Effects of Genotype and Climatic Conditions on the Oil Content and Its Fatty Acids Composition of Carthamus tinctorius L. Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experiments Conducting
2.2. Measurements Performed
2.2.1. Oil Extraction
- W1 is the initial weight of ground seed
- W2 is the weight of extracted oil.
2.2.2. Determination of Fatty Acid Composition (GC Analysis)
2.3. Statistical Analysis
3. Results
3.1. Climatic Parameters of the Experimentation Period
3.2. Oil Content
3.3. Fatty Acids Composition Determined with GC Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamdan, Y.A.S.; García-Moreno, M.J.; Redondo-Nevado, J.; Velasco, L.; Pérez-Vich, B. Development and characterization of genomic microsatellite markers in safflower (Carthamus tinctorius L.). Plant Breed. 2011, 130, 237241. [Google Scholar] [CrossRef]
- Talebi, R.; Nosrati, S.; Etminan, A.; Naji, A.M. Genetic diversity and population structure analysis of landrace and improved safflower (Cartamus tinctorious L.) germplasm using arbitrary functional gene-based molecular markers. Biotechnol. Biotechnol. Equip. 2018, 32, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.X.; Wu, Y.Y.; Tang, X.H.; Hu, J.; Chen, J.; Wu, Q.H.; Pei, J. Safflower’s origin and changes of producing areas. China J. Chin. Mater. Med. 2017, 42, 2219–2222. [Google Scholar] [CrossRef]
- Li, D.; Mündel, H.H. Safflower (Carthamus tinctorius L.) Promoting the Conservation and Use of Underutilized and Neglected Crops; Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute: Rome, Italy, 1996; 83p. [Google Scholar]
- Zemour, K.; Adda, A.; Zebib, B.; Merah, O. Le carthame (Carthamus tinctorius L.): Une oléagineuse qui n’a pas dit son dernier mot en Algérie. Agrobiologia 2020, 10, 2211–2219. [Google Scholar]
- Du, C.; Hou, J.; Wang, C.; Zhang, M.; Zheng, Y.; Yang, G.; Hu, Y. Effects of safflower yellow on cholesterol levels in serum and brain tissue of APP/PS1 mice. Metab. Brain Dis. 2021, 36, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.S.; Mirmohamadsadeghi, S.; Karimi, K. Biorefinery development based on whole safflower plant. Renew. Energy 2020, 152, 399–408. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Kazemivash, N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin. J. Int. Med. 2013, 19, 153–159. [Google Scholar] [CrossRef]
- Khalid, N.; Khan, R.S.; Hussain, M.I.; Farooq, M.; Ahmad, A.; Ahmed, I. Comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient—A review. Trends Food Sci. Technol. 2017, 66, 176–186. [Google Scholar] [CrossRef]
- Labdelli, A.; Zemour, K.; Simon, V.; Cerny, M.; Adda, A.; Merah, O. Pistacia atlantica Desf., a Source of Healthy Vegetable Oil. Appl. Sci. 2019, 12, 2552. [Google Scholar] [CrossRef] [Green Version]
- Sayed Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Cerny, M.; Kanaan, H.; Chokr, A.; Merah, O. Fennel seed oil and by-products characterization and their potential applications. Ind. Crops Prod. 2018, 111, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Roche, J.; Mouloungui, Z.; Cerny, M.; Merah, O. Effect of sowing dates on fatty acids and phytostérols patterns of Carthamus tinctorius L. Appl. Sci. 2019, 9, 2839. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, J.; Rio, M.D.; Haro, A.D. Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 1993, 69, 115–122. [Google Scholar] [CrossRef]
- Velasco, L.; Fernández-Martínez, J. Breeding for oil quality in Safflower. In Proceedings of the 5th International Safflower Conference, Williston, ND, USA, 23–27 July 2001; North Dakota State University: Fargo, ND, USA, 2001; pp. 133–137. [Google Scholar]
- Zemour, K.; Labdelli, A.; Adda, A.; Dellal, A.; Talou, T.; Merah, O. Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus tinctorius L.). Cosmetics 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Ben Moumen, A.; Mansouri, F.; Richard, G.; Abid, M.; Fauconnier, M.L.; Sindic, M.; ElAmrani, A.; Caid, H.S. Biochemical characterisation of the seed oils of four safflower (Carthamus tinctorius) varieties grown in north-eastern of Morocco. Int. J. Food Sci. Technol. 2014, 50, 804–810. [Google Scholar] [CrossRef]
- Lovelli, S.; Perniola, M.; Ferrara, A.; Di Tommaso, T. Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agric. Water Manag. 2007, 92, 73–80. [Google Scholar] [CrossRef]
- Hussain, M.I.; Lyra, D.A.; Farooq, M.; Nikoloudakis, N.; Khalid, N. Salt and drought stresses in safflower: A review. Agron. Sustain. Dev. 2015, 36, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, S.L.; Nigam, S.N.; Jambunathan, R.; Sahrawate, K.L.; Nagabhushanam, G.V.S.; Raghunath, K. Effects of genotypes and environments on oil content and oil quality parameters and their correlations in peanut (Arachishypogaea L.). Peanut Sci. 1993, 20, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, N.G.; Aguirrezábal, L.A.N.; Andrade, F.H.; Cantarero, M.G. Modeling the response of fatty acid composition to temperature in a traditional sunflower hybrid. J. Agron. 2006, 98, 451–461. [Google Scholar] [CrossRef]
- Roche, J.; Alignan, M.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Merah, O. Sterol concentration and distribution in sunflower seeds (Helianthus annuus L.) during seed development. Food Chem. 2010, 119, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
- Whaley, R.; Eskandari, M. Genotypic main effect and genotype-by-environment interaction effect on seed protein concentration and yield in food-grade soybeans (Glycine max (L.) Merrill). Euphytica 2019, 215, 1–17. [Google Scholar] [CrossRef]
- Navas-López, J.F.; Cano, J.; de la Rosa, R.; Velasco, L.; León, L. Genotype by environment interaction for oil quality components in olive tree. Eur. J. Agric. 2020, 119, 126115. [Google Scholar] [CrossRef]
- Samanci, B.; Özkaynak, Q. Effect of planting date on seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius L.) cultivars grown in the mediterranean region of Turkey. J. Agric. Crop Sci. 2003, 189, 359–360. [Google Scholar] [CrossRef]
- Ashrafi, E.; Razmjoo, K. Effect of irrigation regimes on oil content and composition of safflower (Carthamus tinctorius L.) cultivars. J. Am. Oil Chem. Soc. 2010, 87, 499–506. [Google Scholar] [CrossRef]
- Zraibi, L.; Kajeiou, M.; Caid, H.S.; Nabloussi, A. Safflower evaluation under contrasted environment conditions and selection of promising genotypes. J. Agric. Sci. Technol. 2014, 4, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Flemmer, A.C.; Franchini, M.C.; Lindström, L.I. Description of safflower (Carthamus tinctorius) phenological growth stages according to the extended BBCH scale. Ann. Appl. Biol. 2014, 2, 331–339. [Google Scholar] [CrossRef]
- Roche, J.; Mouloungui, Z.; Cerny, M.; Merah, O. Fatty acid and phytosterol accumulation during seed development in three oilseed species. Int. J. Food. Sci. Technol. 2016, 51, 1820–1826. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.; Jeong, Y.; Kim, S.; Luitel, B.P.; Ko, H.; Hur, O.; Yoon, M.; Rhee, J.; Baek, H.; Ryu, K. Fatty acid composition and antioxidant activity in safflower germplasm collected from South Asia and Africa. J. Korean Soc. Int. Agric. 2016, 28, 342–351. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind. Crops Prod. 2008, 27, 75–85. [Google Scholar] [CrossRef]
- Roche, J.; Alignan, M.; Bouniols, A.; Jane Roche, J.; Alignan, M.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Vear, F.; Merah, O. Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions. Food Chem. 2010, 121, 990–995. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, U.; Santonoceto, C.; Giuffrè, A.M.; Sortino, O.; Gresta, F.; Abbate, V. Yield performance and grain lipid composition of standard and oleic sunflower as affected by water supply. Filed Crops Res. 2010, 119, 145–153. [Google Scholar] [CrossRef]
- Golkar, P.; Arzani, A.; Rezaei, A.M. Genetic analysis of oil content and fatty acid composition in safflower (Carthamus tinctorius L.). J. Am. Oil. Chem. Soc. 2011, 88, 975–982. [Google Scholar] [CrossRef]
- Sung, J.S.; Ko, H.C.; Hur, O.S.; Kim, S.G.; Lee, J.R.; Luitel, B.P.; Lee, Y.H.; Jang, Y.S.; Gwag, J.G.; Baek, H.J.; et al. Morphological and oil compositions in safflower (Carthamus tinctorius L.) germplasm of different geographical groups. J. Korean Soc. Int. Agric. 2016, 28, 84–91. [Google Scholar] [CrossRef]
- El-Lattief, E.A. Evaluation of 25 safflower genotypes for seed and oil yields under arid environment in upper Egypt. Asia J. Crop Sci. 2012, 4, 72–79. [Google Scholar] [CrossRef]
- Kizil, S.; Çakmak, O.; Kirici, S.; İnan, M. A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnol. Biotechnol. Equip. 2008, 22, 947–953. [Google Scholar] [CrossRef]
- Istanbulluoglu, A.; Gocmen, E.; Gezer, E.; Pasa, C.; Konukcu, F. Effects of water stress at different development stages on yield and water productivity of winter and summer safflower (Carthamus tinctorius L.). Agric. Water Manag. 2009, 96, 1429–1434. [Google Scholar] [CrossRef]
- Fernández-Cuesta, Á.; Velasco, L.; Ruiz-Méndez, M.V. Novel safflower oil with high γ-tocopherol content has a high oxidative stability. Eur. J. Lipid Sci. Technol. 2014, 116, 832–836. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, F.M.; Eagles, H.A.; Norton, R.M.; Salisbury, S.A.; Nicolas, M. Environmental effects on seed composition of Victorian canola. Aust. J. Exp. Agric. 2000, 40, 679–685. [Google Scholar] [CrossRef]
- Quadir, G.; Ahmad, S.; Hassan, F.; Cheema, M.A. Oil and fatty acid accumulation in sunflower as influenced by temperature variation. Pak. J. Bot. 2006, 38, 1137–1147. [Google Scholar]
- Oraki, H.; Alahdadi, I.; Khajani, F.P. Influence of water deficit and genotype on protein, oil contents and some physical characteristics of sunflower seeds. Afr. J. Agric. Res. 2011, 6, 1246–1250. [Google Scholar] [CrossRef]
- Zahedi, H.; Noormohammadi, G.; Rad, A.H.S.; Habibi, D.; Boojar, M.M.A. The effects of zeolite and foliar application of Selenium on growth, yield and yield components of three canola cultivars under drought stress. World Appl. Sci. J. 2009, 7, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Kafi, M.; Rostami, M. Yield characteristics and oil content of three safflower (Carthamus tinctorius L.) cultivars under drought in reproductive stage and irrigation with saline water. Iran Agron. Res. 2008, 5, 121–131. [Google Scholar]
- Koocheki, A.; Ebrahimian, E.; Seyyedi, S.M. How irrigation rounds and mother corm size control saffron yield, quality, daughter corms behavior and phosphorus uptake. Sci. Hortic. 2016, 213, 132–143. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, A.; Kumari, S.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; Hanumantharao, B.; Nair, M.R.; Vara Prasad, P.V.; Nayyar, H. Drought or/and Heat-stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields and Nutritional Quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef] [Green Version]
- La Bella, S.; Tuttolomondo, T.; Lazzeri, L.; Matteo, R.; Leto, C.; Licata, M. An Agronomic Evaluation of New Safflower (Carthamus tinctorius L.) Germplasm for Seed and Oil Yields under Mediterranean Climate Conditions. Agronomy 2019, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Yassein, A.A.M.; Khalaf, A.E.A.; Mohdaly, A.A.A.; Roby, M.H.H. Selections of donors depending on agronomic traits, seed yield components, and fatty acid profile for genetic improvement of Carthamus using stepwise multiple regression. OCL 2020, 27, 66. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Özbek, Z.A. Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. J. Food Meas. Charact. 2018, 12, 2313–2323. [Google Scholar] [CrossRef]
- Taha, E.; Matthäus, B. Study of safflower varieties cultivated under southern Egypt conditions for seeds and flowers. J. Biol. Sci. 2018, 18, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.D.; Richardson, G.R.; Fisher, A.V. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Pott, D.M.; Durán-Soria, S.; Osorio, S.; Vallarino, J.G. Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits. CABI Agric. Biosci. 2021, 2, 1. [Google Scholar] [CrossRef]
- Mani, V.; Lee, S.K.; Yeo, Y.; Hahn, B.S. A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower. Metabolites 2020, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Uitterhaegen, E.; Nguyen, Q.H.; Sampaio, K.A.; Stevens, C.V.; Merah, O.; Talou, T.; Evon, P. Extraction of vegetable oil from coriander seeds originating from France using a twin-screw extruder: Feasibility study and potential uses of the obtained press cakes. J. Am. Oil Chem. Soc. 2015, 92, 1219–1233. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.H.; Talou, T.; Evon, P.; Cerny, M.; Merah, O. Fatty acid composition and oil content during coriander fruit development. Food Chem. 2020, 326, 127034. [Google Scholar] [CrossRef] [PubMed]
- Flagella, Z.; Rotunno, T.; Tarantino Di Caterina, R.; De Caro, A. Changes in seed yield and oilfatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur. J. Agron. 2002, 17, 221–230. [Google Scholar] [CrossRef]
- Khoufi, S.; Khamassi, K.; Da Silva, J.A.T.; Rezgui, S.; Ben Jeddi, F. Watering regime affects oil content and fatty acid composition of six sunflower lines. J. New Sci. 2014, 7, 1–9. [Google Scholar]
- Garcés, R.; Mancha, M. In vitro oleatedesaturase in developing sunflower seeds. Phytochemistry 1991, 30, 2127–2130. [Google Scholar] [CrossRef]
- Esteban, A.B.; Sicardo, M.D.; Mancha, M.; Martinez-Rivas, J.M. Growth temperature control of the linoleic acid content in safflower (Carthamus tinctorius) seed oil. J. Agric. Food Chem. 2004, 52, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Rolletschek, H.; Borisjuk, L.; Sanchez-Garcia, A.; Gotor, C.; Romero, L.C.; Martinez-Rivas, J.M.; Mancha, M. Temperature dependent endogenous oxygen concentration regulates microsomal oleatedesaturase in developing sunflower seeds. J. Exp. Bot. 2007, 58, 3171–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Rivas, J.M.; Sanchez-García, A.; Sicardo, M.D.; García-Díaz, M.T.; Mancha, M. Oxygen-independent temperature regulation of the microsomal oleatedesaturase (FAD2) activity in developing sunflower (Helianthus annuus) seeds. Physiol. Plant. 2003, 117, 179–185. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Kinoshita, M.; Inaba, M.; Suzuki, I.; Murata, N. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol. 2001, 125, 1842–1853. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wang, F.; Liu, L.N.; Sui, N. Responses of Membranes and the Photosynthetic Apparatus to Salt Stress in Cyanobacteria. Front. Plant Sci. 2020, 11, 713. [Google Scholar] [CrossRef]
- Gao, J.; Hao, X.; Thelen, K.D.; Robertson, G.P. Agronomic management system and precipitation effects on soybean oil and fatty acid profiles. Crop Sci. 2009, 49, 1049–1057. [Google Scholar] [CrossRef]
- Lacombe, S.; Souyris, I.; Bervillé, A.J. An insertion of oleatedesaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil. Mol. Genet. Genom. 2009, 281, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Thoday-Kennedy, E.; Daetwyler, H.D.; Hayden, M.; Spangenberg, G.; Kant, S. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance. PLoS ONE 2021, 16, e0254908. [Google Scholar] [CrossRef] [PubMed]
- Kumari, V.V.; Roy, A.; Vijayan, R.; Banerjee, P.; Verma, V.C.; Nalia, A.; Pramanik, M.; Mukherjee, B.; Ghosh, A.; Reja, M.H.; et al. Drought and heat stress in cool-season food legumes in sub-tropical regions: Consequences, adaptation, and mitigation strategies. Plants 2021, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Gholami, M.; Sabaghnia, N.; Nouraein, M.; Shekari, F.; Janmohammadi, M. Cluster analysis of some safflower genotypes using a number of agronomic characteristics. J. Crop Breed. 2018, 10, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Mousavi Ojaq, S.M.; Mozafari, H.; Jabbari, H.; Sani, B. Evaluation of yield of safflower (Carthamus tinctorius L.) genotypes under semi-arid conditions. Plant Genet. Resour. Charact. Util. 2020, 18, 270–277. [Google Scholar] [CrossRef]
Accession | Origin | Flower Colour | Leaf Aspect | Precocity of Maturity |
---|---|---|---|---|
Touggourt | Algeria | Y,R | Without thorns | Late |
Gila | France | W,Y,R | With thorns | Early |
Halab | Syria | Y,R | With thorns | Early |
2014–2015 | 2015–2016 | 2016–2017 | ||||
---|---|---|---|---|---|---|
Month | T °C Mean | Rainfall (mm) | T °C Mean | Rainfall (mm) | T °C Mean | Rainfall (mm) |
September | 22.88 | 75 | 21.39 | 18.7 | 21.37 | 4 |
October | 18.07 | 14 | 17.14 | 83.9 | 18.52 | 8 |
November | 12.22 | 50.1 | 10.29 | 26.2 | 9.63 | 53.8 |
December | 6.27 | 94.8 | 8.48 | 0 | 6.55 | 30.1 |
January | 6.2 | 50.7 | 8.52 | 39.6 | 3.98 | 201.8 |
February | 4.91 | 121.2 | 8.64 | 62.7 | 9.03 | 9.8 |
March | 8.7 | 7.7 | 8 | 88.3 | 10.05 | 4 |
April | 15.3 | 0.0 | 12.8 | 24.6 | 13.0 | 6.8 |
May | 19.2 | 12.7 | 16.4 | 26.7 | 19.8 | 26.0 |
June | 21.1 | 7.4 | 21.7 | 6.5 | 25.2 | 0.4 |
July | 27.0 | 0.0 | 26.7 | 0.2 | 26.8 | 1.0 |
August | 27.0 | 12.0 | 25.6 | 0.0 | 27.7 | 4.8 |
Mean | 15.7 | -- | 15.5 | -- | 16 | -- |
Total | -- | 445.6 | -- | 377.4 | -- | 350.5 |
Factor | Df | Oil Content | C18:2n6 | C18:1n9 | C18:0 | C16:0 | C18:1n7 | C20:0 | C22:0 | UFA | SFA | UFA/SFA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accession | 2 | 5.87 * | 267 *** | 497.5 *** | 24.0 *** | 17 *** | 11.5 *** | 41.44 *** | 7.00 *** | 29 *** | 23 *** | 25 *** |
Year | 2 | 3.35 ns | 1293 *** | 2691.9 *** | 220.9 *** | 443 *** | 38.4 *** | 127.44 *** | 679.15 *** | 164 *** | 88 *** | 95 *** |
Accession*Year | 4 | 0.68 ns | 641 *** | 971 *** | 145.6 *** | 31 *** | 38.1 *** | 22.11 *** | 7.92 *** | 36 *** | 25 *** | 27 *** |
Year | 2015 | 2016 | 2017 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Accession | Halab | Gila | Touggourt | Halab | Gila | Touggourt | Halab | Gila | Touggourt | |
Oil Content (%) | 28.4 ± 0.17 a | 25.1 ± 3.02 a | 23.1 ± 1.81 a | 27.8 ± 0.90 a | 27.5 ± 0.26 a | 26.4 ± 1.13 a | 26.9 ± 0.09 b | 23.9 ± 0.12 a | 22.8 ± 0.60 a | |
Saturated Fatty Acids (%) | C16:0 C18:0 C20:0 C22:0 | 6.9 ± 0.0 a | 7.0 ± 0.02 b | 7.15 ± 0.00 c | 7.0 ± 0.03 a | 7.0 ± 0.01 a | 7.0 ± 0.01 a | 6.7 ± 0.02 a | 6.6 ± 0.03 b | 6.7 ± 0.00 a |
2.2 ± 0.01 c | 2.1 ± 0.02 b | 1.9 ± 0.00 a | 1.9 ± 0.02 a | 1.8 ± 0.01 b | 1.9 ± 0.01 a | 1.9 ± 0.00 a | 1.9 ± 0.00 a | 2.1 ± 0.00 b | ||
0.33 ± 0.01 a | 0.32 ± 0.0 a | 0.28 ± 0.0 b | 0.33 ± 0.0 b | 0.32 ± 0.0 a | 0.31 ± 0.0 a | 0.36 ± 0.0 a | 0.33 ± 0.0 b | 0.36 ± 0.0 a | ||
0.22 ± 0.0 a | 0.21 ± 0.0 a | 0.23 ± 0.0 a | 0.24 ± 0.0 a | 0.25 ± 0.0 a | 0.23 ± 0.0 a | 0.44 ± 0.0 b | 0.38 ± 0.0 a | 0.41 ± 0.0 a | ||
Total SFA | 9.58 ± 0.02 a | 9.63 ± 0.01 b | 9.56 ± 0.0 a | 9.49 ± 0.03 a | 9.35 ± 0.02 b | 9.43 ± 0.01 a | 9.4 ± 0.03 b | 9.2 ± 0.03 a | 9.5 ± 0.01 c | |
Monounsaturated Fatty Acids (%) | C18:1n9 | 12.5 ± 0.04 c | 12.0 ± 0.02 b | 10.2 ± 0.02 a | 12.9 ± 0.09 c | 12.3 ± 0.03 b | 10.7 ± 0.07 a | 12.6 ± 0.01 a | 14.3 ± 0.00 b | 14.7 ± 0.01 c |
C18:1n7 | 0.78 ± 0.0 a | 0.8 ± 0.0 b | 0.83 ± 0.0 c | 0.84 ± 0.0 c | 0.81 ± 0.0 b | 0.77 ± 0.0 a | 0.79 ± 0.0 c | 0.77 ± 0.0 b | 0.76 ± 0.0 a | |
Polyounsaturated Fatty Acids (%) | C18: 2n6 | 77.1 ± 0.06 a | 77.5 ± 0.02 b | 79.3 ± 0.01 c | 76.7 ± 0.1 a | 77.5 ± 0.03 b | 79.1 ± 0.09 c | 77.2 ± 0.03 c | 75.7 ± 0.00 b | 75.0 ± 0.02 a |
Total UFA | 90.38 ± 0.03 a | 90.29 ± 0.01 b | 90.36 ± 0.01 a | 90.42 ± 0.03 b | 90.58 ± 0.02 a | 90.51 ± 0.01 a | 90.59 ± 0.03 b | 90.81 ± 0.00 c | 90.47 ± 0.01 a | |
UFA/SFA | 9.4 ± 0.02 a | 9.4 ± 0.01 b | 9.4 ± 0.0 a | 9.5 ± 0.03 a | 9.7 ± 0.02 b | 9.6 ± 0.01 a | 9.6 ± 0.03 b | 9.8 ± 0.04 a | 9.5 ± 0.01 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemour, K.; Adda, A.; Labdelli, A.; Dellal, A.; Cerny, M.; Merah, O. Effects of Genotype and Climatic Conditions on the Oil Content and Its Fatty Acids Composition of Carthamus tinctorius L. Seeds. Agronomy 2021, 11, 2048. https://doi.org/10.3390/agronomy11102048
Zemour K, Adda A, Labdelli A, Dellal A, Cerny M, Merah O. Effects of Genotype and Climatic Conditions on the Oil Content and Its Fatty Acids Composition of Carthamus tinctorius L. Seeds. Agronomy. 2021; 11(10):2048. https://doi.org/10.3390/agronomy11102048
Chicago/Turabian StyleZemour, Kamel, Ahmed Adda, Amina Labdelli, Abdelkader Dellal, Muriel Cerny, and Othmane Merah. 2021. "Effects of Genotype and Climatic Conditions on the Oil Content and Its Fatty Acids Composition of Carthamus tinctorius L. Seeds" Agronomy 11, no. 10: 2048. https://doi.org/10.3390/agronomy11102048
APA StyleZemour, K., Adda, A., Labdelli, A., Dellal, A., Cerny, M., & Merah, O. (2021). Effects of Genotype and Climatic Conditions on the Oil Content and Its Fatty Acids Composition of Carthamus tinctorius L. Seeds. Agronomy, 11(10), 2048. https://doi.org/10.3390/agronomy11102048