DK-RIM: Assisting Integrated Management of Lolium multiflorum, Italian Ryegrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lolium multiflorum (Lam.), Italian Ryegrass
2.2. Model Overview
2.3. Input Parameters and User Interface
2.4. The L. multiflorum Population Model in DK-RIM
2.5. Yield Loss
2.6. Management Tools
2.6.1. Crop Rotations
2.6.2. Cover Crops
2.6.3. Cultivation Practices
2.6.4. Herbicide Application
2.7. Economics
2.8. Scenarios for Evaluation
3. Results
3.1. Crop Rotation and Delayed Sowing
3.2. Tillage System
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Agricultural Production—Crops. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops#Cereals (accessed on 1 May 2020).
- Denmark, S. Vinterafgrøderne er i Fremgang i 2019. Available online: https://www.dst.dk/da/Statistik/nyt/NytHtml?cid=28626 (accessed on 1 May 2020).
- Barzman, M.; Barberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Devos, Y.; Beckie, H.J.; Owen, M.D.K.; Tillie, P.; Messean, A.; Kudsk, P. Integrated weed management systems with herbicide-tolerant crops in the European Union: Lessons learnt from home and abroad. Crit. Rev. Biotechnol. 2017, 37, 459–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhler, D.D. Challenges and opportunities for integrated weed management. Weed Sci. 2002, 50, 273–280. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. In Annual Review of Plant Biology; Merchant, S., Briggs, W.R., Ort, D., Eds.; Annual Reviews: Palo Alto, CA, USA, 2010; Volume 61, pp. 317–347. [Google Scholar]
- Holst, N.; Rasmussen, I.A.; Bastiaans, L. Field weed population dynamics: A review of model approaches and applications. Weed Res. 2007, 47, 1–14. [Google Scholar] [CrossRef]
- Ford, A.J.; Dotray, P.A.; Keeling, J.W.; Wilkerson, J.B.; Wilcut, J.W.; Gilbert, L.V. Site-Specific Weed Management in Cotton Using WebHADSS (TM). Weed Technol. 2011, 25, 107–112. [Google Scholar] [CrossRef]
- Sønderskov, M.; Rydahl, P.; Bøjer, O.M.; Jensen, J.E.; Kudsk, P. Crop protection online–weeds: A case study for agricultural decision support systems. In Real World Decision Support Systems -Case Studies; Papathanasiou, J., Ploskas, N., Linden, I., Eds.; Springer: Cham, Switzerland, 2016; Volume 37, pp. 303–320. [Google Scholar]
- Jørgensen, L.N.; Noe, E.; Langvad, A.M.; Jensen, J.E.; Ørum, J.E.; Rydahl, P. Decision support systems: Barriers and farmers’ need for support. Bull. OEPP/EPPO Bull. 2007, 37, 374–377. [Google Scholar] [CrossRef]
- Lacoste, M.; Powles, S. RIM: Anatomy of a Weed Management Decision Support System for Adaptation and Wider Application. Weed Sci. 2015, 63, 676–689. [Google Scholar] [CrossRef]
- Pannell, D.J.; Stewart, V.; Bennett, A.; Monjardino, M.; Schmidt, C.; Powles, S.B. RIM: A bioeconomic model for integrated weed management of Lolium rigidum in Western Australia. Agric. Syst. 2004, 79, 305–325. [Google Scholar] [CrossRef]
- Lacoste, M.; Powles, S. Upgrading the RIM Model for Improved Support of Integrated Weed Management Extension Efforts in Cropping Systems. Weed Technol. 2014, 28, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Monjardino, M.; Pannell, D.J.; Powles, S.B. Multispecies resistance and integrated management: A bioeconomic model for integrated management of rigid ryegrass (Lolium rigidum) and wild radish (Raphanus raphanistrum). Weed Sci. 2003, 51, 798–809. [Google Scholar] [CrossRef]
- Torra, J.; Cirujeda, A.; Recasens, J.; Taberner, A.; Powles, S.B. PIM (Poppy Integrated Management): A bio-economic decision support model for the management of Papaver rhoeas in rain-fed cropping systems. Weed Res. 2010, 50, 127–139. [Google Scholar] [CrossRef]
- Beltran, J.C.; Pannell, D.J.; Doole, G.J.; White, B. A bioeconomic model for analysis of integrated weed management strategies for annual barnyardgrass (Echinochloa crus-galli complex) in Philippine rice farming systems. Agric. Syst. 2012, 112, 1–10. [Google Scholar] [CrossRef]
- Lacoste, M.; Powles, S. Beyond modelling: Considering user-centred and post-development aspects to ensure the success of a decision support system. Comput. Electron. Agric. 2016, 121, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, K.; Mathiassen, S.K.; Kristensen, M.; Kudsk, P. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Mathiassen, S.K.; Kudsk, P. Etablering af en Status for Forekomst af Herbicidresistens i Danmark (2013–2015); Aarhus University: Aarhus, Denmark, 2016; p. 55. [Google Scholar]
- Jensen, P.K. Longevity of seeds of Poa pratensis and Lolium perenne as affected by simulated soil tillage practices and its implications for contamination of herbage seed crops. Grass Forage Sci. 2010, 65, 85–91. [Google Scholar] [CrossRef]
- Landbrugsinfo. DK-RIM—et Værktøj Til at Planlægge Langsigtet Bekæmpelse af Italiensk Rajgræs. Available online: https://www.landbrugsinfo.dk/Planteavl/Sider/pl_19_AU_DK_RIM_bekaempelse_italiensk_rajgraes.aspx (accessed on 1 May 2020).
- Pluske, J.M.; Pannell, D.J.; Bennett, A.L. RIM Reference Manual. A Decision Tool for Integrated Management of Herbicide-Resistant Annual Ryegrass; School of Agricultural & Resource Economics, The University of Western Australia: Crawley, Australia, 2004. [Google Scholar]
- Renton, M.; Diggle, A.; Manalil, S.; Powles, S. Does cutting herbicide rates threaten the sustainability of weed management in cropping systems? J. Theor. Biol. 2011, 283, 14–27. [Google Scholar] [CrossRef]
- Jensen, J.E.; Landbrug og Fødevarer F.m.b.a SEGES, Aarhus, Denmark. Personal communication, 2020.
- Lemerle, D.; Verbeek, B.; Cousens, R.D.; Coombes, N.E. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Stone, M.J.; Cralle, H.T.; Chandler, J.M.; Miller, T.D.; Bovey, R.W. Wheat yield loss in response to Italian ryegrass in diverse environments. J. Prod. Agric. 1999, 12, 229–231. [Google Scholar] [CrossRef]
- Lacoste, M.; Pannell, D.; Stewart, V.; Bennett, A.; Monjardinao, M.; Schmidt, C.; Draper, A.; Powles, S. RIM Ryegrass Integrated Model. Available online: https://ahri.uwa.edu.au/research/rim/rim-download/ (accessed on 15 June 2020).
- Cousens, R. An empirical-model relating crop yield to weed and crop density and a statistical comparison with other models. J. Agric. Sci. 1985, 105, 513–521. [Google Scholar] [CrossRef]
- Lutman, P.J.W.; Moss, S.R.; Cook, S.; Welham, S.J. A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res. 2013, 53, 299–310. [Google Scholar] [CrossRef]
- Sieling, K.; Christen, O. Crop rotation effects on yield of oilseed rape, wheat and barley and residual effects on the subsequent wheat. Arch. Agron. Soil Sci. 2015, 61, 1531–1549. [Google Scholar] [CrossRef]
- Bohan, D.A.; Powers, S.J.; Champion, G.; Haughton, A.J.; Hawes, C.; Squire, G.; Cussans, J.; Mertens, S.K. Modelling rotations: Can crop sequences explain arable weed seedbank abundance? Weed Res. 2011, 51, 422–432. [Google Scholar] [CrossRef]
- Colbach, N.; Granger, S.; Meziere, D. Using a sensitivity analysis of a weed dynamics model to develop sustainable cropping systems. II. Long-term effect of past crops and management techniques on weed infestation. J. Agric. Sci. 2013, 151, 247–267. [Google Scholar] [CrossRef]
- Dorn, B.; Jossi, W.; van der Heijden, M.G.A. Weed suppression by cover crops: Comparative on-farm experiments under integrated and organic conservation tillage. Weed Res. 2015, 55, 586–597. [Google Scholar] [CrossRef]
- Moonen, A.C.; Barberi, P. Size and composition of the weed seedbank after 7 years of different cover-crop-maize management systems. Weed Res. 2004, 44, 163–177. [Google Scholar] [CrossRef]
- Buchanan, A.; Kolb, L.N.; Hooks, C.R.R. Can winter cover crops influence weed density and diversity in a reduced tillage vegetable system? Crop Prot. 2016, 90, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Gerhards, R.; Schappert, A. Advancing cover cropping in temperate integrated weed management. Pest Manag. Sci. 2020, 76, 42–46. [Google Scholar] [CrossRef]
- Scherner, A.; Melander, B.; Kudsk, P. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil Tillage Res. 2016, 161, 135–142. [Google Scholar] [CrossRef]
- Jensen, P.K. Longevity of seeds of Poa trivialis and Vulpia myuros as affected by simulated soil tillage practices and straw disposal technique. Grass Forage Sci. 2010, 65, 76–84. [Google Scholar] [CrossRef]
- Ichihara, M.; Yamashita, M.; Sawada, H.; Kida, Y.; Asai, M. Influence of after-ripening environments on the germination characteristics and seed fate of Italian ryegrass (Lolium multiflorum). Weed Biol. Manag. 2009, 9, 217–224. [Google Scholar] [CrossRef]
- Rasmussen, I.A. The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res. 2004, 44, 12–20. [Google Scholar] [CrossRef]
- Melander, B. Impact of drilling date on Apera-spica-venti L. and Alopecurus-Myosuroides Huds in winter cereals. Weed Res. 1995, 35, 157–166. [Google Scholar] [CrossRef]
- Kristensen, L.; Olsen, J.; Weiner, J. Crop density, sowing pattern, and nitrogen fertilization effects on weed suppression and yield in spring wheat. Weed Sci. 2008, 56, 97–102. [Google Scholar] [CrossRef]
- Kirkegaard, J.; Christen, O.; Krupinsky, J.; Layzell, D. Break crop benefits in temperate wheat production. Field Crop. Res. 2008, 107, 185–195. [Google Scholar] [CrossRef]
- Llewellyn, R.S.; Lindner, R.K.; Pannell, D.J.; Powles, S.B. Grain grower perceptions and use of integrated weed management. Aust. J. Exp. Agric. 2004, 44, 993. [Google Scholar] [CrossRef]
- Hicks, H.L.; Comont, D.; Coutts, S.R.; Crook, L.; Hull, R.; Norris, K.; Neve, P.; Childs, D.Z.; Freckleton, R.P. The factors driving evolved herbicide resistance at a national scale. Nat. Ecol. Evol. 2018, 2, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed mangement. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Skaalsveen, K.; Ingram, J.; Clarke, L.E. The effect of no-till farming on the soil functions of water purification and retention in north-western Europe: A literature review. Soil Tillage Res. 2019, 189, 98–109. [Google Scholar] [CrossRef]
- Peigne, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Melander, B.; Munier-Jolain, N.; Charles, R.; Wirth, J.; Schwarz, J.; van der Weide, R.; Bonin, L.; Jensen, P.K.; Kudsk, P. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops. Weed Technol. 2013, 27, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Melander, B.; Holst, N.; Jensen, P.K.; Hansen, E.M.; Olesen, J.E. Apera spica-venti population dynamics and impact on crop yield as affected by tillage, crop rotation, location and herbicide programmes. Weed Res. 2008, 48, 48–57. [Google Scholar] [CrossRef]
- Gonzalez-Andujar, J.L.; Fernandez-Quintanilla, C. Modelling the population dynamics of annual ryegrass (Lolium rigidum) under various weed management systems. Crop Prot. 2004, 23, 723–729. [Google Scholar] [CrossRef] [Green Version]
- O’Donovan, J.T.; Harker, K.N.; Turkington, T.K.; Clayton, G.W. Combining Cultural Practices with Herbicides Reduces Wild Oat (Avena fatua) Seed in the Soil Seed Bank and Improves Barley Yield. Weed Sci. 2013, 61, 328–333. [Google Scholar] [CrossRef]
- Lacoste, M.; Llewellyn, R.; Powles, S.; Pannell, D. RIM 2004 and Workshops: Evaluation-Farmers and Consultants Surveys; Australian Herbicide Resistance Initiative, School of Plant Biology & School of Agricultural and Resource Economics, The University of Western Australia: Perth, Australia, 2013; p. 9. [Google Scholar]
- Colas, F.; Cordeau, S.; Granger, S.; Jeuffroy, M.H.; Pointurier, O.; Queyrel, W.; Rodriguez, A.; Villerd, J.; Colbach, N. Co-development of a decision support system for integrated weed management: Contribution from future users. Eur. J. Agron. 2020, 114. [Google Scholar] [CrossRef]
- Wilson, R.S.; Hooker, N.; Tucker, M.; Lejeune, J.; Doohan, D. Targeting the farmer decision making process: A pathway to increased adoption of integrated weed management. Crop Prot. 2009, 28, 756–764. [Google Scholar] [CrossRef]
- Moss, S. Integrated weed management (IWM): Why are farmers reluctant to adopt non-chemical alternatives to herbicides? Pest Manag. Sci. 2019, 75, 1205–1211. [Google Scholar] [CrossRef]
- Stetkiewicz, S.; Bruce, A.; Burnett, F.J.; Ennos, R.A.; Topp, C.F.E. Perception vs practice: Farmer attitudes towards and uptake of IPM in Scottish spring barley. Crop. Prot. 2018, 112, 96–102. [Google Scholar] [CrossRef] [Green Version]
Cash Crops Implemented in DK-RIM | Interspecific Crop Competition Factor (c) [23,24] | Max Yield Loss from L. multiflorum (a) (%) [24,25,26] |
---|---|---|
Winter wheat | 0.09 | 60 |
Winter barley | 0.15 | 60 |
Winter rye | 0.09 | 60 |
Spring barley | 0.25 | 45 |
Spring oat | 0.3 | 40 |
Spring wheat | 0.2 | 40 |
Winter oilseed rape | 0.2 | 45 |
Legumes (default peas) | 0.07 | 95 |
Intraspecific competition factor for L. multiflorum (r) [23] | 0.04 | Extra mortality of seeds in soil with need-based ploughing | 80% |
Competition factor of pasture on L. multiflorum (f) | 99% | Sub-lethal effect of post-emergence herbicides on viability of seeds (s) [27] | 33% |
Natural mortality of seeds during season [27] | 30% | L. multiflorum germination in grass or grass-clover crops | 30% |
Natural mortality of seedlings [27] | 5% | Removal of seeds with crop at harvest [27] | 5% |
Scenario | 4-Year Crop Rotation, Repeated over 10 Years | Winter Wheat Cultivation Facts 1 | Scenario Results |
---|---|---|---|
1 | Wheat-Wheat-Wheat-Wheat | Plough, early sown, standard density, prosulfocarb | Figure 2 |
2 | Wheat-Wheat-Wheat-Wheat | Plough, late sown, high density, prosulfocarb | Figure 2 |
3 | Barley-Wheat-Wheat-Wheat | Plough, late sown, high density, prosulfocarb | Figure 2 |
4 | Barley–Oilseed rape-Wheat-Wheat | Plough, late sown, high density, prosulfocarb | Figure 2 |
5 | Wheat-Wheat-Wheat-Wheat | Reduced tillage, early sown, standard density, prosulfocarb | Figure 3 |
6 | Wheat-Wheat-Wheat-Wheat | No-till, early sown, standard density, prosulfocarb | Figure 3 |
Crop | Sowing Time | Seeding Density (kg/ha) | Soil Tillage | Herbicide 1 |
---|---|---|---|---|
Winter wheat | Early: primo Sep. Late: primo Oct. | Standard 100 High 185 | Ploughed + harrow seedbed preparation Reduced tillage: superficial soil disturbing once No-till: direct sowing, no soil disturbance | 1600 g prosulfocarb per ha, pre-emergence |
Spring barley | April | 190 | Spring ploughed + harrow seedbed preparation | 3.5 g iodosulfuron + 0.525 g mesosulfuron per ha, post-emergence |
Winter oilseed rape | Ultimo August | 4.5 | Ploughed + harrow seedbed preparation | 500 g propyzamide per ha, post-emergence |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sønderskov, M.; Somerville, G.J.; Lacoste, M.; Jensen, J.E.; Holst, N. DK-RIM: Assisting Integrated Management of Lolium multiflorum, Italian Ryegrass. Agronomy 2020, 10, 856. https://doi.org/10.3390/agronomy10060856
Sønderskov M, Somerville GJ, Lacoste M, Jensen JE, Holst N. DK-RIM: Assisting Integrated Management of Lolium multiflorum, Italian Ryegrass. Agronomy. 2020; 10(6):856. https://doi.org/10.3390/agronomy10060856
Chicago/Turabian StyleSønderskov, Mette, Gayle J. Somerville, Myrtille Lacoste, Jens Erik Jensen, and Niels Holst. 2020. "DK-RIM: Assisting Integrated Management of Lolium multiflorum, Italian Ryegrass" Agronomy 10, no. 6: 856. https://doi.org/10.3390/agronomy10060856
APA StyleSønderskov, M., Somerville, G. J., Lacoste, M., Jensen, J. E., & Holst, N. (2020). DK-RIM: Assisting Integrated Management of Lolium multiflorum, Italian Ryegrass. Agronomy, 10(6), 856. https://doi.org/10.3390/agronomy10060856