CO2 Emissions from Soil Under Fodder Maize Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Weather Conditions
2.3. Measurement Descriptions
2.4. Data Analysis
3. Results
3.1. Mineral Nitrogen Soil Content
3.2. CO2-C Soil Emissions
4. Discussion
4.1. Soil Organic Carbon Content
4.2. Relationship Between CO2-C Soil Emissions and Temperature and Soil Moisture
4.3. CO2-C Soil Emissions and Mineral Nitrogen Soil Content
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statista. Worldwide Production of Grain in 2018. Available online: https://www.statista.com/statistics/263977/world-grain-production-by-type/ (accessed on 4 June 2020).
- Agriculture, Forestry and Fisheries; Eurostat. Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/ (accessed on 4 June 2020).
- Rozkrut, D. Statistical Yearbook of Agriculture; Statistics Poland: Warsaw, Poland, 2020; pp. 1–439. (In Polish) [Google Scholar]
- Ranum, P.; Pena-Rosas, J.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N.Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Księżak, J.; Kubińska, E.; Rozakis, S. Evaluation of sustainability of Maze cultivation in Poland. A prospect theory—PROMETHEE approach. Sustainability 2018, 1011, 426363. [Google Scholar]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Chem. Erde 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Don, A.; Scholten, T.; Shulze, E.D. Conversion of cropland into grassland: Implication for soil organic carbon stocks in two soils with different texture. J. Plant Nutr. Soil Sci. 2009, 172, 53–62. [Google Scholar] [CrossRef]
- Ding, F.; Hu, Y.L.; Li, L.J.; Li, A.; Shi, S.; Lian, P.Y.; Zeng, D.H. Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant Soil 2013, 373, 1–2. [Google Scholar] [CrossRef]
- Tang, S.; Guo, J.; Li, S.; Li, J.; Xie, S.; Zhai, X.; Wang, C.; Zhang, Y.; Wang, K. Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil Tillage Res. 2019, 185, 29–35. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.T.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Sainju, U.; Jabro, J.D.; William, B.S. Soil carbon dioxide emissions and carbon content as affected by irrigation, tillage, cropping system and nitrogen fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Kaisi, M.M.; Yin, X. Tillage and Crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation. J. Environ. Qual. 2005, 342, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Skowrońska, M.; Szczepaniak, J. Impact of reduced tillage on emission from soil under maize cultivation. Soil Tillage Res. 2018, 180, 21–28. [Google Scholar] [CrossRef]
- Zhai, L.; Liu, H.; Zhang, J.; Huang, J.; Wang, B. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agric. Sci. China 2011, 1011, 1748–1757. [Google Scholar] [CrossRef]
- Norberg, L.; Berglund, Ö.; Berglund, K. Seasonal CO2 emission under different cropping systems on Histosols in Southern Sweden. Geoderma Reg. 2016, 2016. 7, 338–345. [Google Scholar] [CrossRef]
- Dhadli, H.S.; Brar, B.S.; Black, T.A. Influence of crop growth and weather variables on soil CO2 emissions in a maize-wheat cropping system. Agric. Res. J. 2015, 52, 28–34. [Google Scholar] [CrossRef]
- VIEP (Voivodeship Inspectorate of Environmental Protection). Environmental State in the Masovian Voivodeship in 2012; Environment Report; VIEP: Warsaw, Poland, 2013; pp. 1–173. (In Polish) [Google Scholar]
- Burton, D.L.; Zebarth, B.J.; Gillam, K.M.; MacLeod, J.A. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can. J. Soil Sci. 2008, 88, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Pareja-Sánchez, E.; Cantero-Martinez, C.; Alvaro-Fuentes, J.; Plaza-Bonilla, D. Tillage and nitrogen fertilization in irrigated maize: Key practices to reduce soil CO2 and CH4 emission. Soil Tillage Res. 2019, 191, 29–36. [Google Scholar] [CrossRef]
- Aslam, T.; Choudhary, M.A.; Saggar, S. Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. Agric. Ecosyst. Environ. 2000, 77, 257–262. [Google Scholar] [CrossRef]
- Sosulski, T.; Korc, M. Effects of different mineral and organic fertilization on the content of nitrogen and carbon in soil organic matter fractions. Ecol. Chem. Eng. A 2011, 18, 601–609. [Google Scholar]
- Sosulski, T.; Szara, E.; Stępień, W.; Szymańska, M. Nitrous oxide emissions from the soil under different fertilization systems on a long-term experiment. Plant Soil Environ. 2014, 60, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killy, D.; Maratha, P.; Williams, M.; et al. Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.A.A.; Haddix, M.L.; Binder, D.L.; Walters, D.T.; Dobermann, A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Chang. Biol. 2007, 13, 1972–1988. [Google Scholar] [CrossRef]
- Amos, B.; Arkebauer, T.J.; Doran, J.W. Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Sci. Soc. Am. J. 2005, 69, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Bogužas, V.; Sinkevičienė, A.; Romaneckas, K.; Steponavičienė, V.; Skinulienė, L.; Butkevičienė, L.M. The impact of tillage intensity and meteorological conditions on soil temperature, moisture content and CO2 efflux in maize and spring barley cultivation. Zemdirbyste 2018, 105, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Zhang, J. Effects of soil moisture, temperature, and nitrogen fertilization on soil respiration and nitrous oxide emission during maize growth period in northeast China. Acta Agric. Scand. B 2009, 59, 97–106. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Y.; Cai, Z.; Yagi, K.; Zheng, X. Soil Respiration under Maize Crops: Effects of Water, Temperature, and Nitrogen Fertilization. Soil Biol. Biochem. 2007, 71, 944–951. [Google Scholar] [CrossRef]
- Ding, W.; Meng, L.; Yin, Y.; Cai, Z.; Zheng, X. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biol. Biochem. 2007, 39, 669–679. [Google Scholar] [CrossRef]
- Francioni, M.; Trozzo, L.; Toderi, M.; Baldoni, N.; Allegrezza, M.; Tesei, G.; Kishimoto-Mo, A.W.; Foresi, L.; Santilocchi, R.; D’Ottavio, P. Soil respiration dynamics in Bromus erectus-dominated grasslands under different management intensities. Agriculture 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Flessa, H.; Ludwig, B.; Heil, B.; Merbah, W. The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance. J. Plant Nutr. Soil Sci. 2000, 163, 157–163. [Google Scholar] [CrossRef]
- Rochette, P.; Flanagan, L.B.; Gregorich, E.G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci. Soc. Am. J. 1999, 63, 1207–1213. [Google Scholar] [CrossRef]
- Dencso, M.; Gelybó, G.; Kása, I.; Pokovai, K.; Potyó, I.; Horel, Á.; Birkás, M.; Takács, T.; Tóth, E. Effect of different management systems on soil CO2 emission and plant growth in a maize field. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April. Geophys. Res. Abstr. 2017, 19, 7727. [Google Scholar]
- Sosulski, T.; Szara, E.; Stępień, W.; Rutkowska, B. The influence of mineral fertilization and legumes cultivation on the N2O soil emissions. Plant Soil Environ. 2015, 12, 529–536. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Szymańska, M. Impact of liming management on N2O emissions from arable soils in three long-term fertilization experiments in Central Poland. Fresenius Environ. Bull. 2016, 25, 6111–6119. [Google Scholar]
Statistics | CO2 Soil Emissions (mg C m−2 h−1) | Soil Content | |
---|---|---|---|
NO3−-N | NH4+-N | ||
mg N kg−1 | |||
Mean ± SD | 84.58 ± 72.37 | 9.01 ± 5.01 | 6.70 ± 3.67 |
Median | 58.01 | 10.15 | 6.78 |
Min–max | 3.63–302.31 | 1.26–17.37 | 1.28–14.17 |
Parameter | Ta | WFPS | NO3−-N | NH4+-N |
---|---|---|---|---|
CO2-C | 0.52 | 0.36 | 0.64 | −0.67 |
Ta | 1.00 | 0.24 | 0.45 | −0.56 |
WFPS | 0.24 | 1.00 | 0.53 | −0,40 |
NO3−-N | 0.45 | 0.53 | 1.00 | −0.60 |
NH4+-N | −0.56 | −0.40 | −0.60 | 1.00 |
Maize Stages | Date | CO2 Soil Emissions | Min–Max | Variation Coefficient (V%) | Fractals 25, 75 | |
---|---|---|---|---|---|---|
Mean ± SD | Median | |||||
kg C ha−1 day−1 | ||||||
Emergence | 29.04–13.05 | 12.8 ± 2.66 | 12.5 | 9.22–17.99 | 20.76 | 10.5–15.0 |
Leaves Development Stages | 14.05–16.06 | 30.8 ± 12.3 | 31.0 | 11.66–58.83 | 39.87 | 21.9–35.7 |
Fast Development Stages | 17.06–14.07 | 45.8 ± 13.2 | 49.2 | 14.71–61.94 | 28.84 | 41.6–56.4 |
Pre-reproductive Stages | 15.07–11.08 | 14.9 ± 1.9 | 14.7 | 10.93–18.21 | 12.93 | 13.3–16.6 |
Reproductive Stages | 12.08–08.09 | 8.8 ± 2.4 | 9.2 | 3.91–12.70 | 26.59 | 7.1–10.7 |
Post-harvest Period | 09.09–30.09 | 4.9 ± 1.0 | 5.0 | 2.90–5.99 | 20.92 | 4.1–5.9 |
Maize Stages | Date | Average Emissions ± SD | Min–Max | Variation Coefficient (V%) |
---|---|---|---|---|
kg CO2-C ha−1 | ||||
Emergence | 29.04–13.05 | 282.3 ± 18.3 | 263.33–299.86 | 6.49 |
Leaves Development Stages | 14.05–16.06 | 1046.6 ± 44.7 | 999.84–1088.91 | 4.27 |
Fast Development Stages | 17.06–14.07 | 1282.5 ± 145.0 | 1128.66–1416.76 | 11.31 |
Pre-reproductive Stages | 15.07–11.08 | 416.5 ± 62.2 | 344.94–457.92 | 14.94 |
Reproductive Stages | 12.08–08.09 | 247.4 ± 21.6 | 222.86–263.69 | 8.75 |
Post-harvest Period | 09.09–30.09 | 106.8 ± 10.4 | 100.64–118.84 | 9.75 |
Sowing-harvest | 29.04–09.30 | 3214.9 ± 233.2 | 2957.0–3411.1 | 7.25 |
Study Period | 22.04–30.09 | 3382.1 ± 206.3 | 3155.83–2559.6 | 6.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosulski, T.; Szymańska, M.; Szara, E. CO2 Emissions from Soil Under Fodder Maize Cultivation. Agronomy 2020, 10, 1087. https://doi.org/10.3390/agronomy10081087
Sosulski T, Szymańska M, Szara E. CO2 Emissions from Soil Under Fodder Maize Cultivation. Agronomy. 2020; 10(8):1087. https://doi.org/10.3390/agronomy10081087
Chicago/Turabian StyleSosulski, Tomasz, Magdalena Szymańska, and Ewa Szara. 2020. "CO2 Emissions from Soil Under Fodder Maize Cultivation" Agronomy 10, no. 8: 1087. https://doi.org/10.3390/agronomy10081087
APA StyleSosulski, T., Szymańska, M., & Szara, E. (2020). CO2 Emissions from Soil Under Fodder Maize Cultivation. Agronomy, 10(8), 1087. https://doi.org/10.3390/agronomy10081087