar, D. Organic amendments influence soil organic carbon pools and rice–wheat productivity. Soil Sci. Soc. Am. J. 2008, 72, 775–785. [Google Scholar] [CrossRef]
- Brown, K.H. Nitrogen Fertilization Effects on Soil Organic Carbon Storage and Aggregation Mechanisms within Continuous Corn Cropping Systems. Master’s Thesis, Iowa State University, Ames, IA, USA, 2013. Available online: https://lib.dr.iastate.edu/etd/13413 (accessed on 12 January 2020).
- Nelson, E.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Bremner, J.M. Nitrogen total. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1122. [Google Scholar]
- Ciavatta, C.; Vittori, A.L.; Sequi, P. Determination of organic C in soils and fertilizers. Comm. Soil Sci. Plant Anal. 1989, 20, 759–773. [Google Scholar] [CrossRef]
- Yu, Z.S.; Northup, R.R.; Dahlgren, R.A. Determination of dissolved organic nitrogen using persulphate oxidation and conductimetric quantification of nitrate nitrogen. Comm. Soil Sci. Plant Anal. 1994, 25, 3161–3169. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Brookes, P.C.; Kragt, J.F.; Powlson, D.S.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: The effects of fumigation time and temperature. Soil Biol. Biochem. 1985, 17, 831–835. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New Delhi, India, 1984; pp. 200–356. [Google Scholar]
- Kaur, T.; Brar, B.S.; Dhillon, N. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr. Cycl. Agroecosyst. 2008, 81, 59–69. [Google Scholar] [CrossRef]
- Paustian, K.; Larson, E.; Kent, J.; Marx, E.; Swan, A. Soil C Sequestration as a biological negative emission strategy. Front. Clim. 2019, 1, 8. [Google Scholar] [CrossRef]
- Miles, R.J.; Brown, J.R. The Sanborn field experiment: Implications for long-term soil organic carbon levels. Agron. J. 2011, 103, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Qualls, R.G. Biodegradability of humic substances and other fractions of decomposing leaf litter. Soil Sci. Soc. Am. J. 2004, 68, 1705–1712. [Google Scholar] [CrossRef] [Green Version]
- Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 2010, 7, 320–332. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, Y.; Bowden, R.D.; Lajtha, K.; Simpson, A.J.; Huang, W.L.; Simpson, M.J. Long-term nitrogen addition alters the composition of soil-derived dissolved organic matter. ACS Earth Space Chem. 2020, 4, 189–201. [Google Scholar] [CrossRef]
- Antil, R.J.; Singh, M. Effects of organic manures and fertilizers on organic matter and nutrients status of the soil. Arch. Agron. Soil. Sci. 2007, 53, 519–528. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Cote, D. Soil carbon and nitrogen dynamics following application of pig slurry. Soil Sci. Soc. Am. J. 2000, 64, 1389–1395. [Google Scholar] [CrossRef]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Börjesson, G.; Menichetti, L.; Thornton, B.; Campbell, C.D.; Kätterer, T. Seasonal dynamics of the soil microbial community: Assimilation of old and young carbon sources in a long-term field experiment as revealed by natural 13C abundance. Eur. J. Soil Sci. 2016, 67, 79–89. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, J.; Mehta, D.S.; Narwal, R.P. Long-term effects of nutrient management on soil health and crop productivity under rice—wheat cropping system. Ind. J. Fertil. 2012, 8, 28–48. [Google Scholar]
- Manna, M.C.; Sahu, A.; Rao, A.S. Impact of long-term fertilizers and manure application on carbon sequestration efficiency under different cropping systems. Ind. J. Soil Conser. 2012, 40, 70–77. [Google Scholar]
- Conrad, K.A.; Dalal, R.C.; Allen, D.E.; Fujinuma, R.; Menzies, N.W. Free light fraction carbon and nitrogen, a physically uncomplexed soil organic matter distribution within subtropical grass and leucaena—grass pastures. Soil Res. 2018, 56, 820–828. [Google Scholar] [CrossRef]
- Janzen, H.H.; Campblel, C.A.; Brandt, S.A.; Lanfond, G.P.; Townley-Smith, L. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am. J. 1992, 56, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Saljnikov, E.; Cakmak, D.; Rahimgalieva, S. Soil organic matter stability as affected by land management in steppe ecosystems. In Soil Processes and Current Trends in Quality Assessment; Maria, C.H.S., Ed.; IntechOpen: London, UK, 2013; pp. 269–310. [Google Scholar] [CrossRef] [Green Version]
Attributes | Values |
---|---|
Soil organic carbon (g kg−1) | 4.2 |
Dissolved organic carbon (mg kg−1) | 75.5 |
Microbial biomass carbon (mg kg−1) | 76.3 |
Light fraction carbon (mg kg−1) | 328 |
Total nitrogen (mg kg−1) | 359 |
Dissolved organic nitrogen (mg kg−1) | 6.23 |
Microbial biomass nitrogen (mg kg−1) | 10.9 |
Light fraction nitrogen (mg kg−1) | 42.9 |
Nutrient | Content (%) | Nutrient | Content (mg kg−1) |
---|---|---|---|
C | 39.53 | Zn | 57 |
N | 1.21 | Mn | 28 |
P | 0.58 | Cu | 239 |
K | 0.426 | Fe | 2214 |
S | 0.16 |
Source of Variation | df | SOC | TN | DOC | DON | MBC | MBN | LFC | LFN |
---|---|---|---|---|---|---|---|---|---|
Mode (M) | 2 | 61.96 * | 137.3 * | 414.3 * | 482.8 * | 147.7 * | 241.4 * | 224.9 * | 36.12 * |
Rate (R) | 2 | 72.55 * | 141.6 * | 437.1 * | 465.2 * | 99.13 * | 99.45 * | 228.4 * | 44.25 * |
M × R | 4 | 6.34 * | 6.95 * | 87.17 * | 63.90 * | 7.42 * | 11.73 * | 28.60 * | 4.82 * |
Inorganic N (N) | 1 | 26.12 * | 34.27 * | 191.8 * | 156.7 * | 403.8 * | 210.8 * | 34.58 * | 60.49 * |
M × N | 2 | 0.72 | 2.50 | 1.57 | 11.40 * | 22.81 * | 23.77 * | 0.65 | 1.78 |
R × N | 2 | 0.25 | 0.02 | 7.68 * | 14.98 * | 9.28 * | 5.89 * | 0.20 | 2.68 |
M × R × N | 4 | 0.54 | 1.64 * | 3.70 * | 1.64 | 12.10 * | 2.27 | 1.08 | 0.83 |
FYM Modes | Farmyard Manure Application Rate (Mg ha−1) | |||||
---|---|---|---|---|---|---|
05 | 10 | 15 | 05 | 10 | 15 | |
OC a (g kg−1) | TN b (mg kg−1) | |||||
Summer | 10.8 | 12.1 | 14.2 | 1052 | 1188 | 1309 |
Winter | 9.3 | 10.8 | 12.6 | 967 | 1121 | 1208 |
Both seasons | 11.7 | 14.6 | 19.1 | 1194 | 1366 | 1632 |
LSD (p ≤ 0.05) | 1.4 | 66 | ||||
DOC c (mg kg−1) | DON d (mg kg−1) | |||||
Summer | 151 | 213 | 268 | 24.4 | 31.5 | 44.4 |
Winter | 129 | 174 | 234 | 21.3 | 26.0 | 33.5 |
Both seasons | 188 | 333 | 562 | 28.9 | 54.1 | 70.1 |
LSD (p ≤ 0.05) | 24.14 | 2.9 | ||||
MBC c (mg kg−1) | MBN d (mg kg−1) | |||||
Summer | 372 | 475 | 598 | 56.1 | 71.2 | 86.0 |
Winter | 286 | 382 | 524 | 46.2 | 57.4 | 71.9 |
Both seasons | 534 | 710 | 999 | 88.8 | 113.3 | 158.4 |
LSD (p ≤ 0.05) | 77.29 | 10.6 | ||||
LFC c (g kg−1) | LFN d (g kg−1) | |||||
Summer | 0.90 | 1.09 | 1.52 | 69.5 | 84.1 | 102.6 |
Winter | 0.73 | 0.96 | 1.23 | 61.0 | 74.8 | 91.3 |
Both seasons | 1.18 | 1.60 | 2.61 | 83.8 | 106.1 | 154.6 |
LSD (p ≤ 0.05) | 0.15 | 16.8 |
FYM Modes | Inorganic N (kg ha−1) | |||
---|---|---|---|---|
0 | 120 | 0 | 120 | |
DOC a (mg kg−1) | DON b (mg kg−1) | |||
Summer | 192 | 229 | 27.0 | 39.8 |
Winter | 164 | 194 | 22.2 | 31.7 |
Both seasons | 340 | 381 | 39.5 | 62.6 |
LSD (p ≤ 0.05) | Ns | 4.30 | ||
MBC a (mg kg−1) | MBN b (mg kg−1) | |||
Summer | 416 | 547 | 56.6 | 85.6 |
Winter | 345 | 449 | 44.8 | 72.1 |
Both seasons | 645 | 850 | 84.8 | 155.5 |
LSD (p = 0.05) | 25.1 | 10.39 | ||
LFC a (g kg−1) | LFN b (g kg−1) | |||
Summer | 1033 | 1313 | 72.7 | 96.2 |
Winter | 887 | 1060 | 67.3 | 84.0 |
Both seasons | 1685 | 1911 | 108.5 | 121.1 |
LSD (p ≤ 0.05) | Ns | Ns |
FYM Doses | Inorganic N (kg ha−1) | |||
---|---|---|---|---|
0 | 120 | 0 | 120 | |
DOC a (mg kg−1) | DON b (mg kg−1) | |||
05 | 145 | 167 | 21.3 | 28.3 |
10 | 217 | 263 | 29.6 | 44.8 |
15 | 335 | 375 | 37.7 | 60.9 |
LSD (p ≤ 0.05) | 9.0 | 4.3 | ||
MBC a (mg kg−1) | MBN b (mg kg−1) | |||
05 | 377 | 452 | 46.1 | 81.2 |
10 | 455 | 589 | 62.9 | 98.3 |
15 | 608 | 791 | 98.4 | 133.8 |
LSD (p ≤ 0.05) | 25 | 10.4 | ||
LFC a (g kg−1) | LFN b (g kg−1) | |||
05 | 806 | 1067 | 59.9 | 83.0 |
10 | 1117 | 1325 | 79.4 | 95.2 |
15 | 1683 | 1893 | 109.3 | 123.0 |
LSD (p ≤ 0.05) | Ns | Ns |
FYM Application | OC (g kg−1) | DOC (mg kg−1) | MBC (mg kg−1) | LFC (mg kg−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Modes | Rates (Mg ha−1) | N0 | N120 | N0 | N120 | N0 | N120 | N0 | N120 |
S | 05 | 9.9 Aa | 11.7 Aa | 140 Gb | 162 Ha | 300 Fb | 442 Fa | 714 Aa | 1082 Aa |
10 | 11.4 Aa | 12.8 Aa | 185.0 Eb | 240 Ea | 411 Eb | 538 Ea | 1003 Aa | 1195 Aa | |
15 | 13.2 Aa | 15.1 Aa | 250.0 Cb | 285 Ca | 534 Cb | 662 Ca | 1382 Aa | 1664 Aa | |
W | 05 | 9.2 Aa | 9.4 Aa | 124 Hb | 133 Ia | 243 Gb | 328 Ga | 584 Aa | 872 Aa |
10 | 10.2 Aa | 11.3 Aa | 160.0 Fb | 188 Ga | 330 Fb | 433 Fa | 875 Aa | 1055 Aa | |
15 | 11.6 Aa | 13.5 Aa | 208.0 Db | 260 Da | 462 Db | 542 Da | 1202 Aa | 1253 Aa | |
B | 05 | 11.0 Aa | 12.4 Aa | 170.0 Fb | 205 Fa | 482 Db | 585 Da | 1120 Aa | 1246 Aa |
10 | 14.1 Aa | 15.1 Aa | 305.0 Bb | 360 Ba | 624 Bb | 795 Ba | 1473 Aa | 1724 Aa | |
15 | 18.7 Aa | 19.5 Aa | 546.0 Ab | 578 Aa | 829 Ab | 1116 Aa | 2464 Aa | 2763 Aa | |
Control | 4.6 | 6.1 | 85 | 105 | 85 | 134 | 370 | 370 |
FYM Application | TN (mg kg−1) | DON (mg kg−1) | MBN (mg kg−1) | LFN (mg kg−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Modes | Rates (Mg ha−1) | N0 | N120 | N0 | N120 | N0 | N120 | N0 | N120 |
S | 05 | 979 Eb | 1124 Ea | 22.0 Aa | 26.7 Aa | 43.1 Aa | 69.1 Aa | 54.0 Aa | 84.8 Aa |
10 | 1143 Da | 1233 Da | 25.1 Aa | 37.9 Aa | 59.6 Aa | 82.8 Aa | 71.5 Aa | 90.7 Aa | |
15 | 1283 Ba | 1334 Ca | 33.8 Aa | 54.9 Aa | 67.0 Aa | 105.1 Aa | 92.5 Aa | 113.0 Aa | |
W | 05 | 923 Fa | 1010 Fa | 18.1 Aa | 24.5 Aa | 31.0 Aa | 61.3 Aa | 48.1 Aa | 73.9 Aa |
10 | 1102 Eb | 1140 Da | 21.6 Aa | 30.3 Aa | 47.1 Aa | 67.7 Aa | 67.3 Aa | 82.2 Aa | |
15 | 1192 Ba | 1224 Ca | 26.8 Aa | 40.2 Aa | 56.3 Aa | 87.4 Aa | 86.6 Aa | 96.0 Aa | |
B | 05 | 1162 Ca | 1194 Da | 23.9 Aa | 33.8 Aa | 64.3 Aa | 113.3 Aa | 77.2 Aa | 90.4 Aa |
10 | 1279 Bb | 1453 Ba | 42.0 Aa | 66.2 Aa | 82.1 Aa | 144.6 Aa | 99.3 Aa | 112.8 Aa | |
15 | 1532 Ab | 1732 Aa | 52.5 Aa | 87.7 Aa | 108.1 Aa | 208.8 Aa | 149.1 Aa | 160.0 Aa | |
Control | 402 | 685 | 6.9 | 14.6 | 12.1 | 25.3 | 49 | 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laik, R.; Kumara, B.H.; Pramanick, B.; Singh, S.K.; Nidhi; Alhomrani, M.; Gaber, A.; Hossain, A. Labile Soil Organic Matter Pools Are Influenced by 45 Years of Applied Farmyard Manure and Mineral Nitrogen in the Wheat—Pearl Millet Cropping System in the Sub-Tropical Condition. Agronomy 2021, 11, 2190. https://doi.org/10.3390/agronomy11112190
Laik R, Kumara BH, Pramanick B, Singh SK, Nidhi, Alhomrani M, Gaber A, Hossain A. Labile Soil Organic Matter Pools Are Influenced by 45 Years of Applied Farmyard Manure and Mineral Nitrogen in the Wheat—Pearl Millet Cropping System in the Sub-Tropical Condition. Agronomy. 2021; 11(11):2190. https://doi.org/10.3390/agronomy11112190
Chicago/Turabian StyleLaik, Ranjan, B. H. Kumara, Biswajit Pramanick, Santosh Kumar Singh, Nidhi, Majid Alhomrani, Ahmed Gaber, and Akbar Hossain. 2021. "Labile Soil Organic Matter Pools Are Influenced by 45 Years of Applied Farmyard Manure and Mineral Nitrogen in the Wheat—Pearl Millet Cropping System in the Sub-Tropical Condition" Agronomy 11, no. 11: 2190. https://doi.org/10.3390/agronomy11112190
APA StyleLaik, R., Kumara, B. H., Pramanick, B., Singh, S. K., Nidhi, Alhomrani, M., Gaber, A., & Hossain, A. (2021). Labile Soil Organic Matter Pools Are Influenced by 45 Years of Applied Farmyard Manure and Mineral Nitrogen in the Wheat—Pearl Millet Cropping System in the Sub-Tropical Condition. Agronomy, 11(11), 2190. https://doi.org/10.3390/agronomy11112190