Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Rooting
2.2. Gene Expression Analysis
2.2.1. Sample Collection and RNA Extraction
2.2.2. qRT-PCR
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kepenek, K.; Karoglu, Z. The effects of paclobutrazol and daminozide on in vitro micropropagation of some apple (Malus domestica) cultivars and M9 rootstock. Afr. J. Biotechnol. 2011, 10, 4851–4859. [Google Scholar]
- da Silva, J.A.T.; Gulyás, A.; Magyar-Tábori, K.; Wang, M.R.; Wang, Q.C.; Dobránski, J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta 2019, 249, 975–1006. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.W. Local auxin production: A small contribution to a big field. Bioessays 2009, 31, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Koiwai, H.; Akaba, S.; Seo, M.; Komano, T.; Koshiba, T. Functional expression of two Arabidopsis aldehyde oxidases in the yeast. Pichia Pastor. J. Biochem. 2000, 127, 659–664. [Google Scholar]
- Seo, M.; Aoki, H.; Koiwai, H.; Kamiya, Y.; Nambara, E.; Koshiba, T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004, 45, 1694–1703. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Mashiguchi, K.; Chen, Q.; Kasahara, H.; Kamiya, Y.; Ojha, S.; Dubois, J.; Ballou, D.; Zhao, Y. The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA containing flavin monooxygenase. J. Biol. Chem. 2013, 288, 1448–1457. [Google Scholar] [CrossRef]
- Won, C.; Shen, X.; Mashiguchi, K.; Zheng, Z.; Dai, X.; Cheng, Y.; Kasahara, H.; Kamiya, Y.; Chory, J.; Zhao, Y. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 18518–18523. [Google Scholar] [CrossRef]
- McSteen, P. Auxin and monocot development. Cold Spring Harb. Perspect. Biol. 2010, 2, a001479. [Google Scholar] [CrossRef]
- Bhusal, N.; Han, S.G.; Yoon, T.M. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Alvarez, R.; Nissen, S.J.; Sutter, E.G. Relationship between Indole-3-acetic acid levels in apples (Malus pumila mill.) rootstocks cultured in vitro and adventitious root formation in the formation of Indole-3-butyric acid. Plant Physiol. 1989, 89, 439–443. [Google Scholar] [CrossRef]
- Akbari, M.; Maejima, T.; Otagaki, S.; Shiratake, K.; Matsumoto, S. Efficient rooting system for apple M9 rootstock using rice seed coat and smoked rice seed coat. Int. J. Agric. 2015, 2015. [Google Scholar] [CrossRef]
- Bhusal, N.; Kim, H.S.; Han, S.G.; Yoon, T.M. Photosynthetic traits and plant–water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ. Exp. Bot. 2020, 176, 104111. [Google Scholar] [CrossRef]
- Pérez, L.P.; Montesinos, Y.P.; Olmedo, J.G.; Rodriguez, R.B.; Sánchez, R.R.; Montenegro, O.N.; Escriba, R.C.R.; Daniels, D.; Gómez-Kosky. Effect of phloroglucinol on rooting and in vitro acclimatization of papaya (Carica papaya L. var. Maradol Roja). In Vitro Cell. Dev. Biol. Plant. 2016, 52, 196–203. [Google Scholar] [CrossRef]
- Londe, L.C.N.; Vendrame, W.A.; de Oliveira, A.B.; Costa, A.M. Phloroglucinol is effective for in vitro growth and multiplication of banana shoots and roots. Plant Cell Cult. Micropropag. 2017, 13, 34–40. [Google Scholar]
- Zimmerman, R.H. Rooting apple cultivars in vitro: Interactions among light, temperature, phloroglucinol and auxin. Plant Cell Tiss. Org. Cult. 1984, 3, 301–311. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revise medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Song, H.W.; Liu, Y.X.; Hu, G.B.; Qin, Y.H.; Lin, S.Q. An improved method for total RNA isolation from recalcitrant lo-quat (Eriobotrya japonica Lindl.) buds. Pak. J. Bot. 2011, 43, 1–9. [Google Scholar]
- Greenwood, M.S.; Cui, X.; Xu, F. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings. Physiol. Plant. 2001, 111, 373–380. [Google Scholar] [CrossRef]
- De Klerk, G.J. Rooting of microcuttings: Theory and practice. In Vitro Cell. Dev. Biol. Plant. 2002, 38, 415–422. [Google Scholar] [CrossRef]
- Ahkami, A.H.; Lischewski, S.; Haensch, K.T.; Porfirova, S.; Hofmann, J.; Rolletschek, H.; Melzer, M.; Franken, P.; Hause, B.; Druege, U.; et al. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: Involvement of wound response and primary metabolism. New Phytol. 2009, 181, 613–625. [Google Scholar] [CrossRef]
- Gutierrez, L.; Bussell, J.D.; Pacurar, D.I. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 2009, 21, 3119–3132. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.R.; Troleis, J.; Mastroberti, A.A.; Mariath, J.E.; Fett-Neto, A.G. Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biol. 2012, 14, 100–109. [Google Scholar]
- Sukumar, P.; Maloney, G.S.; Muday, G.K. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol. 2013, 162, 1392–1405. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, L.; Xu, Y.; Li, J.; Yang, Z.; Huang, H.; Xu, L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 2014, 26, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huang, H. Genetic and epigenetic controls of plant regeneration. Curr. Top. Dev. Biol. 2014, 108, 1–33. [Google Scholar] [PubMed]
- James, D.J. Adventitious root formation ‘in vitro’ in apple rootstocks (Malus pumiia). I. Factors affecting the length of the auxin-sensitive phase in M.9. Physiol. Plant. 1983, 57, 149–153. [Google Scholar] [CrossRef]
- Li, S.W.; Xue, L.; Xu, S.; Feng, H.; An, L. IBA induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings: The role of H2O2. Environ. Exp. Bot. 2009, 66, 442–450. [Google Scholar] [CrossRef]
- Li, H.L.; Zhang, H.; Yu, C.; Ma, L.; Wang, Y.; Zhang, X.Z.; Han, Z.H. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiol. Plant. 2012, 34, 235–244. [Google Scholar] [CrossRef]
- Mashiguchi, K.; Tanaka, K.; Sakai, T.; Sugawara, S.; Kawaide, H.; Natsume, M.; Hanada, A.; Yaeno, T.; Shirasu, K.; Yao, H.; et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 18512–18517. [Google Scholar] [CrossRef]
- Liang, U.Y.; Fei, W. Anatomical study on rooting process and rapid propagation of apple rootstock M9. J. Northwest. For. Univ. 2013, 28, 106–110. [Google Scholar]
Primer | Sequence | Product Size |
---|---|---|
AAO1-F | 5′- TTCGGCGTTTATGCAGCCTT -3′ | 110 bp |
AAO1-R | 5′- AGAAAAGAAGAGCACGCCGG -3′ | |
AMI1-F | 5′- CTACAGTTCCAGGGGCTCCA -3′ | 120 bp |
AMI1-R | 5′- TACTCACCTGGCAGAGTCCG -3′ | |
YUC1-F | 5′- CCAAAGTTCAACCAGGCCGT -3′ | 185 bp |
YUC1-R | 5′- CTGGTGTGAAGAACAGGGCC -3′ | |
Actin-F | 5′- CACAGCAAGGGTGAGAAACA -3′ | 166 bp |
Actin-R | 5′- TCAAAGTTCACAACCCCACA -3′ |
Rootstock | IBA Conc. | Fresh Weight | Shoot Length | Leaf | Root | |||
---|---|---|---|---|---|---|---|---|
Length | Number | Length | No. of Main Roots | No. of Lateral Roots | ||||
(mg·L−1) | (mg/plantlet) | (cm) | (cm) | (ea/plantlet) | (cm) | (per plantlet) | (per plantlet) | |
M9 | 0.0 | 48.7 d z | 2.0 bc | 1.2 b | 7.0 b | 0.0 c | 0.0 c | 0.0 d |
0.1 | 158.5 c | 2.9 a | 1.7 a | 10.1 a | 3.2 a | 2.6 a | 8.2 a | |
0.5 | 344.8 a | 2.5 ab | 1.3 b | 9.4 ab | 0.9 b | 1.8 b | 2.6 b | |
1.0 | 364.4 a | 2.3 b | 1.3 b | 7.5 b | 0.7 b | 1.5 b | 0.1 c | |
2.0 | 237.2 b | 1.6 c | 0.8 c | 6.6 c | 0.3 b | 1.8 b | 0.6 bc | |
M26 | 0.0 | 54.8 d | 2.5 a | 1.1 bc | 8.2 a | 0.7 c | 0.1 d | 0.1 d |
0.1 | 168.4 c | 2.5 a | 1.5 a | 8.1 a | 2.2 a | 2.4 b | 2.4 b | |
0.5 | 367.7 a | 2.4 a | 1.3 b | 8.1 a | 1.5 b | 3.5 a | 3.5 a | |
1.0 | 364.4 a | 2.2 b | 1.3 b | 6.6 b | 0.8 c | 2.3 b | 2.3 b | |
2.0 | 248.3 b | 1.5 c | 0.8 c | 5.6 c | 0.3 d | 1.4 c | 1.4 c |
Phloroglucinol Conc. | Rooting | Callus Formation | Fresh Weight | Shoot Length | Leaf Length | No. of Leaves | No. of Roots | Root Length |
---|---|---|---|---|---|---|---|---|
(mM) | (%) | (%) | (mg/plantlet) | (cm) | (cm) | (per plantlet) | (per plantlet) | (cm) |
0.0 | 93.33 ab z | 30.00 a | 226.60 a | 2.88 a | 1.54 a | 10.2 a | 5.30 a | 1.94 a |
0.5 | 86.67 b | 8.44 b | 126.58 ab | 2.17 a | 1.63 a | 7.25 b | 4.06 b | 1.19 ab |
1.0 | 100.0 a | 0.00 b | 168.50 b | 2.82 a | 1.56 a | 11.10 a | 5.00 a | 1.87 a |
2.0 | 80.00 b | 0.00 b | 107.30 c | 2.59 a | 1.17 b | 10.10 a | 3.70 c | 1.32 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Kwon, B.-M.; Ho, T.-T.; Park, S.-Y. Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26. Agronomy 2020, 10, 1079. https://doi.org/10.3390/agronomy10081079
Kim J-H, Kwon B-M, Ho T-T, Park S-Y. Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26. Agronomy. 2020; 10(8):1079. https://doi.org/10.3390/agronomy10081079
Chicago/Turabian StyleKim, Jin-Ho, Bo-Min Kwon, Thanh-Tam Ho, and So-Young Park. 2020. "Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26" Agronomy 10, no. 8: 1079. https://doi.org/10.3390/agronomy10081079
APA StyleKim, J.-H., Kwon, B.-M., Ho, T.-T., & Park, S.-Y. (2020). Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26. Agronomy, 10(8), 1079. https://doi.org/10.3390/agronomy10081079