Genetics and Genomics of Fusarium Wilt of Chilies: A Review
Abstract
:1. Introduction
2. Genomics of F. oxysporum
2.1. Genetics of Disease Development
Serial No. | Gene(s) Name | Function | References |
---|---|---|---|
1 | FOW1 | Plant colonization | [73] |
2 | Fmk1 | Root penetration and cortex invading | [74] |
3 | ARG1 | Production of argininosuccinate lyase | [75] |
4 | Pg1 | Depolymerization of homogalacturonan | [69] |
5 | Xyl2 and Xyl3 (family-10 xylanases) | Breakage of xylan backbone | [70] |
6 | Xyl4 (family-11 xylanases) | Breakage of xylan backbone | [71] |
7 | Pl1 | Trans-elimination of pectate | [72] |
8 | Pgx4 | Production of pectinolytic enzymes | [76] |
2.2. Role of Cell-Wall-Degrading Enzymes in Pathogenicity
3. Disease Symptoms
3.1. Morphological Changes in Plants
3.2. Biochemical Changes in Plants
4. Disease Incidence
5. Mode of Damage
6. Management Approaches
6.1. Physical and Chemical Measures of Control of Fusarium Wilt
6.2. Biological Control of Pathogen
7. Conventional Breeding Strategies
7.1. Breeding and Genetics of Resistance of Fusarium Wilt in Host Plant
7.2. Biochemical and Molecular Basis of Resistance for Fusarium Wilt in Host Plants
8. Non-Conventional Crop Breeding Strategies
RNAi Host-Induced Resistance against F. oxysporum
9. Conclusions and Future Prospectus
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thakur, H.; Jindal, S.K.; Sharma, A.; Dhaliwal, M.S. Chilli leaf curl virus disease: A serious threat for chilli cultivation. J. Plant Dis. Prot. 2018, 125, 239–249. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Manu, D.; Tembhurne, B.; Kisan, B.; Aswathnarayana, D.; Diwan, J. Inheritance of fusarium wilt and qualitative and quantitative characters in chilli (Capsicum annuum L.). J. Agric. Environ. Sci. 2014, 3, 433–444. [Google Scholar]
- Ambroszczyk, A.M.; Cebula, S.; Sękara, A. The effect of shoot training on yield, fruit quality and leaf chemical composition of eggplant in greenhouse cultivation. Folia Hortic. 2008, 20, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.; Srivastava, R.; Sharma, A.K.; Prakash, A. Screening of resistant varieties and antagonistic Fusarium oxysporum for biocontrol of Fusarium wilt of chilli. J. Plant Pathol. Microbiol. 2015, 3, 1000134. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Palevitch, D.; Craker, L. Nutritional and medical importance of red pepper (Capsicum spp.). J. Herbs Spices Med. Plants 1996, 3, 55–83. [Google Scholar] [CrossRef]
- Hayman, M.; Kam, P.C. Capsaicin: A review of its pharmacology and clinical applications. Curr. Anaesth. Crit. Care 2008, 19, 338–343. [Google Scholar] [CrossRef]
- Hussain, F.; Abid, M. Pest and diseases of chilli crop in Pakistan: A review. Int. J. Biol. Biotech. 2011, 8, 325–332. [Google Scholar]
- AbuQamar, S.; Luo, H.; Laluk, K.; Mickelbart, M.V.; Mengiste, T. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J. 2009, 58, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Tembhurne, B.; Belabadevi, B.; Kisan, B.; Tilak, I.; Ashwathanarayana, D.; Suvarna, N.; Naik, M. Molecular Characterization and Screening for Fusarium (Fusarium solani) Resistance in Chilli (Capsicum annuum L.) Genotypes. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Maya, K.; Zakwan, A. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res. J. Seed Sci. 2011, 4, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Bulle, M.; Yarra, R.; Abbagani, S. Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol. Breed. 2016, 36, 36. [Google Scholar] [CrossRef]
- Seong, E.S.; Guo, J.; Wang, M.-H. The chilli pepper (Capsicum annuum) MYB transcription factor (CaMYB) is induced by abiotic stresses. J. Plant Biochem. Biotechnol. 2008, 17, 193–196. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Shah, D.; Abbas, D.; Madkour, M. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crop. 2010, 1, 344–350. [Google Scholar] [CrossRef]
- Prihatna, C.; Barbetti, M.J.; Barker, S.J. A novel tomato fusarium wilt tolerance gene. Front. Microbiol. 2018, 9, 1226. [Google Scholar] [CrossRef]
- Ramamoorthy, V.; Raguchander, T.; Samiyappan, R. Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil 2002, 239, 55–68. [Google Scholar] [CrossRef]
- Shafique, S.; Asif, M.; Shafique, S. Management of Fusarium oxysporum f. sp. capsici by leaf extract of Eucalyptus citriodora. Pak. J. Bot. 2015, 47, 1177–1182. [Google Scholar]
- Madhavi, M.; Kumar, C.; Reddy, D.; Singht, T. Integrated Management of Wilt of Chilli Incited by. Indian J. Plant Prot. 2006, 34, 225–228. [Google Scholar]
- Rani, G.D.; Naik, M.; Patil, M.; Prasad, P. Biological control of Fusarium solani causing wilt of chilli. Indian Phytopathol. 2009, 62, 190–198. [Google Scholar]
- Mushtaq, M.; Hashmi, M.H. Fungi Associated with Wilt Disease of Capsicum in Sindh, Pakistan. Pak. J. Bot. 1997, 29, 217–222. [Google Scholar]
- Naik, M. Wilt of chilli with special reference to cultural, morphological, molecular characterization and pathogenic variability of Fusarium isolates of India. In Proceedings of the Midterm Review Meeting of the Project held at Indian Institute of Vegetable Research, Varanasi, India, 23 July 2006. [Google Scholar]
- Agrios, G.N. Plant diseases caused by fungi. Plant Pathol. 2005, 4, 385–614. [Google Scholar]
- Singh, A.; Singh, A. Screening of chilli genotypes against Fusarium wilt. Crop Res. 1998, 15, 132–133. [Google Scholar]
- Sundaramoorthy, S.; Raguchander, T.; Ragupathi, N.; Samiyappan, R. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol. Control 2012, 60, 59–67. [Google Scholar] [CrossRef]
- Wongpia, A.; Lomthaisong, K. Changes in the 2DE protein profiles of chilli pepper (Capsicum annuum) leaves in response to Fusarium oxysporum infection. ScienceAsia 2010, 36, 259–270. [Google Scholar] [CrossRef]
- Link, K.P.; Walker, J. The isolation of catechol from pigmented Onion scales and its significance in relation to disease resistance in Onions. J. Biol. Chem. 1933, 100, 379–383. [Google Scholar] [CrossRef]
- Vartivarian, S.E.; Anaissie, E.J.; Bodey, G.P. Emerging fungal pathogens in immunocompromised patients: Classification, diagnosis, and management. Clin. Infect. Dis. 1993, 17, S487–S491. [Google Scholar] [CrossRef]
- Beckman, C.H. The Nature of Wilt Diseases of Plants; APS Press: Islamabad, Pakistan, 1987. [Google Scholar]
- Michielse, C.B.; Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 2009, 10, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Beckman, C.H.; Roberts, E. On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv. Bot. Res. 1995, 21, 35–77. [Google Scholar]
- Stover, R.H. Fusarial Wilt (Panama Disease) of Bananas and Other Musa Species; CABI: Wallingford, UK, 1962. [Google Scholar]
- Stover, R. Banana root diseases caused by Fusarium oxysporum f. sp. cubense, Pseudomonas solanacearum, and Radopholus similis: A comparative study of life cycles in relation to control. In Root Diseases and Soil-Borne Pathogens, Proceedings of the 2nd International Symposium on Factors Determining the Behavior of Plant Pathogens in Soil, London, UK, 14–28 July 1968; University of California Press: Berkeley, CA, USA, 1970. [Google Scholar]
- Nash, S.M.; Christou, T.; Snyder, W.C. Existence of Fusarium solani f. phaseoli as chlamydospores in soil. Phytopathology 1961, 51, 308–312. [Google Scholar]
- Christou, T.; Snyder, W. Penetration and host-parasite relationships of Fusarium solani f. phaseoli in the bean plant. Phytopathology 1962, 52, 219–226. [Google Scholar]
- Schippers, B.; Van Eck, W. Formation and survival of chlamydospores in Fusarium. In Fusarium, Diseases, Biology and Taxonomy; Nelson, P.E., Tousson, T.A., Cook, R.J., Eds.; The Pennsylvania State University Press: University Park, PA, USA, 1981; pp. 250–260. [Google Scholar]
- Scheffer, R. Role of toxins in evolution and ecology of plant pathogenic fungi. Experientia 1991, 47, 804–811. [Google Scholar] [CrossRef]
- Jackson, A.O.; Taylor, C.B. Plant-microbe interactions: Life and death at the interface. Plant Cell 1996, 8, 1651. [Google Scholar] [CrossRef]
- Migheli, Q.; Berio, T.; Gullino, M.L. Electrophoretic karyotypes of Fusarium spp. Exp. Mycol. 1993, 17, 329–337. [Google Scholar] [CrossRef]
- Daboussi, M.; Langin, T. Transposable elements in the fungal plant pathogen Fusarium oxysporum. Genetica 1994, 93, 49–59. [Google Scholar] [CrossRef]
- Daboussi, M. Fungal transposable elements: Generators of diversity and genetic tools. J. Genet. 1996, 75, 325–339. [Google Scholar] [CrossRef]
- Ma, L.-J.; Van Der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.-J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef]
- Ma, L.-J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayhan, D.H.; López-Díaz, C.; Di Pietro, A.; Ma, L.-J. Improved assembly of reference genome Fusarium oxysporum f. sp. lycopersici strain Fol4287. Microbiol. Resour. Announc. 2018, 7, e00910–e00918. [Google Scholar] [CrossRef] [Green Version]
- Fulton, J.; Brawner, J.; Huguet-Tapia, J.; Smith, K.E.; Fernandez, R.; Dufault, N.S. Six de novo assemblies from pathogenic and non-pathogenic strains of Fusarium oxysporum f. sp. niveum. PhytoFrontiers 2021, 22, 9735. [Google Scholar]
- Mehrabi, R.; Bahkali, A.H.; Abd-Elsalam, K.A.; Moslem, M.; Ben M’Barek, S.; Gohari, A.M.; Jashni, M.K.; Stergiopoulos, I.; Kema, G.H.; de Wit, P.J. Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol. Rev. 2011, 35, 542–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.; Pokhrel, A.; Coleman, J.J. The genome sequence of five genotypes of Fusarium oxysporum f. sp. vasinfectum: A resource for studies on Fusarium wilt of cotton. Mol. Plant-Microbe Interact. 2020, 33, 138–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.M.; Lukasiewicz, J.; Farrer, R.; van Dam, P.; Bertoldo, C.; Rep, M. Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon. New Phytol. 2016, 209, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Armitage, A.D.; Taylor, A.; Sobczyk, M.K.; Baxter, L.; Greenfield, B.P.; Bates, H.J.; Wilson, F.; Jackson, A.C.; Ott, S.; Harrison, R.J. Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae. Sci. Rep. 2018, 8, 13530. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.H.; Sharma, M.; Thatcher, L.F.; Azam, S.; Hane, J.K.; Sperschneider, J.; Kidd, B.N.; Anderson, J.P.; Ghosh, R.; Garg, G. Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genom. 2016, 17, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, X.; Zhao, X.; Ling, K.-S.; Levi, A.; Sun, Y.; Fan, M. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum-watermelon pathosystem. Sci. Rep. 2016, 6, 28146. [Google Scholar] [CrossRef] [PubMed]
- Kanapin, A.; Samsonova, A.; Rozhmina, T.; Bankin, M.; Logachev, A.; Samsonova, M. The Genome Sequence of Five Highly Pathogenic Isolates of Fusarium oxysporum f. sp. lini. Mol. Plant-Microbe Interact. 2020, 33, 1112–1115. [Google Scholar] [CrossRef]
- Rep, M.; Van Der Does, H.C.; Meijer, M.; Van Wijk, R.; Houterman, P.M.; Dekker, H.L.; De Koster, C.G.; Cornelissen, B.J. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol. Microbiol. 2004, 53, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Gawehns, F.; Houterman, P.; Ichou, F.A.; Michielse, C.; Hijdra, M.; Cornelissen, B.; Rep, M.; Takken, F. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death. Mol. Plant-Microbe Interact. 2014, 27, 336–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.; Houterman, P.; Schreiver, I.; Ma, L.; Amyotte, S.; Chellappan, B.; Boeren, S.; Takken, F.; Rep, M. MITEs in the promoters of effector genes allow prediction of novel virulence genes in. BMC Genom. 2013, 14, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lievens, B.; Houterman, P.M.; Rep, M. Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiol. Lett. 2009, 300, 201–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houterman, P.M.; Speijer, D.; Dekker, H.L.; de Koster, C.G.; Cornelissen, B.J.; Rep, M. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol. Plant Pathol. 2007, 8, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.; Laurence, M.; Ludowici, V.; Puno, V.; Lim, C.; Tesoriero, L.; Summerell, B.; Liew, E. Putative effector genes detected in Fusarium oxysporum from natural ecosystems of Australia. Plant Pathol. 2016, 65, 914–929. [Google Scholar] [CrossRef] [Green Version]
- Jelinski, N.A.; Broz, K.; Jonkers, W.; Ma, L.-J.; Kistler, H.C. Effector gene suites in some soil isolates of Fusarium oxysporum are not sufficient predictors of vascular wilt in tomato. Phytopathology 2017, 107, 842–851. [Google Scholar] [CrossRef]
- Deltour, P.; França, S.; Heyman, L.; Pereira, O.; Höfte, M. Comparative analysis of pathogenic and nonpathogenic Fusarium oxysporum populations associated with banana on a farm in Minas Gerais, Brazil. Plant Pathol. 2018, 67, 707–718. [Google Scholar] [CrossRef]
- Mendgen, K.; Hahn, M.; Deising, H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 1996, 34, 367–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idnurm, A.; Howlett, B.J. Pathogenicity genes of phytopathogenic fungi. Mol. Plant Pathol. 2001, 2, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Roldán, C.; Pareja-Jaime, Y.; González-Reyes, J.A.; Roncero, M.I.G. The transcription factor Con7-1 is a master regulator of morphogenesis and virulence in Fusarium oxysporum. Mol. Plant-Microbe Interact. 2015, 28, 55–68. [Google Scholar] [CrossRef]
- Michielse, C.B.; van Wijk, R.; Reijnen, L.; Manders, E.M.; Boas, S.; Olivain, C.; Alabouvette, C.; Rep, M. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog. 2009, 5, e1000637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niño-Sánchez, J.; Casado-Del Castillo, V.; Tello, V.; De Vega-Bartol, J.J.; Ramos, B.; Sukno, S.A.; Díaz Mínguez, J.M. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. Mol. Plant Pathol. 2016, 17, 1124–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rispail, N.; Di Pietro, A. Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Mol. Plant-Microbe Interact. 2009, 22, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Calero-Nieto, F.; Di Pietro, A.; Roncero, M.I.G.; Hera, C. Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol. Plant-Microbe Interact. 2007, 20, 977–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caracuel, Z.; Roncero, M.I.G.; Espeso, E.A.; González-Verdejo, C.I.; García-Maceira, F.I.; Di Pietro, A. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol. Microbiol. 2003, 48, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, A.; Roncero, M.I.G. Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol. Plant-Microbe Interact. 1998, 11, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Roldán, M.; Di Pietro, A.; Huertas-González, M.; Roncero, M. Two xylanase genes of the vascular wilt pathogen Fusarium oxysporum are differentially expressed during infection of tomato plants. Mol. Gen. Genet. MGG 1999, 261, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gómez, E.; Ruız-Roldan, M.; Di Pietro, A.; Roncero, M.; Hera, C. Role in pathogenesis of two endo-β-1, 4-xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet. Biol. 2002, 35, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Huertas-González, M.D.; Ruiz-Roldán, M.C.; Maceira, F.I.G.; Roncero, M.I.G.; Di Pietro, A. Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporum. Curr. Genet. 1999, 35, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Inoue, I.; Namiki, F.; Tsuge, T. Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell 2002, 14, 1869–1883. [Google Scholar] [CrossRef] [Green Version]
- Di Pietro, A.; García-Maceira, F.I.; Méglecz, E.; Roncero, M.I.G. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol. Microbiol. 2001, 39, 1140–1152. [Google Scholar] [CrossRef]
- Namiki, F.; Matsunaga, M.; Okuda, M.; Inoue, I.; Nishi, K.; Fujita, Y.; Tsuge, T. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact. 2001, 14, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Maceira, F.; Di Pietro, A.; Roncero, M.I.G. Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol. Plant-Microbe Interact. 2000, 13, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Hammond-Kosack, K. Responses to plant pathogens. In Biochemistry and Molecular Biology of Plants; American Society of Plant Physiology: Rockville, MD, USA, 2000; pp. 1102–1109. [Google Scholar]
- Gupta, V.K.; Tuohy, M.; Manimaran, A. Role of pathogenic genes of Fusarium oxysporum, coding cell wall degrading enzymes during wilt infection in plants. In Biotechnology of Fungal Genes; CRC Press: Boca Raton, FL, USA, 2012; p. 265. [Google Scholar]
- Collmer, A.; Keen, N.T. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 1986, 24, 383–409. [Google Scholar] [CrossRef]
- Di Pietro, A.; Roncero, M.I.G. Endopolygalacturonase from Fusarium oxysporum f. sp. lycopersici: Purification, characterization, and production during infection of tomato plants. Phytopathology 1996, 86, 1324–1330. [Google Scholar]
- Biely, P.; Vršanská, M.; Tenkanen, M.; Kluepfel, D. Endo-β-1, 4-xylanase families: Differences in catalytic properties. J. Biotechnol. 1997, 57, 151–166. [Google Scholar] [CrossRef]
- Wong, K.; Tan, L.; Saddler, J.N. Multiplicity of beta-1, 4-xylanase in microorganisms: Functions and applications. Microbiol. Rev. 1988, 52, 305. [Google Scholar] [CrossRef] [PubMed]
- Christakopoulos, P.; Nerinckx, W.; Kekos, D.; Macris, B.; Claeyssens, M. Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J. Biotechnol. 1996, 51, 181–189. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Di Pietro, A.; Roncero, M.I.G. Purification and characterization of an acidic endo-β-1,4-xylanase from the tomato vascular pathogen Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol. Lett. 1997, 148, 75–82. [Google Scholar] [CrossRef]
- Miller, S.A.; Rowe, R.C.; Riedel, R.M. Fusarium and verticillium wilts of tomato, potato, pepper, and eggplant. In Fusarium and Verticillium Wilts of Tomato, Potato, Pepper, and Eggplant; CABI: Wallingford, UK, 2008; pp. 1–3. [Google Scholar]
- Kuniyasu, K. Seed Transmission of Fusarium Wilt of Bottle Gourd, Lagenaria siceraria, Used as Rootstock of Watermelon. JARQ 1980, 14, 157–162. [Google Scholar]
- Alegbejo, M.; Lawal, A.; Chindo, P.; Banwo, O. Outbreak of basal stem rot and wilt disease of pepper in northern Nigeria. J. Plant Prot. Res. 2006, 46, 7–13. [Google Scholar]
- Kiran, K.; Linguraju, S.; Adiver, S. Effect of plant extract on Sclerotium rolfsii, the incitant of stem rot of ground nut. J. Mycol. Plant Pathol. 2006, 36, 77–79. [Google Scholar]
- Ferniah, R.S.; Daryono, B.S.; Kasiamdari, R.S.; Priyatmojo, A. Characterization and pathogenicity of Fusarium oxysporum as the Causal Agent of Fusarium wilt in chili (Capsicum annuum L.). Microbiol. Indones. 2014, 8, 5. [Google Scholar] [CrossRef]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glössl, J.; Luschnig, C.; Adam, G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, R.; Butchko, R.; Brown, D.; Moretti, A. Functional characterization, sequence comparisons and distribution of a polyketide synthase gene required for perithecial pigmentation in some Fusarium species. Food Addit. Contam. 2007, 24, 1076–1087. [Google Scholar] [CrossRef]
- Ortiz, E.; Cruz, M.; Melgarejo, L.M.; Marquínez, X.; Hoyos-Carvajal, L. Histopathological features of infections caused by Fusarium oxysporum and F. solani in purple passionfruit plants (Passiflora edulis Sims). Summa Phytopathol. 2014, 40, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R. A review of Fusarium oxysporum on its plant interaction and industrial use. J. Med. Plants Stud 2018, 6, 112–115. [Google Scholar] [CrossRef]
- Abdel-Monaim, M.F.; Ismail, M.E. The use of antioxidants to control root rot and wilt diseases of pepper. Not. Sci. Biol. 2010, 2, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Baba, Z.; Padder, S.; Bhat, M.; Wani, S.; Mohiddin, F.; Hamid, B.; Rizvi, G.; Bhat, K.; Hamid, A.; Alam, A. Incidence of Fusarium wilt of chilli (Capsicum annum L.) in Kashmir valley and its management by Trichoderma spp. Mycopath 2014, 12, 1–8. [Google Scholar]
- Attia, M.; Arafa, A.; Moustafa, M.; Mohamed, M.A. Pepper grafting, a method of controlling soilborne diseases and enhancement of fruit yield: 1. Improvement of pepper resistance to Fusarium wilt. Egypt. J. Phytopathol. 2003, 31, 151–165. [Google Scholar]
- Ragab, M.M.; Ashour, A.; Abdel-Kader, M.; El-Mohamady, R.; Abdel-Aziz, A. In vitro evaluation of some fungicides alternatives against Fusarium oxysporum the causal of wilt disease of pepper (Capsicum annum L.). Int. J. Agric. For. 2012, 2, 70–77. [Google Scholar]
- Bai, A.T.; Ruth, C.; Gopal, K.; Arunodhayam, K.; Priya, B.T.; Ramakrishna, M. Survey and Identification of Fusarium Wilt Disease in Chilli (Capsicum annuum L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1073–1078. [Google Scholar]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knogge, W. Fungal infection of plants. Plant Cell 1996, 8, 1711. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef] [PubMed]
- Zeilinger, S.; Gupta, V.K.; Dahms, T.E.; Silva, R.N.; Singh, H.B.; Upadhyay, R.S.; Gomes, E.V.; Tsui, C.K.-M.; Nayak S, C. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol. Rev. 2016, 40, 182–207. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.K.; Dean, R.A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 1995, 7, 1869–1878. [Google Scholar] [PubMed] [Green Version]
- Xu, J.-R.; Staiger, C.J.; Hamer, J.E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Natl. Acad. Sci. USA 1998, 95, 12713–12718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bölker, M. Sex and crime: Heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet. Biol. 1998, 25, 143–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjamos, E.; Beckman, C.H. Vascular Wilt Diseases of Plants: Basic Studies and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 28. [Google Scholar]
- Olivain, C.; Alabouvette, C. Colonization of tomato root by a non-pathogenic strain of Fusarium oxysporum. New Phytol. 1997, 137, 481–494. [Google Scholar] [CrossRef]
- Groenewald, S. Biology, Pathogenicity and Diversity of Fusarium oxysporum Fsp Cubense. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2005. [Google Scholar]
- Woloshuk, C.P.; Kolattukudy, P.E. Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi. Proc. Natl. Acad. Sci. USA 1986, 83, 1074–1078. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.A.; Nabi, S.U.; Bhat, N.A.; Ahmad, F. Chilli Wilt Disease: A Serious problem in Chilli cultivation in India. Indian Farmer 2018, 5, 988–991. [Google Scholar]
- Rather, T.R.; Razdan, V.; Tewari, A.; Shanaz, E.; Bhat, Z.; Hassan, M.G.; Wani, T. Integrated management of wilt complex disease in bell pepper (Capsicum annuum L.). J. Agric. Sci. 2012, 4, 141–147. [Google Scholar]
- Bowers, J.H.; Locke, J.C. Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse. Plant Dis. 2000, 84, 300–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasannath, K.; Mahendran, S.; Karunakaran, S. Control of Fusarium wilt of chilli (Capsicum annuum L.) by crude plant extracts. In Proceedings of the Tenth Annual Research Session, Eastern University, Vantharumoolai, Sri Lanka, 16 December 2011. [Google Scholar]
- Jabeen, N.; Ahmed, N.; Ghani, M.Y.; Sofi, P.A. Role of phenolic compounds in resistance to chilli wilt. Commun. Biometry Crop Sci. 2009, 4, 52–61. [Google Scholar]
- Hou, Y.; Hu, X.; Zhou, B. Hot pepper growth promotion and inhibition of fusarium wilt (Fusarium oxysporum) with different crop stalks. Afr. J. Agric. Res. 2012, 7, 5005–5011. [Google Scholar] [CrossRef]
- Suryanto, D.; Patonah, S.; Munir, E. Control of fusarium wilt of chili with chitinolytic bacteria. HAYATI J. Biosci. 2010, 17, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Fravel, D.; Olivain, C.; Alabouvette, C. Fusarium oxysporum and its biocontrol. New Phytol. 2003, 157, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Sahi, I.Y.; Khalid, A. In vitro biological control of Fusarium oxysporum—Causing wilt in Capsicum annuum. Mycopathology 2007, 5, 85–88. [Google Scholar]
- Madhavi, G.B.; Bhattiprolu, S. Evaluation of fungicides, soil amendment practices and bioagents against Fusarium solani-causal agent of wilt disease in chilli. J. Hortic. Sci. 2011, 6, 141–144. [Google Scholar]
- Bashir, M.R.; Atiq, M.; Sajid, M.; Hussain, A.; Mehmood, A. Impact of organic matter and soil types on the development of Fusarium wilt of chilli. Pak. J. Agric. Sci. 2018, 55, 749–753. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Aflatoxins contamination in chilli samples from Pakistan. Food Control 2007, 18, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Tanki, M.; Mir, N. Screening of Advance Breeding Lines of Chilli and Hot Pepper Cultivars against Fusarium Wilt. Plant Dis. Res. 1994, 9, 153–154. [Google Scholar]
- Guthrie, J.L.; Khalif, S.; Castle, A.J. An improved method for detection and quantification of chitinase activities. Can. J. Microbiol. 2005, 51, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.; Minz, D.; Kolesnik, I.; Barbul, O.; Zveibil, A.; Maymon, M.; Nitzani, Y.; Kirshner, B.; Rav-David, D.; Bilu, A. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol. 2004, 110, 361–370. [Google Scholar] [CrossRef]
- Duo-Chuan, L. Review of fungal chitinases. Mycopathologia 2006, 161, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Padilha, H.; Barbieri, R. Plant breeding of chili peppers (Capsicum, Solanaceae)—A review. Aust. J. Basic Appl. Sci. 2016, 10, 148–154. [Google Scholar]
- Keller, B.; Feuillet, C.; Messmer, M. Genetics of disease resistance. In Mechanisms of Resistance to Plant Diseases; Springer: Berlin/Heidelberg, Germany, 2000; pp. 101–160. [Google Scholar]
- Zaheer, Z.; Shafique, S.; Shafique, S.; Mehmood, T. Antifungal potential of Parthenium hysterophorus L. plant extracts against Fusarium solani. Sci. Res. Essays 2012, 7, 2049–2054. [Google Scholar]
- Amaral, J.A.; Ekins, A.; Richards, S.; Knowles, R. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture. Appl. Environ. Microbiol. 1998, 64, 520–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabeen, N.; Ahmed, N.; Khan, S.; Chattoo, M.; Sofi, P. Inheritance of resistance to Fusarium wilt (Fusarium pallidoroseum (Cooke) Sacc.) in chilli (Capsicum annuum L.). Indian J. Genet. Plant Breed. 2007, 67, 334. [Google Scholar]
- Suo, Y.; Leung, D.W. Elevation of extracellular β-1, 3-glucanase and chitinase activities in rose in response to treatment with acibenzolar-S-methyl and infection by D. rosae. J. Plant Physiol. 2001, 158, 971–976. [Google Scholar] [CrossRef]
- Huang, L.-D.; Backhouse, D. Analysis of chitinase isoenzymes in sorghum seedlings inoculated with Fusarium thapsinum or F. proliferatum. Plant Sci. 2006, 171, 539–545. [Google Scholar] [CrossRef]
- Karasuda, S.; Tanaka, S.; Kajihara, H.; Yamamoto, Y.; Koga, D. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Biosci. Biotechnol. Biochem. 2003, 67, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Chaiyawat, P.; Boonchitsirikul, C.; Lomthaisong, K.S. An investigation of a defensive chitinase against Fusarium oxysporum in pepper leaf tissue. MAEGO Int. J. Sci. Technol. 2008, 2, 150–158. [Google Scholar]
- Shafique, S.; Shafique, S.; Ahmad, A. Biochemical and molecular screening of varieties of chili plants that are resistant against Fusarium wilt infection. Eur. J. Microbiol. Immunol. 2018, 8, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.U.; Park, J.-I.; Jung, H.-J.; Kang, K.-K.; Hur, Y.; Lim, Y.-P.; Nou, I.-S. Molecular characterization of stress resistance-related chitinase genes of Brassica rapa. Plant Physiol. Biochem. 2012, 58, 106–115. [Google Scholar] [CrossRef]
- Hong, J.-K.; Hwang, B.-K. Functional characterization of PR-1 protein, β-1, 3-glucanase and chitinase genes during defense response to biotic and abiotic stresses in Capsicum annuum. Plant Pathol. J. 2005, 21, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Vallad, G.E.; Goodman, R.M. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 2004, 44, 1920–1934. [Google Scholar] [CrossRef] [Green Version]
- Buhler, N. Gene Induction During Plant-Microbe Interaction: The Role of Chitinases During Fungal Infection and the Investigation of Mycorrhiza-Induced Genes in the Model Plant M. truncatula. Ph.D. Thesis, University of Basel, Basel, Switzerland, 2007. [Google Scholar]
- Rushanaedy, I.; Jones, T.C.; Dudley, N.S.; Liao, R.J.; Agbayani, R.; Borthakur, D. Chitinase is a potential molecular biomarker for detecting resistance to Fusarium oxysporum in Acacia koa. Trop. Plant Biol. 2012, 5, 244–252. [Google Scholar] [CrossRef]
- Amian, A.A.; Papenbrock, J.; Jacobsen, H.-J.; Hassan, F. Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crop. 2011, 2, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, N.H.; Hwang, B.K. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. J. Exp. Bot. 2015, 66, 1987–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunisha, C.; Sowmya, H.; Usharani, T.; Umesha, M.; Gopalkrishna, H.; Saxena, A. Deployment of stacked antimicrobial genes in banana for stable tolerance against Fusarium oxysporum f. sp. cubense through genetic transformation. Mol. Biotechnol. 2020, 62, 8–17. [Google Scholar] [CrossRef] [PubMed]
- McGovern, R. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015, 73, 78–92. [Google Scholar] [CrossRef]
- Wally, O.; Punja, Z.K. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crop. 2010, 1, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Grover, A.; Gowthaman, R. Strategies for development of fungus-resistant transgenic plants. Curr. Sci. 2003, 84, 330–340. [Google Scholar]
- Rajam, M. Host induced silencing of fungal pathogen genes: An emerging strategy for disease control in crop plants. Cell Dev. Biol. 2012, 1, e118. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Kogel, K.H. New wind in the sails: Improving the agronomic value of crop plants through RNA i-mediated gene silencing. Plant Biotechnol. J. 2014, 12, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Weiberg, A.; Lin, F.-M.; Thomma, B.P.; Huang, H.-D.; Jin, H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef] [PubMed]
- Mcloughlin, A.G.; Walker, P.L.; Wytinck, N.; Sullivan, D.S.; Whyard, S.; Belmonte, M.F. Developing new RNA interference technologies to control fungal pathogens. Can. J. Plant Pathol. 2018, 40, 325–335. [Google Scholar] [CrossRef]
- Singh, N.; Mukherjee, S.K.; Rajam, M.V. Silencing of the ornithine decarboxylase gene of Fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to Fusarium wilt in tomato. Plant Mol. Biol. Rep. 2020, 38, 419–429. [Google Scholar] [CrossRef]
- Shanmugam, V.; Sharma, V.; Bharti, P.; Jyoti, P.; Yadav, S.K.; Aggarwal, R.; Jain, S. RNAi induced silencing of pathogenicity genes of Fusarium spp. for vascular wilt management in tomato. Ann. Microbiol. 2017, 67, 359–369. [Google Scholar] [CrossRef]
- Pareek, M.; Rajam, M.V. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants. Fungal Biol. 2017, 121, 775–784. [Google Scholar] [CrossRef] [PubMed]
Serial No. | Pathogens Associated with Fusarium Wilt Disease in Chilies | References |
---|---|---|
1. | F. solani | [21,24,25] |
2. | F. oxysporum, F. proliferatum, F. solani, F. moliniforme, F. anthophilum, Macrophomina phaseolina, Rhizoctonia solani, and Pythium aphanidermatum | [21] |
3. | F. oxysporum and F. solani | [22] |
4. | F. oxysporum | [5,23,26] |
5. | F. pallidoroseum | [27] |
SINE | LTRs | Total | Pogo | hAT | Helitron | MITEs | Impala | Others | Total | |
---|---|---|---|---|---|---|---|---|---|---|
Fo | 159,408 | 274,097 | 433,505 | 491,352 | 6,294,444 | 163,307 | 21,180 | 14,563 | 342,368 | 1,506,939 |
Fo Cons | 46.01% | 50.98% | 49.15% | 20.78% | 18.54% | 29.84% | 5.38% | 0% | 22.76% | 5.19% |
Fo Ls | 53.99% | 49.02% | 50.85% | 799.22% | 81.46% | 70.16% | 94.62% | 100% | 77.24% | 94.81% |
Serial No. | Names | Function | References |
---|---|---|---|
1 | Con7-1 | Cell division, cell wall biogenesis, and nuclear localization gene | [63] |
2 | Sge1 | Parasitic growth, regulation of SIX gene expression, and role in colonization | [64] |
3 | Ftf1 | Virulence at initial stage of disease development | [65] |
4 | Ste12 | Invasive fungal growth | [66] |
5 | XlnR | Transcriptional activators of xylanase genes | [67] |
6 | pacC | Negative regulator of virulence | [68] |
Methods | Treatments/Practices | References |
---|---|---|
Natural Extracts Antioxidants |
| [112] [18] [97] [113] [114] [115] [94] |
Biological Control |
| [116] [95] [97] [117] [118] |
Chemical Control |
| [97] [119] [111] |
Cultural Control |
Soil solarization. | [120] [119] [110] |
Serial No. | Gene Name | Function | References |
---|---|---|---|
1 | CaChi2 | Fungal cell wall degradation Releases endogenous elicitor | [137] [138] |
2 | CaBglu | Activates the plant defense | [137] |
3 | PIK1 | Key gene in resistance and plant defense stimulation | [142] |
4 | Acidic chitinase 3, acidic glucanase, metallothionein 2b, and osmotin-like PR-5 | Activation of defense | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaheen, N.; Khan, U.M.; Azhar, M.T.; Tan, D.K.Y.; Atif, R.M.; Israr, M.; Yang, S.-H.; Chung, G.; Rana, I.A. Genetics and Genomics of Fusarium Wilt of Chilies: A Review. Agronomy 2021, 11, 2162. https://doi.org/10.3390/agronomy11112162
Shaheen N, Khan UM, Azhar MT, Tan DKY, Atif RM, Israr M, Yang S-H, Chung G, Rana IA. Genetics and Genomics of Fusarium Wilt of Chilies: A Review. Agronomy. 2021; 11(11):2162. https://doi.org/10.3390/agronomy11112162
Chicago/Turabian StyleShaheen, Nabeel, Uzair Muhammad Khan, Muhammad Tehseen Azhar, Daniel K. Y. Tan, Rana Muhammad Atif, Mahwish Israr, Seung-Hwan Yang, Gyuhwa Chung, and Iqrar Ahmad Rana. 2021. "Genetics and Genomics of Fusarium Wilt of Chilies: A Review" Agronomy 11, no. 11: 2162. https://doi.org/10.3390/agronomy11112162
APA StyleShaheen, N., Khan, U. M., Azhar, M. T., Tan, D. K. Y., Atif, R. M., Israr, M., Yang, S.-H., Chung, G., & Rana, I. A. (2021). Genetics and Genomics of Fusarium Wilt of Chilies: A Review. Agronomy, 11(11), 2162. https://doi.org/10.3390/agronomy11112162