High Frequency Direct Organogenesis, Genetic Homogeneity, Chemical Characterization and Leaf Ultra-Structural Study of Regenerants in Diplocyclos palmatus (L.) C. Jeffrey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Explants and Culture Establishment
2.2. Root Induction and Acclimation
2.3. Genetic Analysis
2.4. Scanning Electron Microscope (SEM)
2.5. Gas Chromatography and Mass Spectrometry (GC-MS)
2.6. Data Analysis
3. Results and Discussion
3.1. Shoot Induction and Plant Regeneration
3.2. Rooting and Acclimatization
3.3. Genetic Fidelity
3.4. Ultra-Structural Difference between In Vitro and Acclimatized Leaves
3.5. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venkateshwarlu, G.; Shantha, T.; Shiddamallayya, N.; Ramarao, V.; Kishore, K.; Giri, S.; Sridhar, B.; Pavankumar, S. Physicochemical and preliminary phytochemical studies on the fruits of “Shivalingi” [Diplocyclos palmatus (Linn.) Jeffrey]. Int. J. Ayurvedic Med. 2001, 2, 20–26. [Google Scholar]
- Sud, K.; Sud, S. A Scientific Review on Shivlingi Beej (Bryonia Laciniosa): A Mystical Ethno-Medicine for Infertility. Eur. J. Biomed. 2017, 4, 1098–1102. [Google Scholar]
- Patel, D. Diplocyclos palmatus (L.) Jeffry: Morphological variations and medicinal values. J. Med. Plants 2018, 6, 3–5. [Google Scholar]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants; Sudhindra Nath Basu, Pâninî Office: Bahadurganj, India, 1918; p. 1159. [Google Scholar]
- Parveen-Bano, D.; Singh, N. Preliminary Phytochemical Investigation on Leaves, Seeds Extract of Diplocyclos palmatus (L.) C. Jeffrey Medicinal plant. Int. J. Adv. Res. 2015, 3, 501–505. [Google Scholar]
- Schaefer, H.; Renner, S.S. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 2011, 60, 122–138. [Google Scholar] [CrossRef]
- Al-Hemaid, F.; Lee, J.; Choudhary, R.; Al-Harbi, N.; Kim, S. Genetic diversity assessment of Diplocyclos palmatus (L.) C. Jeffrey from India using internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Afr. J. Biotechnol. 2011, 10, 16145–16151. [Google Scholar]
- Sreeramulu, N.; Suthari, S.; Ragan, A.; Raju, V.S. Ethno-botanico-medicine for common human ailments in Nalgonda and Warangal districts of Telangana, Andhra Pradesh, India. Ann. Plant Sci. 2013, 2, 220–229. [Google Scholar]
- Savithramma, N.; Yugandhar, P.; Prasad, K.S.; Ankanna, S.; Chetty, K.M. Ethnomedicinal studies on plants used by Yanadi tribe of Chandragiri reserve forest area, Chittoor District, Andhra Pradesh, India. J. Intercult. Ethnopharmacol. 2016, 5, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Trimurthulu, G.; Reddy, C.S. Medicinal plants used by ethnic people of Medak district, Andhra Pradesh. Indian J. Tradit. Knowl. 2010, 9, 184–190. [Google Scholar]
- Kataria, S.; Kaur, D. Ethnopharmacological approaches to inflammation-exploring medicinal plants. Indian J. Nat. Prod. Resour. 2013, 4, 295–305. [Google Scholar]
- Mosaddik, M.A.; Haque, M.E. Cytotoxicity and antimicrobial activity of goniothalamin isolated from Bryonopsis laciniosa. Phytother. Res. 2003, 17, 1155–1157. [Google Scholar] [CrossRef] [PubMed]
- Packer, J.; Brouwer, N.; Harrington, D.; Gaikwad, J.; Heron, R.; Yaegl Community, E.; Ranganathan, S.; Vemulpad, S.; Jamie, J. An ethnobotanical study of medicinal plants used by the Yaegl Aboriginal community in northern New South Wales, Australia. J. Ethnopharmacol. 2012, 139, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Dwivedi, S.; Wagh, R. Physicochemical Evaluation and Fluorescence Analysis of Stem and Leaves of Diplocyclos palmatus (l.) Jeffry-Shivalingi. Int. J. Drug Discov. Herb. Res. 2013, 3, 641–643. [Google Scholar]
- Abraham, Z. Ethnobotany of the Todas, the Kotas and the Irulas of Nilgiris. In Glimpses of Indian Ethnobotany; Jain, S.K., Ed.; Oxford & IBH Publising Co.: New Delhi, India, 1981; pp. 308–320. [Google Scholar]
- Bhogaonkar, P.; Kadam, V. Ethnopharmacology of Banjara tribe of Umarkhed taluka, district Yavatmal, Maharashtra for reproductive disorders. Indian J. Tradit. Knowl. 2006, 5, 336–341. [Google Scholar]
- Prasad, D.; Shyma, T.; Raghavendra, M. Traditional herbal remedies used for management of reproductive disorders in Wayanad district, Kerala. Int. J. Res. Pharm. Chem. 2014, 4, 333–341. [Google Scholar]
- Sarvalingam, A.; Rajendran, A.; Aravindhan, V. Curative climbers of Maruthamalai hills in the southern Western Ghats of Tamil Nadu, India. Int. J. Med. Aromat. Plants 2011, 1, 326–332. [Google Scholar]
- Divya, K.; Manonmani, K. Curative climbers of Thadagai Hills of Anamalais. Int. J. Life Sci. Biotechnol. Pharma Res 2013, 2, 306–312. [Google Scholar]
- Ganesan, S.; Suresh, N.; Kesaven, L. Ethnomedicinal survey of lower Palni hills of Tamil Nadu. Indian J. Tradit. Knowl. 2004, 3, 299–304. [Google Scholar]
- Kadam, P.; Bodhankar, S.L. Antiarthritic activity of ethanolic seed extracts of Diplocyclos palmatus (L) C. Jeffrey in experimental animals. Der Pharm. Lett. 2013, 5, 233–242. [Google Scholar]
- Tripathi, J.; Kumari, R.; Ashwlayan, V.D.; Bansal, P.; Singh, R. Anti-diabetic activity of Diplocyclos palmatus Linn. in streptozotocin-induced diabetic mice. Indian J. Pharm. Educ. Res. 2012, 46, 352–359. [Google Scholar]
- Joshi, S.G. Diplocyclos palmatus Jeff. Medicinal Plants; Oxford and IBH Publishing Company (P) Ltd.: New Delhi, India, 2010; p. 161. [Google Scholar]
- Rasagnayadavalli-Venugopal, Y.; Sreenivas, S. Phytochemistry and Pharmacology of Bryonia laciniosa: A Review. Int. J. Pharm. 2012, 32, 542–547. [Google Scholar]
- Gowrikumar, G.; Mani, V.V.S.; Rao, T.C.; Kaimal, T.N.B.; Lakshminarayana, G. Diplocyclos palmatus L.: A new seed source of punicic acid. Lipids 1981, 16, 558–559. [Google Scholar] [CrossRef]
- Singh, V.; Malviya, T. A non-ionic glucomannan from the seeds of an indigenous medicinal plant: Bryonia lacinosa. Carbohydr. Polym. 2006, 64, 481–483. [Google Scholar] [CrossRef]
- Mosaddik, M.A.; Ekramul Haque, M.; Abdur Rashid, M. Goniothalamin from Bryonopsis laciniosa Linn (Cucurbiataceae). Biochem. Syst. Ecol. 2000, 28, 1039–1040. [Google Scholar] [CrossRef]
- Rethinam, R.; Jeyachandran, R. In vitro micropropagation of Diplocyclos palmatus (L.) C. Jeffrey—An endemic medicinal plant. Int. J. Curr. Sci. Technol. 2016, 4, 271–274. [Google Scholar]
- Chokheli, V.A.; Dmitriev, P.A.; Rajput, V.D.; Bakulin, S.D.; Azarov, A.S.; Varduni, T.V.; Stepanenko, V.V.; Tarigholizadeh, S.; Singh, R.K.; Verma, K.K.; et al. Recent Development in Micropropagation Techniques for Rare Plant Species. Plants 2020, 9, 1733. [Google Scholar] [CrossRef] [PubMed]
- Vijayashalini, P.; Anjanadevi, N.; Abirami, P.; Sharmila, M. In Vitro Propagation of An Endangered Medicinal Plant Bryonia laciniosa L. Through Leaf Explant. Int. J. Curr. Res. Mod. Educ. 2017, 2, 33–36. [Google Scholar]
- Ahmed, M.R.; Anis, M.; Alatar, A.A.; Faisal, M. In vitro clonal propagation and evaluation of genetic fidelity using RAPD and ISSR marker in micropropagated plants of Cassia alata: A potential medicinal plant. Agrofor. Syst. 2017, 91, 637–647. [Google Scholar] [CrossRef]
- Jena, S.; Ray, A.; Sahoo, A.; Sahoo, S.; Kar, B.; Panda, P.K.; Nayak, S. High-frequency clonal propagation of Curcuma angustifolia ensuring genetic fidelity of micropropagated plants. Plant Cell Tissue Organ Cult. 2018, 135, 473–486. [Google Scholar] [CrossRef]
- Tikendra, L.; Koijam, A.K.S.; Nongdam, O. Molecular markers based genetic fidelity assessment of micropropagated Dendrobium chrysotoxum Lindl. Meta Gene 2018, 20, 100562. [Google Scholar] [CrossRef]
- Rohela, G.K.; Jogam, P.; Bylla, P.; Reuben, C. Indirect Regeneration and Assessment of Genetic Fidelity of Acclimated Plantlets by SCoT, ISSR, and RAPD Markers in Rauwolfia tetraphylla L.: An Endangered Medicinal Plant. BioMed Res. Int. 2019, 3698742. [Google Scholar] [CrossRef] [Green Version]
- Ping, S.; Lit, K.; Yeow, C.; Poobathy, R.; Zakaria, R.; Chew, B.L.; Subramaniam, S. Droplet-vitrification of Aranda Broga Blue orchid: Role of ascorbic acid on the antioxidant system and genetic fidelity assessments via RAPD and SCoT markers. Biotechnol. Rep. 2020, 26, e00448. [Google Scholar]
- Faisal, M.; Abdel-Salam, E.M.; Alatar, A.A.; Qahtan, A.A. Induction of somatic embryogenesis in Brassica juncea L. and analysis of regenerants using ISSR-PCR and flow cytometer. Saudi J. Biol. Sci. 2021, 28, 1147–1153. [Google Scholar] [CrossRef]
- Srinivasan, P.; Raja, H.D.; Tamilvanan, R. Efficient in vitro plant regeneration from leaf-derived callus and genetic fidelity assessment of an endemic medicinal plant Ranunculus wallichianus Wight & Arnn by using RAPD and ISSR markers. Plant Cell Tissue Organ Cult. 2021, 147, 143–420. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Ahmad, Z.; Shahzad, A.; Sharma, S.; Parveen, S. Ex vitro rescue, physiochemical evaluation, secondary metabolite production and assessment of genetic stability using DNA based molecular markers in regenerated plants of Decalepis salicifolia (Bedd. ex Hook.f.) Venter. Plant Cell Tissue Organ Cult. 2018, 132, 497–510. [Google Scholar] [CrossRef]
- Malik, S.; Chaudhury, R.; Kalia, R.K. Rapid in vitro multiplication and conservation of Garcinia indica: A tropical medicinal tree species. Sci. Hortic. 2005, 106, 539–553. [Google Scholar] [CrossRef]
- Saurabh, S.; Prasad, D.; Vidyarthi, A.S. In vitro propagation of Trichosanthus dioica Roxb. for nutritional security. J. Crop. Sci. Biotechnol. 2017, 20, 81–87. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shahzad, A.; Sharma, S. Enhanced multiplication and improved ex vitro acclimatization of Decalepis arayalpathra. Biol. Plant. 2018, 62, 1–10. [Google Scholar] [CrossRef]
- Zafar, N.; Mujib, A.; Ali, M.; Tonk, D.; Gulzar, B.; Malik, M.; Sayeed, R.; Mamgain, J. Genome size analysis of field grown and tissue culture regenerated Rauvolfia serpentina (L) by flow cytometry: Histology and scanning electron microscopic study for in vitro morphogenesis. Ind. Crops Prod. 2019, 128, 545–555. [Google Scholar] [CrossRef]
- Nakagawa, H.; Jiang, C.-J.; Sakakibara, H.; Kojima, M.; Honda, I.; Ajisaka, H.; Nishijima, T.; Koshioka, M.; Homma, T.; Mander, L.N.; et al. Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J. 2005, 41, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Samantaray, S.; Bishoyi, A.K.; Maiti, S. Plant regeneration from callus cultures of Vitex trifolia (Lamiales: Lamiaceae): A potential medicinal plant. Rev. Biol. Trop. 2013, 61, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Chavan, J.J.; Ghadage, D.M.; Bhoite, A.S.; Umdale, S.D. Micropropagation, molecular profiling and RP-HPLC determination of mangiferin across various regeneration stages of Saptarangi (Salacia chinensis L.). Ind. Crops Prod. 2015, 76, 1123–1132. [Google Scholar] [CrossRef]
- Fatima, N.; Anis, M. Role of growth regulators on in vitro regeneration and histological analysis in Indian ginseng (Withania somnifera L.) Dunal. Physiol. Mol. Biol. Plants 2012, 18, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Bolyard, M. In vitro regeneration of Artemisia abrotanum L. by means of somatic organogenesis. In Vitro Cell. Dev. Biol.-Plant 2018, 54, 127–130. [Google Scholar] [CrossRef]
- Nowakowska, K.; Pacholczak, A.; Tepper, W. The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba’. Rend. Fis. Acc. Lincei 2019, 30, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Hoque, R.; Borna, R.S.; Hoque, M.I.; Sarker, R.H. In vitro Plant Regeneration of Rauvolfia tetraphylla L.: A Threatened Medicinal Plant. Plant Tissue Cult. Biotechnol. 2020, 30, 33–45. [Google Scholar] [CrossRef]
- Hussain, S.A.; Anis, M.; Alatar, A.A. Efficient In Vitro Regeneration System for Tecoma stans L., Using Shoot Tip and Assessment of Genetic Fidelity Among Regenerants. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 171–178. [Google Scholar] [CrossRef]
- Shibli, R.A.; Sharaf, S.A.; Kasrawi, M.A.; Al-Qudah, T.S. In Vitro Multiplication of the White Wormwood, Artemisia herba-alba asso. Jordan J. Biol. Sci. 2018, 11, 265–271. [Google Scholar]
- Elmongy, M.S.; Cao, Y.; Zhou, H.; Xia, Y. Root Development Enhanced by Using Indole-3-butyric Acid and Naphthalene Acetic Acid and Associated Biochemical Changes of In Vitro Azalea Microshoots. J. Plant Growth Regul. 2018, 37, 813–825. [Google Scholar] [CrossRef]
- Yadav, A.; Kothari, S.; Kachhwaha, S.; Joshi, A. In vitro propagation of chia (Salvia hispanica L.) and assessment of genetic fidelity using random amplified polymorphic DNA and intersimple sequence repeat molecular markers. J. Appl. Biol. Biotechnol. 2019, 7, 42–47. [Google Scholar]
- Perveen, S.; Javed, S.B.; Anis, M.; Aref, I.M. Rapid in vitro multiplication and ex vitro establishment of Caribbean copper plant (Euphorbia cotinifolia L.): An important medicinal shrub. Acta Physiol. Plant. 2013, 35, 3391–3400. [Google Scholar] [CrossRef]
- Naaz, A.; Hussain, S.A.; Anis, M.; Alatar, A.A. Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biol. Plant. 2019, 63, 174–182. [Google Scholar] [CrossRef]
- Amin, S.; Wani, T.A.; Kaloo, Z.A.; Singh, S.; John, R.; Majeed, U.; Shapoo, G.A. Genetic stability using RAPD and ISSR markers in efficiently in vitro regenerated plants of Inula royleana DC. Meta Gene 2018, 18, 100–106. [Google Scholar] [CrossRef]
- Nasri, A.; Baklouti, E.; Ben Romdhane, A.; Maalej, M.; Schumacher, H.M.; Drira, N.; Fki, L. Large-scale propagation of Myrobolan (Prunus cerasifera) in RITA® bioreactors and ISSR-based assessment of genetic conformity. Sci. Hortic. 2019, 245, 144–153. [Google Scholar] [CrossRef]
- Shahzad, A.; Akhtar, R.; Bukhari, N.A.; Perveen, K. High incidence regeneration system in Ceratonia siliqua L. articulated with SEM and biochemical analysis during developmental stages. Trees 2017, 31, 1149–1163. [Google Scholar] [CrossRef]
- Suárez, E.; Alfayate, C.; Pérez-Francés, J.F.; Rodríguez-Pérez, J.A. Structural and ultrastructural differences between field, micropropagated and acclimated leaves and stems of two Leucospermum cultivars (Proteaceae). Plant Cell Tissue Organ Cult. 2019, 136, 15–27. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef]
- Sakakibara, H.; Takei, K.; Hirose, N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 2006, 11, 440–448. [Google Scholar] [CrossRef]
- Zifkin, M.; Jin, A.; Ozga, J.A.; Zaharia, L.I.; Schernthaner, J.P.; Gesell, A.; Abrams, S.R.; Kennedy, J.A.; Constabel, C.P. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol. 2012, 158, 200–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoo, S.O.; Aremu, A.O.; Van Staden, J. In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult. 2012, 111, 345–358. [Google Scholar] [CrossRef]
- Ghosh, A.; Igamberdiev, A.U.; Debnath, S.C. Thidiazuron-induced somatic embryogenesis and changes of antioxidant properties in tissue cultures of half-high blueberry plants. Sci. Rep. 2018, 8, 16978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parveen, S.; Shahzad, A.; Upadhyay, A.; Yadav, V. Gas Chromatography-Mass Spectrometry Analysis of Methanolic Leaf Extract of Cassia angustifolia Vahl. Asian J. Pharm. Clin. Res. 2016, 9, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.; Shahzad, A.; Sharma, S. Evaluation of in vitro antioxidant activity, HPLC and GC–MS analysis along with chemoprofiling of Decalepis arayalpathra: A critically endangered plant of Western Ghats, India. Rendiconti Lincei 2017, 28, 711–720. [Google Scholar] [CrossRef]
- Fallah, M.; Farzaneh, M.; Yousefzadi, M.; Ghorbanpour, M.; Mirjalili, M.H. In vitro mass propagation and conservation of a rare medicinal plant, Zhumeria Majdae Rech.f & Wendelbo (Lamiaceae). Biocatal. Agric. Biotechnol. 2019, 17, 318–325. [Google Scholar] [CrossRef]
- Yadav, V.; Shahzad, A.; Ahmad, Z.; Sharma, S.; Parveen, S. Synthesis of nonembryonic synseeds in Hemidesmus indicus R. Br.: Short term conservation, evaluation of phytochemicals and genetic fidelity of the regenerants. Plant Cell Tissue Organ Cult. 2019, 138, 363–376. [Google Scholar] [CrossRef]
- Upadhyay, A.; Shahzad, A.; Ahmad, Z. In vitro propagation and assessment of genetic uniformity along with chemical characterization in Hildegardia populifolia (Roxb.) Schott & Endl.: A critically endangered medicinal tree. In Vitro Cell. Dev. Biol. Plant 2020, 56, 803–816. [Google Scholar] [CrossRef]
Cytokinins (µM) | Explant Response (%) | Number of Shoots per Explant | Shoot Length (cm) | ||
---|---|---|---|---|---|
BA | Kn | TDZ | |||
0.0 | 0.0 | 0.0 | 00.00 ± 0.00 k | 0.00 ± 0.00 h | 0.00 ± 0.00 h |
0.5 | - | - | 33.33 ± 1.67 i | 1.67 ± 0.33 fg | 0.50 ± 0.10 fg |
2.5 | - | - | 68.33 ± 1.67 cd | 4.33 ± 0.67 bcd | 1.23 ± 0.07 de |
5.0 | - | - | 95.00 ± 2.89 a | 6.67 ± 0.33 a | 2.40 ± 0.12 a |
7.5 | - | - | 73.33 ± 1.67 c | 5.33 ± 0.67 ab | 1.43 ± 0.18 cd |
10.0 | - | - | 43.33 ± 3.33 h | 2.33 ± 0.33 efg | 0.73 ± 0.03 f |
- | 0.5 | - | 23.33 ± 1.67 j | 1.33 ± 0.33 g | 0.53 ± 0.03 fg |
- | 2.5 | - | 56.67 ± 3.33 ef | 3.00 ± 0.00 def | 1.17 ± 0.07 de |
- | 5.0 | - | 81.67 ± 1.67 b | 4.67 ± 0.88 bc | 1.80 ± 0.06 b |
- | 7.5 | - | 73.33 ± 1.67 c | 3.67 ± 0.33 cde | 1.37 ± 0.07 d |
- | 10.0 | - | 46.67 ± 1.67 gh | 1.67 ± 0.33 fg | 0.50 ± 0.58 fg |
- | - | 0.5 | 21.67 ± 1.67 j | 2.33 ± 0.33 efg | 0.43 ± 0.33 g |
- | - | 2.5 | 55.00 ± 2.89 f | 3.33 ± 0.67 cde | 1.07 ± 0.33 e |
- | - | 5.0 | 73.33 ± 3.33 c | 4.33 ± 0.33 bcd | 1.67 ± 0.12 bc |
- | - | 7.5 | 63.33 ± 3.33 de | 2.67 ± 0.33 efg | 1.33 ± 0.09 d |
- | - | 10.0 | 51.67 ± 1.67 fg | 1.33 ± 0.33 g | 0.47 ± 0.03 fg |
Plant Growth Regulators (µM) | Explant Response (%) | Number of Shoots per Explant | Shoot length (cm) | |||
---|---|---|---|---|---|---|
BA | IAA | IBA | NAA | |||
5.0 | 0.0 | 0.0 | 0.0 | 95.00 ± 2.89 a | 6.67 ± 0.33 a | 2.40 ± 0.12 a |
5.0 | 1.0 | - | - | 13.33 ± 3.33 h | 1.67 ± 0.67 e | 3.47 ± 0.18 g |
5.0 | 2.0 | - | - | 55.00 ± 2.89 de | 4.33 ± 1.20 cd | 5.20 ± 0.06 d |
5.0 | 3.0 | - | - | 46.67 ± 3.33 f | 2.67 ± 0.88 de | 4.30 ± 0.15 f |
5.0 | - | 1.0 | - | 16.67 ± 3.33 h | 2.33 ± 0.88 de | 3.73 ± 0.12 g |
5.0 | - | 2.0 | - | 61.67 ± 1.67 d | 5.67 ± 0.33 bc | 5.80 ± 0.05 c |
5.0 | - | 3.0 | - | 51.67 ± 1.67 ef | 3.33 ± 0.33 de | 4.50 ± 0.10 ef |
5.0 | - | - | 1.0 | 35.00 ± 2.89 g | 3.67 ± 0.89 cde | 4.77 ± 0.03 e |
5.0 | - | - | 2.0 | 86.67 ± 1.67 b | 8.33 ± 0.33 a | 7.20 ± 0.11 a |
5.0 | - | - | 3.0 | 78.33 ± 1.67 c | 6.67 ± 0.31 ab | 6.53 ± 0.20 b |
Auxins (µM) | Explant Response (%) | Number of Roots per Shoot | Root Length (cm) | ||
---|---|---|---|---|---|
IAA | IBA | NAA | |||
0.0 | 0.0 | 0.0 | 00.00 ± 0.00 i | 0.00 ± 0.00 i | 0.00 ± 0.00 h |
0.5 | - | - | 35.00 ± 2.89 fg | 2.33 ± 0.33 h | 4.03 ± 0.14 ef |
1.0 | - | - | 53.33 ± 1.67 d | 4.67 ± 0.67 defg | 6.03 ± 0.17 c |
1.5 | - | - | 36.67 ± 1.67 efg | 3.33 ± 0.88 fgh | 5.27 ± 0.17 d |
2.0 | - | - | 23.33 ± 3.33 h | 1.67 ± 0.33 h | 2.47 ± 0.20 g |
- | 0.5 | - | 51.67 ± 1.67 d | 8.33 ± 0.67 b | 5.87 ± 0.18 c |
- | 1.0 | - | 91.67 ± 1.67 a | 11.00 ± 0.58 a | 7.40 ± 0.23 a |
- | 1.5 | - | 70.00 ± 2.89 b | 6.67 ± 0.88 bcd | 6.63 ± 0.12 b |
- | 2.0 | - | 41.67 ± 1.67 ef | 3.67 ± 0.88 efgh | 5.07 ± 0.17 d |
- | - | 0.5 | 43.33 ± 1.67 e | 5.33 ± 0.33 def | 4.43 ± 0.18 e |
- | - | 1.0 | 63.33 ± 3.33 c | 7.67 ± 0.88 bc | 6.87 ± 0.09 b |
- | - | 1.5 | 56.67 ± 1.67 d | 5.67 ± 0.67 cde | 5.23 ± 0.12 d |
- | - | 2.0 | 31.67 ± 1.67 g | 3.00 ± 0.58 gh | 3.53 ± 0.22 f |
Name of Primers | Primer Sequence (5′-3′) | No. of Bands |
---|---|---|
OPL—01 | GGCATGACCT | 2 |
OPL—02 | TGGGCGTCAA | 3 |
OPL—03 | CCAGCAGCTT | 1 |
OPL—04 | GACTGCACAC | 3 |
OPL—05 | ACGCAGGCAC | 2 |
OPL—06 | GAGGGAAGAG | 0 |
OPL—07 | AGGCGGGAAC | 3 |
OPL—08 | AGCAGGTGGA | 4 |
OPL—09 | TGCGAGAGTC | 2 |
OPL—10 | TGGGAGATGG | 1 |
Name of Primers | Primer Sequence (5′-3′) | No. of Bands |
---|---|---|
UBC—812 | (GA)8A | 5 |
UBC—814 | (CT)8A | 3 |
UBC—818 | (CA)8G | 8 |
UBC—825 | (AC)8T | 7 |
UBC—827 | (AC)8G | 6 |
UBC—836 | (AG)8YA | 2 |
UBC—848 | (CA)8RG | 7 |
UBC—855 | (AC)8YT | 0 |
UBC—868 | (GAA)6 | 1 |
UBC—880 | (GGGGT)3G | 3 |
Peak | Rt | Area | Area % | Molecular Weight | Molecular Formula | Name of Compound |
---|---|---|---|---|---|---|
1 | 4.507 | 908,320 | 1.41 | 182 | C6H14O6 | Hexitol |
2 | 6.070 | 277,121 | 0.43 | 126 | C3H6N6 | 1,3,5-Triazine-2,4,6-triamine |
3 | 6.210 | 181,003 | 0.28 | 156 | C11H24 | Undecane |
4 | 6.312 | 305,048 | 0.47 | 100 | C6H12O | Oxetane |
5 | 6.997 | 146,388 | 0.23 | 102 | C4H10N2O | 2-Propanamine, N-methyl-N-nitroso |
6 | 7.091 | 732,652 | 1.14 | 144 | C6H8O4 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one |
7 | 10.733 | 273,923 | 0.43 | 206 | C13H18O2 | 1-(3,6,6-Trimethyl-1,6,7,7A-Tetrahydro-Cyclopenta[C]Pyran-1-yl)-Ethanone |
8 | 11.350 | 4,066,940 | 6.32 | 134 | C6H14O3 | 1,3-Propanediol, 2-ethyl-2-(hdroxymethyl) |
9 | 12.173 | 377,158 | 0.59 | 206 | C14H22O | Phenol, 2,4-bis(1,1-dimethylethyl) |
10 | 12.342 | 755,352 | 1.17 | 194 | C11H14O3 | Benzoic acid, 4-ethoxy-, ethyl ester |
11 | 13.450 | 1,963,722 | 3.05 | 208 | C12H16O3 | Benzene, 1,2,4-trimethoxy-5-(1-propenyl)-, (Z)- |
12 | 13.660 | 652,689 | 1.01 | 194 | C7H14O6 | Methyl. beta.-d-galactopyranoside |
13 | 13.964 | 427,432 | 0.66 | 148 | C10H12O | 2,3-Dihydro-1H-inden-2-ylmethanol |
14 | 14.486 | 143,730 | 0.22 | 270 | C16H30O3 | cis-11,12-Epoxytetradecen-1-ol |
15 | 15.028 | 289,126 | 0.45 | 228 | C14H28O2 | Tetradecanoic acid |
16 | 15.454 | 268,447 | 0.42 | 242 | C16H34O | 3-Hexadecanol |
17 | 15.653 | 432,185 | 0.67 | 270 | C17H34O2 | Isopropyl myristate |
18 | 15.819 | 158,020 | 0.25 | 296 | C20H40O | 2-Hexadecen-1-ol, 3,7,11,15-tetramethyl |
19 | 15.896 | 446,768 | 0.69 | 268 | C18H36O | 2-Pentadecanone |
20 | 16.706 | 1,067,836 | 1.66 | 270 | C17H34O2 | Hexadecanoic acid |
21 | 17.021 | 258,429 | 0.40 | 218 | C12H10O2S | Benzene, 1,1′-Sulfonylbis |
22 | 17.105 | 4,860,713 | 7.55 | 242 | C15H30O2 | Pentadecanoic acid |
23 | 18.383 | 101,568 | 0.16 | 294 | C19H34O2 | 9,12-Octadecadienoic acid (Z,Z) |
24 | 18.456 | 707,024 | 1.10 | 292 | C19H32O2 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z) |
25 | 18.571 | 284,881 | 0.44 | 296 | C20H40O | Phytol |
26 | 18.650 | 283,100 | 0.44 | 298 | C19H38O2 | Methyl stearate |
27 | 18.857 | 2,412,690 | 3.75 | 234 | C16H26O | cis,cis,cis-7,10,13-Hexadecatrienal |
28 | 19.013 | 761,049 | 1.18 | 284 | C18H36O2 | Octadecanoic acid |
29 | 20.447 | 258,635 | 0.40 | 212 | C14H28O | Tetradecanal |
30 | 20.754 | 1,272,831 | 1.98 | 324 | C21H40O2 | 4,8,12,16-Tetramethylheptadecan-4-olide |
31 | 20.978 | 286,398 | 0.45 | 262 | C18H30O | Farnesyl acetone A |
32 | 21.297 | 465,407 | 0.72 | 240 | C16H32O | Hexadecanal |
33 | 21.692 | 188,587 | 0.29 | 175 | C10H9NO2 | 1H-Indole-3-acetic acid |
34 | 22.114 | 348,238 | 0.54 | 240 | C16H32O | Palmitaldehyde |
35 | 22.311 | 280,283 | 0.44 | 390 | C24H38O4 | 1,2-Benzenedicarboxylic acid |
36 | 22.974 | 337,947 | 0.53 | 268 | C18H36O | Octadecanal |
37 | 23.410 | 81,469 | 0.13 | 190 | C10H10N2S | 4-(O-Tolyl)-2-thiazolamine |
38 | 23.536 | 207,065 | 0.32 | 338 | C24H50 | Tetracosane |
39 | 23.956 | 162,244 | 0.25 | 268 | C18H36O | Stearaldehyde |
40 | 25.048 | 3,749,650 | 5.83 | 410 | C30H50 | Squalene |
41 | 25.515 | 722,327 | 1.12 | 420 | C30H60 | 8-Hexadecene, 8,9-diheptyl |
42 | 25.838 | 1,751,204 | 2.72 | 618 | C20H23F17O2 | Heptadecafluorononanoic acid, undecyl ester |
43 | 26.502 | 363,324 | 0.56 | 290 | C20H34O | Neryl linalool isomer |
44 | 26.870 | 1,076,776 | 1.67 | 402 | C27H46O2 | 2H-1-Benzopyran-6-ol, 3,4-dihydro-2,8-dimethyl-2-(4,8,12-trimethyltridecyl) |
45 | 28.166 | 333,738 | 0.52 | 240 | C16H32O | 1-Hexadecanal |
46 | 28.427 | 2,761,657 | 4.29 | 416 | C28H48O2 | beta-Tocopherol |
47 | 28.703 | 721,217 | 1.12 | 416 | C28H48O2 | gamma-Tocopherol |
48 | 29.404 | 1,148,973 | 1.79 | 396 | C27H56O | 1-Heptacosanol |
49 | 30.413 | 17,190,992 | 26.72 | 430 | C29H50O2 | Vitamin E |
50 | 32.947 | 2,332,294 | 3.62 | 400 | C28H48O | Ergost-5-en-3-ol |
51 | 35.603 | 4,213,930 | 6.55 | 414 | C29H50O | Stigmast-5-en-3-ol, (3.beta.) |
52 | 36.745 | 363,153 | 0.56 | 486 | C31H50O4 | Methyl commate C |
Peak | Rt | Area | Area % | Molecular Weight | Molecular Formula | Name of Compound |
---|---|---|---|---|---|---|
1 | 5.570 | 7,571,988 | 7.53 | 92 | C3H8O3 | Glycerin |
2 | 11.942 | 350,149 | 0.35 | 206 | C13H18O2 | 1-(3,6,6-Trimethyl-1,6,7,7A-Tetrahydro-Cyclopenta[C]Pyran-1-yl)-Ethanone |
3 | 12.950 | 10,875,138 | 10.82 | 151 | C4H9NO5 | 1,3-Propanediol, 2-(hydroxymethyl)-2-nitro |
4 | 13.778 | 128,200 | 0.13 | 180 | C11H16O2 | 2(4H)-Benzofuranone |
5 | 14.370 | 284,394 | 0.28 | 102 | C12H14O4 | 1,2-Benzenedicarboxylic acid |
6 | 14.864 | 257,084 | 0.26 | 190 | C13H18O | Megastigmatrienone |
7 | 15.816 | 188,288 | 0.19 | 198 | C13H26O | Tridecanal |
8 | 15.926 | 197,429 | 0.20 | 228 | C15H32O | 1-Dodecanol |
9 | 16.245 | 154,416 | 0.15 | 196 | C11H16O3 | 6-Hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one |
10 | 16.562 | 282,146 | 0.28 | 196 | C11H14O3 | Loliolide |
11 | 16.717 | 416,109 | 0.41 | 222 | C13H18O3 | 2-Cyclohexan-1-one |
12 | 17.104 | 1,420,117 | 1.41 | 278 | C20H38 | Neophytadiene |
13 | 17.161 | 3,605,787 | 3.59 | 268 | C18H36O | 2-Pentadecanone |
14 | 17.360 | 484,916 | 0.48 | 278 | C20H38 | 7,11,15-Trimethyl-3-methylenehexadec-1-ene |
15 | 17.552 | 661,569 | 0.66 | 278 | C20H38 | 1-Hexadecene |
16 | 17.901 | 576,424 | 0.57 | 268 | C18H36O | Hexahydrofarnesyl acetone |
17 | 18.005 | 1,173,450 | 1.17 | 270 | C17H34O2 | Hexadecanoic acid |
18 | 18.412 | 1,040,440 | 1.04 | 256 | C16H32O2 | n-Hexadecanoic acid |
19 | 18.833 | 306,615 | 0.31 | 710 | C36H54O14 | Card-20(22)-enolide |
20 | 19.643 | 1,765,763 | 1.76 | 294 | C19H34O2 | 9,12-Octadecadienoic acid (Z,Z) |
21 | 19.702 | 12,045,599 | 1.20 | 296 | C19H36O2 | 9-Octadecenoic acid (Z) |
22 | 19.760 | 86,695 | 0.09 | 214 | C13H26O2 | Undecanoic acid |
23 | 19.805 | 3,641,993 | 3.62 | 296 | C20H40O | Phytol |
24 | 19.938 | 649,305 | 0.65 | 298 | C19H38O2 | Methyl stearate |
25 | 20.092 | 528,316 | 0.53 | 338 | C22H42O2 | Palmitaldehyde |
26 | 20.930 | 1,037,694 | 1.03 | 292 | C19H32O2 | Methyl 9.cis.,11.trans.t,13.trans.-octadecatrienoate |
27 | 21.157 | 1,817,402 | 1.81 | 288 | C21H36 | 14-.beta.-H-pregna |
28 | 21.473 | 338,187 | 0.34 | 312 | C19H36O3 | Glycidyl palmitate |
29 | 22.027 | 3,294,808 | 3.28 | 324 | C21H40O2 | 4,8,12,16-Tetramethylheptadecan-4-olide |
30 | 22.165 | 510,086 | 0.51 | 281 | C18H35NO | 9-Octadecenamide |
31 | 23.361 | 409,322 | 0.41 | 234 | C17H30 | 1,8,11-Heptadecatriene, (Z,Z) |
32 | 23.842 | 4,685,553 | 4.66 | 330 | C19H38O4 | Hexadecanoic acid |
33 | 24.025 | 487,501 | 0.49 | 530 | C34H58O4 | Bis(tridecyl) phthalate |
34 | 25.463 | 8,280,491 | 8.24 | 354 | C12H38O4 | 9,12-Octadecadienoic acid (Z,Z) |
35 | 25.715 | 2,235,784 | 2.22 | 358 | C21H42O4 | Octadecanoic acid |
36 | 26.287 | 2,761,319 | 2.75 | 281 | C18H35NO | 9-Octadecenamide |
37 | 26.594 | 363,564 | 0.36 | 410 | C30H50 | Squalene |
38 | 26.930 | 1,539,925 | 1.53 | 462 | C29H50O4 | alpha-Tocospiro A |
39 | 27.160 | 2,179,600 | 2.17 | 462 | C29H54O4 | alpha-Tocospiro B |
40 | 28.157 | 1,497,815 | 1.49 | 402 | C27H46O2 | delta-Tocopherol |
41 | 29.391 | 1,639,399 | 1.63 | 416 | C28H48O2 | beta-Tocopherol |
42 | 29.651 | 1,160,593 | 1.15 | 416 | C28H48O2 | gamma-Tocopherol |
43 | 30.043 | 849,521 | 0.85 | 454 | C31H50O2 | Stigmasta-5,22-dien-3-ol |
44 | 30.963 | 1,459,626 | 1.45 | 430 | C29H50O2 | Vitamine E |
45 | 32.935 | 5,768,733 | 5.74 | 400 | C28H48O | Ergost-5-en-3-ol |
46 | 33.518 | 859,469 | 0.86 | 412 | C29H48O | Stigmasterol |
47 | 34.993 | 12,512,685 | 12.45 | 414 | C29H50O | gamma-Sitosterol |
48 | 36.013 | 1,188,777 | 1.18 | 486 | C31H50O4 | Methyl Commate D |
49 | 36.516 | 1,156,282 | 1.15 | 442 | C30H50O2 | Betulin |
50 | 37.350 | 1,493,558 | 1.49 | 470 | C31H50O3 | Methyl Commate B |
51 | 38.804 | 1,970,415 | 1.96 | 430 | C29H50O2 | Emipherol |
52 | 40.146 | 1,151,813 | 1.15 | 440 | C30H48O2 | Betulinaldehyde |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, A.; Shahzad, A.; Ahmad, Z.; Alatar, A.A.; Guerriero, G.; Faisal, M. High Frequency Direct Organogenesis, Genetic Homogeneity, Chemical Characterization and Leaf Ultra-Structural Study of Regenerants in Diplocyclos palmatus (L.) C. Jeffrey. Agronomy 2021, 11, 2164. https://doi.org/10.3390/agronomy11112164
Upadhyay A, Shahzad A, Ahmad Z, Alatar AA, Guerriero G, Faisal M. High Frequency Direct Organogenesis, Genetic Homogeneity, Chemical Characterization and Leaf Ultra-Structural Study of Regenerants in Diplocyclos palmatus (L.) C. Jeffrey. Agronomy. 2021; 11(11):2164. https://doi.org/10.3390/agronomy11112164
Chicago/Turabian StyleUpadhyay, Anamica, Anwar Shahzad, Zishan Ahmad, Abdulrahman A. Alatar, Gea Guerriero, and Mohammad Faisal. 2021. "High Frequency Direct Organogenesis, Genetic Homogeneity, Chemical Characterization and Leaf Ultra-Structural Study of Regenerants in Diplocyclos palmatus (L.) C. Jeffrey" Agronomy 11, no. 11: 2164. https://doi.org/10.3390/agronomy11112164
APA StyleUpadhyay, A., Shahzad, A., Ahmad, Z., Alatar, A. A., Guerriero, G., & Faisal, M. (2021). High Frequency Direct Organogenesis, Genetic Homogeneity, Chemical Characterization and Leaf Ultra-Structural Study of Regenerants in Diplocyclos palmatus (L.) C. Jeffrey. Agronomy, 11(11), 2164. https://doi.org/10.3390/agronomy11112164