Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Polyphenol Extraction and Analyses
2.2.1. Extract Preparation
2.2.2. Total Phenolics
2.2.3. Total Flavonoids and Flavanols
2.3. Antioxidant and Reducing Activity
2.4. Essential Oil Extraction and Gas Chromatography/Mass Spectrometry Analysis
2.5. Statistical Methods
3. Results and Discussion
3.1. Total Phenols, Flavonoids, Flavanols, and Antioxidant and Reducing Activity
3.2. Essential Oil Yield and Composition
3.3. Correlation of Antioxidant and Reducing Activity with Polyphenols and Essential Oils Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inoue, M.; Hayashi, S.; Craker, L.E. Role of Medicinal and Aromatic Plants: Past, Present, and Future. In Pharmacognosy, Medicinal Plants; Chapter 2; Perveen, S., Ed.; IntechOpen: London, UK, 2019; pp. 1–13. [Google Scholar]
- Abou El-Soud, N.H.; Deabes, M.M.; Abou El-Kassem, L.T.; Khalil, M.Y. Antifungal activity of family apiaceae essential oils. J. Appl. Sci. Res. 2012, 8, 4964–4973. [Google Scholar]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Fares, R.; Bazzi, S.; Baydoun, S.E.; Abdel-Massih, R.M. The Antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract. Plant Foods Hum. Nutr. 2011, 66, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Máthé, A. Medicinal and Aromatic Plants of the World: Scientific, Production, Commercial and Utilization Aspects, Medicinal and Aromatic Plants of the World; Springer Netherlands: Dordrecht, The Netherlands, 2015; 460p. [Google Scholar]
- Krishnaiah, D.; Sarbatly, R.; Bono, A. Phytochemical antioxidants for health and medicine—A move towards nature. Biotechnol. Mol. Biol. Rev. 2007, 1, 97–104. [Google Scholar]
- Parejo, I.; Viladomat, F.; Bastida, J.; Rosas-Romero, A.; Flerlage, N.; Burillo, J.; Codina, C. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. J. Agric. Food Chem. 2002, 50, 6882–6890. [Google Scholar] [CrossRef] [PubMed]
- Nićiforović, N.; Mihailović, V.; Mašković, P.; Solujić, S.; Stojković, A.; Muratspahić, D.P. Antioxidant activity of selected plant species; potential new sources of natural antioxidants. Food Chem. Toxicol. 2010, 48, 3125–3130. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Halophytic herbs of the Mediterranean basin: An alternative approach to health. Food Chem. Toxicol. 2018, 114, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Vanzani, P.; Rossetto, M.; De Marco, V.; Sacchetti, L.E.; Paoletti, M.G.; Rigo, A. Wild Mediterranean Plants as Traditional Food: A Valuable Source of Antioxidants. J. Food Sci. 2011, 76, 46–51. [Google Scholar] [CrossRef]
- Nebel, S.; Pieroni, A.; Heinrich, M. Ta chórta: Wild edible greens used in the Graecanic area in Calabria, Southern Italy. Appetite 2006, 47, 333–342. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Amato, F.; Di Noto, G.; Bazan, G.; Schicchi, R. The wild taxa utilized as vegetables in Sicily (Italy): A traditional component of the Mediterranean diet. J. Ethnobiol. Ethnomed. 2018, 14, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Tejero, M.R.; Casares-Porcel, M.; Sánchez-Rojas, C.P.; Ramiro-Gutiérrez, J.M.; Molero-Mesa, J.; Pieroni, A.; Giusti, M.E.; Censorii, E.; de Pasquale, C.; Della, A.; et al. Medicinal plants in the Mediterranean area: Synthesis of the results of the project Rubia. J. Ethnopharmacol. 2008, 116, 341–357. [Google Scholar] [CrossRef]
- Manuel, J.; Matos, C.; Moutinho, C.; Queiroz, G.; Rebelo, L. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar]
- Gouthamchandra, K.; Mahmood, R.; Manjunatha, H. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from Clerodendrum infortunatum L. Environ. Toxicol. Pharmacol. 2010, 30, 11–18. [Google Scholar] [CrossRef]
- Dobravalskyte, D.; Venskutonis, P.R.; Talou, T.; Zebib, B.; Merah, O.; Ragažinskiene, O. Antioxidant properties and composition of deodorized extracts of Tussilago farfara L. Rec. Nat. Prod. 2013, 7, 201–209. [Google Scholar]
- Areias, F.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Seabra, R.M. Flavonoids and phenolic acids of sage: Influence of some agricultural-factors. J. Agric. Food Chem. 2000, 48, 6081–6084. [Google Scholar] [CrossRef]
- Başkan, S.; Öztekin, N.; Erim, F.B. Determination of carnosic acid and rosmarinic acid in sage by capillary electrophoresis. Food Chem. 2007, 101, 1748–1752. [Google Scholar] [CrossRef]
- Kofidis, G.; Bosabalidis, A.M. Effects of altitude and season on glandular hairs and leaf structural traits of Nepeta nuda L. Bot. Stud. 2008, 49, 363–372. [Google Scholar]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind. Crops Prod. 2013, 43, 465–471. [Google Scholar] [CrossRef]
- Golubkina, N.; Logvinenko, L.; Novitsky, M.; Zamana, S.; Sokolov, S.; Molchanova, A.; Shevchuk, O.; Sekara, A.; Tallarita, A.; Caruso, G. Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants 2020, 9, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skotti, E.; Anastasaki, E.; Kanellou, G.; Polissiou, M.; Tarantilis, P.A. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind. Crops Prod. 2014, 53, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Dinu, C.; Vasile, G.G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.M. Translocation and accumulation of heavy metals in Ocimum basilicumL. plants grown in a mining-contaminated soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- Skalli, S.; Chebat, A.; Badrane, N.; Soulaymani Bencheikh, R. Side effects of cade oil in Morocco: An analysis of reports in the Moroccan herbal products database from 2004 to 2012. Food Chem. Toxicol. 2014, 64, 81–85. [Google Scholar] [CrossRef]
- Asgari Lajayer, B.; Ghorbanpour, M.; Nikabadi, S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 2017, 145, 377–390. [Google Scholar] [CrossRef]
- Anastasopoulou, E.; Graikou, K.; Ganos, C.; Calapai, G.; Chinou, I. Pimpinella anisumseeds essential oil from Lesvos island: Effect of hydrodistillation time, comparison of its aromatic profile with other samples of the Greek market. Safe use. Food Chem. Toxicol. 2020, 135, 110875. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phyther. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Chen, Y.F.; Roan, H.Y.; Lii, C.K.; Huang, Y.C.; Wang, T.S. Relationship between antioxidant and antiglycation ability of saponins, polyphenols, and polysaccharides in Chinese herbal medicines used to treat diabetes. J. Med. Plants Res. 2011, 5, 2322–2331. [Google Scholar]
- Chrysargyris, A.; Xylia, P.; Botsaris, G.; Tzortzakis, N. Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Ind. Crops Prod. 2017, 103, 202–212. [Google Scholar] [CrossRef]
- Lo Cantore, P.; Iacobellis, N.S.; De Marco, A.; Capasso, F.; Senatore, F. Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J. Agric. Food Chem. 2004, 52, 7862–7866. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A.; Sivakumar, D.; Loulakakis, K. Vapour or dipping applications of methyl jasmonate, vinegar and sage oil for pepper fruit sanitation towards grey mould. Postharvest Biol. Technol. 2016, 118, 120–127. [Google Scholar] [CrossRef]
- Tzortzakis, N.G.; Economakis, C.D. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov. Food Sci. Emerg. Technol. 2007, 8, 253–258. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Botsaris, G.; Tzortzakis, N. Potential application of spearmint and lavender essential oils for assuring endive quality and safety. Crop Prot. 2017, 102, 94–103. [Google Scholar] [CrossRef]
- Xylia, P.; Clark, A.; Chrysargyris, A.; Romanazzi, G.; Tzortzakis, N. Quality and safety attributes on shredded carrots by using Origanum majorana and ascorbic acid. Postharvest Biol. Technol. 2019, 155, 120–129. [Google Scholar] [CrossRef]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of essential oils: A review on their interaction with food components. Front. Microbiol. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Litskas, V.; Chrysargyris, A.; Stavrinides, M.; Tzortzakis, N. Water-energy-food nexus: A case study on medicinal and aromatic plants. J. Clean. Prod. 2019, 233, 1334–1343. [Google Scholar] [CrossRef]
- Moradi, P.; Ford-Lloyd, B.; Pritchard, J. Plant-water responses of different medicinal plant thyme (Thymus spp.) species to drought stress condition. Aust. J. Crop Sci. 2014, 8, 666–673. [Google Scholar]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [Green Version]
- Marshall, E. Health and Wealth from Medicinal Aromatic Plants; FAO: Rome, Italy, 2011; ISBN 9789251070703. [Google Scholar]
- Chrysargyris, A.; Kloukina, C.; Vassiliou, R.; Tomou, E.-M.; Skaltsa, H.; Tzortzakis, N. Cultivation strategy to improve chemical profile and anti-oxidant activity of Sideritis perfoliata L. subsp. perfoliata. Ind. Crops Prod. 2019, 140, 111694. [Google Scholar] [CrossRef]
- Ben Farhat, M.; Landoulsi, A.; Chaouch-Hamada, R.; Sotomayor, J.A.; Jordán, M.J. Profiling of essential oils and polyphenolics of Salvia argentea and evaluation of its by-products antioxidant activity. Ind. Crops Prod. 2013, 47, 106–112. [Google Scholar] [CrossRef]
- Norani, M.; Ebadi, M.T.; Ayyari, M. Volatile constituents and antioxidant capacity of seven Tussilago farfara L. populations in Iran. Sci. Hortic. 2019, 257, 108635. [Google Scholar] [CrossRef]
- Lizcano, L.J.; Bakkali, F.; Begoña Ruiz-Larrea, M.; Ignacio Ruiz-Sanz, J. Antioxidant activity and polyphenol content of aqueous extracts from Colombian Amazonian plants with medicinal use. Food Chem. 2010, 119, 1566–1570. [Google Scholar] [CrossRef]
- Žugić, A.; Dordević, S.; Arsić, I.; Marković, G.; Živković, J.; Jovanović, S.; Tadić, V. Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia. Ind. Crops Prod. 2014, 52, 519–527. [Google Scholar] [CrossRef]
- Wasim, A.; Azhar, H.; Abdullah, A.; Terannum, T. Medicinal importance of Artemisia absinthium Linn (Afsanteen) in Unani Medicine: A Review. Hipp. J. Unani Med. 2010, 5, 117–125. [Google Scholar]
- Saraswathi, J.; Venkatesh, K.; Baburao, N.; Hilal, M.H.; Rani, A.R. Phytopharmacological importance of pelargonium species. J. Med. Plants Res. 2011, 5, 2587–2598. [Google Scholar]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
- Begum, A.; Sandhya, S.; Ali, S.S.; Vinod, K.R.; Reddy, S.; Banji, D. An in-depth review on the medicinal flora Rosmarinus officinalis (lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–73. [Google Scholar]
- Ay Kee, L.; Bakr Shori, A.; Salihin Baba, A. Bioactivity and health effects of Mentha spicata. Integr. Food Nutr. Metab. 2017, 5, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Prusinowska, R.; Śmigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L.). A review. Herba Pol. 2014, 60, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Kassahun, B.M.; Yosef, W.B.; Mekonnen, S.A. Performance of Lemon Verbena (Aloysia triphylla L.) for Morphological, Economic and Chemical Traits in Ethiopia Luogo. Am. J. Agric. Environ. Sci. 2013, 13, 1576–1581. [Google Scholar]
- Jakovljević, M.; Jokić, S.; Molnar, M.; Jašić, M.; Babić, J.; Jukić, H.; Banjari, I. Bioactive profile of various Salvia officinalis L. Preparations. Plants 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Tzortzakis, N.G.; Tzanakaki, K.; Economakis, C.D.C.D. Effect of origanum oil and vinegar on the maintenance of postharvest quality of tomato. Food Nutr. Sci. 2011, 2, 974–982. [Google Scholar] [CrossRef] [Green Version]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Evaluation of spectrophotometric methods for antioxidant compound measurement in relation to total antioxidant capacity in beverages. Food Chem. 2010, 120, 607–614. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Loupasaki, S.; Petropoulos, S.A.; Tzortzakis, N. Salinity and cation foliar application: Implications on essential oil yield and composition of hydroponically grown spearmint plants. Sci. Hortic. 2019, 256, 108581. [Google Scholar] [CrossRef]
- Wu, C.R.; Lin, W.H.; Hseu, Y.C.; Lien, J.C.; Lin, Y.T.; Kuo, T.P.; Ching, H. Evaluation of the antioxidant activity of five endemic Ligustrum species leaves from Taiwan flora in vitro. Food Chem. 2011, 127, 564–571. [Google Scholar] [CrossRef]
- Neffati, A.; Bouhlel, I.; Ben Sghaier, M.; Boubaker, J.; Limem, I.; Kilani, S.; Skandrani, I.; Bhouri, W.; Le Dauphin, J.; Barillier, D.; et al. Antigenotoxic and antioxidant activities of Pituranthos chloranthus essential oils. Environ. Toxicol. Pharmacol. 2009, 27, 187–194. [Google Scholar] [CrossRef]
- Pandey, G.; Khatoon, S.; Pandey, M.M.; Rawat, A.K.S. Altitudinal variation of berberine, total phenolics and flavonoid content in Thalictrum foliolosum and their correlation with antimicrobial and antioxidant activities. J. Ayurveda Integr. Med. 2018, 9, 169–176. [Google Scholar] [CrossRef]
- Liu, W.; Yin, D.; Li, N.; Hou, X.; Wang, D.; Li, D.; Liu, J. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Sci. Rep. 2016, 6, 1–18. [Google Scholar] [CrossRef]
- Majuakim, L.; Ng, S.Y.; Fadzelly, M.; Bakar, A.; Suleiman, M. Effect of altitude on total phenolics and flavonoids in Sphagnum junghuhnianumin tropical montane forests of Borneo. Sepilok Bull. 2014, 32, 23–32. [Google Scholar]
- Kumar, R.; Joshi, R.; Kumari, M.; Thakur, R.; Kumar, D.; Kumar, S. Elevated CO2 and temperature influence key proteins and metabolites associated with photosynthesis, antioxidant and carbon metabolism in Picrorhiza kurroa. J. Proteomics 2020, 219, 103755. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Hadian, J.; Saharkhiz, M.J.; Nejad Ebrahimi, S. Variation in the phytochemical contents and antioxidant activity of Glycyrrhiza glabrapopulations collected in Iran. Ind. Crops Prod. 2019, 137, 248–259. [Google Scholar] [CrossRef]
- Jugran, A.K.; Bahukhandi, A.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Nandi, S.K. Impact of altitudes and habitats on valerenic acid, total phenolics, flavonoids, tannins, and antioxidant activity of Valeriana jatamansi. Appl. Biochem. Biotechnol. 2016, 179, 911–926. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Setayesh, M.; Siahpoosh, A.; Mashayekhi, H. Antioxidant activity, total phenolic and flavonoids contents of three herbs used as condiments and additives in pickles products. Herba Pol. 2014, 59, 51–62. [Google Scholar] [CrossRef]
- Mahomoodally, F.; Aumeeruddy-Elalfi, Z.; Venugopala, K.N.; Hosenally, M. Antiglycation, comparative antioxidant potential, phenolic content and yield variation of essential oils from 19 exotic and endemic medicinal plants. Saudi J. Biol. Sci. 2019, 26, 1779–1788. [Google Scholar] [CrossRef]
- Khorshidi, J.; Fakhr Tabatabaie, M.; Omidbaigi, R.; Sefidkon, F. Effect of densities of planting on yield and essential oil components of fennel (Foeniculum vulgare Mill var. Soroksary). J. Agric. Sci. 2009, 1, 152–157. [Google Scholar] [CrossRef] [Green Version]
- El-Jalel, L.F.A.; Elkady, W.M.; Gonaid, M.H.; El-Gareeb, K.A. Difference in chemical composition and antimicrobial activity of Thymus capitatus L. essential oil at different altitudes. Futur. J. Pharm. Sci. 2018, 4, 156–160. [Google Scholar] [CrossRef]
- Maurya, A.K.; Devi, R.; Kumar, A.; Koundal, R.; Thakur, S.; Sharma, A.; Kumar, D.; Kumar, R.; Padwad, Y.S.; Chand, G.; et al. Chemical composition, cytotoxic and antibacterial activities of essential oils of cultivated clones of Juniperus communis and wild Juniperus species. Chem. Biodivers. 2018, 15, 1–13. [Google Scholar] [CrossRef]
- Bailen, M.; Julio, L.F.; Diaz, C.E.; Sanz, J.; Martínez-Díaz, R.A.; Cabrera, R.; Burillo, J.; Gonzalez-Coloma, A. Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind. Crops Prod. 2013, 49, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Formisano, C.; Delfine, S.; Oliviero, F.; Tenore, G.C.; Rigano, D.; Senatore, F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind. Crops Prod. 2015, 63, 256–263. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R.; Martí, M.P. Leaf oil of Artemisia abrotanum L. Grown in Cuba. J. Essent. Oil Res. 2011, 23, 119–120. [Google Scholar] [CrossRef]
- Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical characterization by GC-MS and in vitro activity against Candida albicansof volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthiumand Artemisia vulgaris. Chem. Cent. J. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Mucciarelli, M.; Caramiello, R.; Maffei, M.; Chialva, F. Essential oils from some Artemisiaspecies growing spontaneously in North-West Italy. Flavour Fragr. J. 1995, 10, 25–32. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Papapostolou, M.; Kokkini, S.; Tsimidou, M.Z. Diagnostic Potential of FT-IR Fingerprinting in Botanical Origin Evaluation of Laurus nobilis L. Essential oil is supported by GC-FID-MS data. Molecules 2020, 25, 583. [Google Scholar] [CrossRef] [Green Version]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Damyanova, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical Composition and Antimicrobial Activity of Laurus nobilis L. Essential oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef] [Green Version]
- Da Silveira, S.M.; Cunha Júnior, A.; Scheuermann, G.N.; Secchi, F.L.; Vieira, C.R.W. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens. Ciência Rural 2012, 42, 1300–1306. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, L.T.; Feng, Y.X.; Zhang, D.; Guo, S.S.; Pang, X.; Geng, Z.F.; Xi, C.; Du, S.S. Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod. 2019, 140, 111640. [Google Scholar] [CrossRef]
- Demir, V.; Gunhan, T.; Yagcioglu, A.K.; Degirmencioglu, A. Mathematical modelling and the determination of some quality parameters of air-dried bay leaves. Biosyst. Eng. 2004, 88, 325–335. [Google Scholar] [CrossRef]
- Taban, A.; Saharkhiz, M.J.; Niakousari, M. Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustain. Chem. Pharm. 2018, 9, 12–18. [Google Scholar] [CrossRef]
- Mill, L.A.; Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation substrate composition influences morphology, volatilome and essential oil of Lavandula angustifolia Mill. Agronomy 2019, 9, 411. [Google Scholar]
- Détár, E.; Németh, É.Z.; Gosztola, B.; Demján, I.; Pluhár, Z. Effects of variety and growth year on the essential oil properties of lavender (Lavandula angustifolia Mill.) and lavandin (Lavandula x intermedia Emeric ex Loisel.). Biochem. Syst. Ecol. 2020, 90, 104020. [Google Scholar] [CrossRef]
- Hassanein, H.D.; El-Gendy, A.E.N.G.; Saleh, I.A.; Hendawy, S.F.; Elmissiry, M.M.; Omer, E.A. Profiling of essential oil chemical composition of some Lamiaceae species extracted using conventional and microwave-assisted hydrodistillation extraction methods via chemometrics tools. Flavour Fragr. J. 2020, 1–12. [Google Scholar] [CrossRef]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; Masztalerz, K.; Szumny, A. Hs-spme analysis of true lavender (Lavandula angustifolia Mill.) leaves treated by various drying methods. Molecules 2019, 24, 764. [Google Scholar] [CrossRef] [Green Version]
- Oroian, C.; Odagiu, A.; Racz, C.P.; Oroian, I.; Mureşan, I.C.; Duda, M.; Ilea, M.; Braşovean, I.; Iederan, C.; Marchiş, Z. Composition of Lavandula angustifolia L. cultivated in Transylvania, Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Carnat, A.P.; Carnat, A.P.; Fraisse, D.; Lamaison, J.L. The aromatic and polyphenolic composition of lemon verbena tea. Fitoterapia 1999, 70, 44–49. [Google Scholar] [CrossRef]
- Parodi, T.V.; Gressler, L.T.; Silva, L.D.L.; Becker, A.G.; Schmidt, D.; Caron, B.O.; Heinzmann, B.M.; Baldisserotto, B. Chemical composition of the essential oil of Aloysia triphylla under seasonal influence and its anaesthetic activity in fish. Aquac. Res. 2020, 51, 2515–2524. [Google Scholar] [CrossRef]
- Sgarbossa, J.; Schmidt, D.; Schwerz, F.; Schwerz, L.; Prochnow, D.; Caron, B.O. Effect of season and irrigation on the chemical composition of Aloysia triphyllaessential oil. Rev. Ceres 2019, 66, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Tabari, M.A.; Youssefi, M.R.; Esfandiari, A.; Benelli, G. Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res. Vet. Sci. 2017, 114, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Abouhosseini Tabari, M.; Hajizadeh Moghaddam, A.; Maggi, F.; Benelli, G. Anxiolytic and antidepressant activities of Pelargonium roseum essential oil on Swiss albino mice: Possible involvement of serotonergic transmission. Phyther. Res. 2018, 32, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Szutt, A.; Dołhańczuk-Sródka, A.; Sporek, M. Evaluation of chemical composition of essential oils derived from different pelargonium species leaves. Ecol. Chem. Eng. S 2019, 26, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Mehrparvar, M.; Goltapeh, E.M.; Safaie, N.; Ashkani, S.; Hedesh, R.M. Antifungal activity of essential oils against mycelial growth of Lecanicillium fungicola var. fungicola and Agaricus bisporus. Ind. Crops Prod. 2016, 84, 391–398. [Google Scholar] [CrossRef]
- Ahamad, J.; Uthirapathy, S.; Mohammed Ameen, M.S.; Anwer, E.T. Essential Oil Composition and Antidiabetic, Anticancer Activity of Rosmarinus officinalis L. Leaves from Erbil (Iraq). J. Essent. Oil-Bearing Plants 2019, 22, 1544–1553. [Google Scholar] [CrossRef]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef]
- Contini, A.; Di Bello, D.; Azzarà, A.; Giovanelli, S.; D’Urso, G.; Piaggi, S.; Pinto, B.; Pistelli, L.; Scarpato, R.; Testi, S. Assessing the cytotoxic/genotoxic activity and estrogenic/antiestrogenic potential of essential oils from seven aromatic plants. Food Chem. Toxicol. 2020, 138, 111205. [Google Scholar] [CrossRef]
- Sabbahi, M.; El-Hassouni, A.; Tahani, A.; El-Bachiri, A. Volatile variability and antioxidant activity of rosmarinus officinalis essential oil as affected by elevation gradient and vegetal associations. Asian J. Chem. 2019, 31, 1279–1288. [Google Scholar] [CrossRef]
- Bedini, S.; Guarino, S.; Echeverria, M.C.; Flamini, G.; Ascrizzi, R.; Loni, A.; Conti, B. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: A spiced shield against blowflies. Insects 2020, 11, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulak, M.; Gul, F.; Sekeroglu, N. Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Ind. Crops Prod. 2020, 145, 112078. [Google Scholar] [CrossRef]
- Rahmani Samani, M.; Ghasemi Pirbalouti, A.; Moattar, F.; Golparvar, A.R. L-Phenylalanine and bio-fertilizers interaction effects on growth, yield and chemical compositions and content of essential oil from the sage (Salvia officinalis L.)leaves. Ind. Crops Prod. 2019, 137, 1–8. [Google Scholar] [CrossRef]
- Cvetkovikj, I.; Stefkov, G.; Karapandzova, M.; Kulevanova, S.; Satovic, Z. Essential Oils and Chemical Diversity of Southeast European Populations of Salvia officinalis L. Chem. Biodivers. 2015, 12, 1025–1039. [Google Scholar] [CrossRef]
- Elmastaş, M.; Dermirtas, I.; Isildak, O.; Aboul-Enein, H.Y. Antioxidant activity of S-carvone isolated from spearmint (Mentha spicata L. Fam Lamiaceae). J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1465–1475. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [Green Version]
- Marino, S.; Ahmad, U.; Ferreira, M.I.; Alvino, A. Evaluation of the effect of irrigation on biometric growth, physiological response, and essential oil of Mentha spicata (L.). Water 2019, 11, 2264. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.S.; Kumar, S.; Raja, B. Antihypertensive and Antioxidant Potential of Borneol-A Natural Terpene in L-NAME-Induced Hypertensive Rats. Int. J. Pharm. Biol. Arch. 2010, 1, 271–279. [Google Scholar]
- Slamenova, D.; Horvathova, E. Cytotoxic, anti-carcinogenic and antioxidant properties of the most frequent plant volatiles. Neoplasma 2013, 60, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.F.; Yih, K.H.; Yang, C.H.; Huang, K.F. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils. J. Food Drug Anal. 2017, 25, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Michailidi, E.; Tzortzakis, N. Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front. Plant Sci. 2018, 9, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lall, N.; Chrysargyris, A.; Lambrechts, I.; Fibrich, B.; Van Staden, A.B.; Twilley, D.; de Canha, M.N.; Oosthuizen, C.B.; Bodiba, D.; Tzortzakis, N. Sideritis perfoliata (subsp. perfoliata) nutritive value and its potential medicinal properties. Antioxidants 2019, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 1–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldas, R.G.F.; Oliveira, A.R.D.S.; Araújo, A.V.; Lafayette, S.S.L.; Albuquerque, G.S.; Silva-Neto, J.D.C.; Costa-Silva, J.H.; Ferreira, F.; Da Costa, J.G.M.; Wanderley, A.G. Gastroprotective mechanisms of the monoterpene 1,8-cineole (eucalyptol). PLoS ONE 2015, 10, 1–17. [Google Scholar]
- Yu, L.; Yan, J.; Sun, Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol. Med. Rep. 2017, 15, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Shah, B.B.; Mehta, A.A. In vitro evaluation of antioxidant activity of D-Limonene. Asian J. Pharm. Pharmacol. 2018, 4, 883–887. [Google Scholar] [CrossRef]
- Wang, W.; Wu, N.; Zu, Y.G.; Fu, Y.J. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008, 108, 1019–1022. [Google Scholar] [CrossRef]
- Farhath, M.S.S.; Vijaya, P.P.; Vimal, M. An evaluation of toxicity in essential oils of geraniol, geranial acetate, gingerol and eugenol in rats. Int. J. Phytomedicine 2012, 4, 519–524. [Google Scholar]
- Chikhi, I.; Dergal, F.; Gana, D.M.; Dib, M.E.A.; Chaker, H. Chemical composition and antioxidant activity of Solenostemma oleifolium essential oil from southern Algeria. J. Appl. Biotechnol. Rep. 2019, 6, 50–54. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Laoutari, S.; Litskas, V.D.; Stavrinides, M.C.; Tzortzakis, N. Effects of water stress on lavender and sage biomass production, essential oil composition and biocidal properties against Tetranychus urticae (Koch). Sci. Hortic. 2016, 213, 96–103. [Google Scholar] [CrossRef]
- Bourgou, S.; Tammar, S.; Salem, N.; Mkadmini, K.; Msaada, K. Phenolic Composition, Essential Oil, and Antioxidant Activity in the Aerial Part of Artemisia herba-alba from Several Provenances: A Comparative Study. Int. J. Food Prop. 2016, 19, 549–563. [Google Scholar] [CrossRef]
- Chen, L.; Su, J.; Li, L.; Li, B.; Li, W. A new source of natural D-borneol and its characteristic. J. Med. Plants Res. 2011, 5, 3440–3447. [Google Scholar]
- Valifard, M.; Mohsenzadeh, S.; Kholdebarin, B.; Rowshan, V. Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S. Afr. J. Bot. 2014, 93, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Sivropoulou, A.; Nikolaou, C.; Papanikolaou, E.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial, cytotoxic, and antiviral activities of Salvia fructicosa essential oil. J. Agric. Food Chem. 1997, 45, 3197–3201. [Google Scholar] [CrossRef]
- Farag, R.S.; DAW, Z.Y.; ABO-RAYA, S.H.; Abo-RAaya, S.H. Influence of Some Spice Essential Oils on Aspergillus Parasiticus Growth and Production of Aflatoxins in a Synthetic Medium. J. Food Sci. 1989, 54, 74–76. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sani, T.A.; Ameri, A.A.; Imani, M.; Golmakani, E.; Kamali, H. Seasonal variation in the chemical composition, antioxidant activity, and total phenolic content of Artemisia absinthium essential oils. Pharmacogn. Res. 2014, 7, 329–334. [Google Scholar]
- Chrysargyris, A.; Papakyriakou, E.; Petropoulos, S.A.; Tzortzakis, N. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. J. Hazard. Mater. 2019, 368, 584–593. [Google Scholar] [CrossRef]
- Bag, A.; Chattopadhyay, R.R. Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’Ana, A.S.; Khaneghan, A.M.; Gavahian, M.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Crespo, Y.A.; Bravo Sánchez, L.R.; Quintana, Y.G.; Cabrera, A.S.T.; Bermúdez del Sol, A.; Mayancha, D.M.G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon 2019, 5, e01942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fandiño, I.; Fernandez-Turren, G.; Ferret, A.; Moya, D.; Castillejos, L.; Calsamiglia, S. Exploring additive, synergistic or antagonistic effects of natural plant extracts on in vitro beef feedlot-type rumen microbial fermentation conditions. Animals 2020, 10, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Common Name | Latin Name | Family | Plant Material | Reported Medicinal Properties/Indications |
---|---|---|---|---|
Artemisia | Artemisia abrotanum L | Asteraceae | Leaves | Antifungal, anticancer, antiviral antibacterial, antioxidant, anaemia, amenorrhoea, anorexia, chronic fever, hepatitis, splenitis, hysteria [51]. |
Pelargonium | Pelargonium roseum L. | Geraniaceae | Leaves | Antibacterial, antifungal, antioxidant, antitumor, nematocidal, intestinal problems, wounds and respiratory ailments, help hormonal balance, discharge toxins from liver, digestive [52]. |
Laurel | Laurus nobilis L. | Lauraceae | Leaves | Antibacterial, antifungal, cytotoxicity, antioxidant, diuretic, gastrointestinal problems, to treat epilepsy, neuralgia, and parkinsonism [53]. |
Rosemary | Rosmarinus officinalis L. | Lamiaceae | Stem/ leaves | Antibacterial, antihepatotoxic, anti-tumour, anti-inflammatory, anti-trypanosomal, antispasmodic, immune stimulant activity, rheumatic complaints and circulatory disorders, tiredness, defective memory, carminative, rubefacient, promote digestion [54]. |
Spearmint | Mentha spicata L. | Lamiaceae | Stem/ leaves | Anti-inflammatory, sedative, antimicrobial, antioxidant, carminative, antispasmodic, diuretic, insecticidal [55]. |
Lavender | Lavandula angustifolia L. | Lamiaceae | Stem/ leaves | Antibacterial, insecticidal, sedative, analgesic, cytotoxic, anxiolytic, alleviate depression, headaches, and anxiety [56]. |
Lemon verbena | Aloysia triphylla L. | Verbenaceae | Stem/ leaves | Antibacterial, antifungal, antioxidant, treatment of colic, diarrhea, indigestion, insomnia, anxiety, asthma, fever [57]. |
Sage | Salvia officinalis L. | Lamiaceae | Stem/ leaves | Antibacterial, antifungal, anticancer, antiviral, antidiabetic, antimutagenic, antiprotozoal, antidementia, antioxidant, anti-inflammatory [58]. |
Species | Altitude | Total Phenols | Flavonoids | Flavanols | DPPH | FRAP | EO |
---|---|---|---|---|---|---|---|
Plain | 78.42 ± 6.62A | 7.01 ± 0.78A | 7.16 ± 2.29A | 25.02 ± 3.72A | 12.31 ± 1.24A | 1.38 ± 0.04A | |
Mountain | 68.68 ± 4.23A | 7.90 ± 1.14A | 2.49 ± 0.63B | 13.53 ± 0.63B | 11.53 ± 0.84A | 1.17 ± 0.04B | |
Total mean | 73.55 ± 3.94 | 7.46 ± 0.69 | 4.82 ± 1.20 | 19.27 ± 1.97 | 11.92 ± 0.75 | 1.28 ± 0.03 | |
Artemisia | 73.16 ± 12.81BC | 13.52 ± 2.71B | 0.44 ± 0.13C | 12.64 ± 1.63C | 9.57 ± 1.48C | 0.90 ± 0.08CD | |
Pelargonium | 112.03 ± 17.69A | 3.65 ± 0.73D | 29.14 ± 5.78A | 47.70 ± 10.41A | 25.28 ± 1.91A | 0.42 ± 0.10D | |
Laurel | 113.02 ± 5.31A | 8.15 ± 1.25C | 8.48 ± 0.74B | 32.51 ± 5.53B | 15.59 ± 1.22B | 2.68 ± 0.33A | |
Rosemary | 83.89 ± 3.84B | 4.66 ± 0.99CD | 0.28 ± 0.16C | 15.34 ± 1.38C | 12.95 ± 0.87B | 1.03 ± 0.05C | |
Spearmint | 52.28 ± 4.50CD | 8.18 ± 1.13C | 0.00 ± 0.00C | 11.27 ± 1.02C | 6.84 ± 1.22CD | 1.89 ± 0.09B | |
Lavender | 61.06 ± 2.77BC | 17.31 ± 1.03A | 0.02 ± 0.00C | 16.06 ± 0.69C | 13.24 ± 0.80B | 0.63 ± 0.02CD | |
Lemon verbena | 33.47 ± 1.37D | 2.24 ± 0.27D | 0.22 ± 0.05C | 6.13 ± 0.32C | 3.66 ± 0.23D | 0.76 ± 0.11CD | |
Sage | 59.51 ± 4.37BC | 2.06 ± 0.68D | 0.04 ± 0.01C | 12.54 ± 1.26C | 8.23 ± 0.89C | 1.90 ± 0.31B | |
Total mean | 73.55 ± 3.94 | 7.46 ± 0.69 | 4.82 ± 1.20 | 19.27 ± 1.97 | 11.92 ± 0.75 | 1.28 ± 0.12 | |
Artemisia | Plain | 40.6 ± 2.4ijkY | 4.7 ± 0.8efghi | 0.06 ± 0.02d | 7.5 ± 1.0fg | 4.8 ± 0.6fg | 0.58 ± 0.02g |
Mountain | 105.7 ± 17.1c | 22.3 ± 1.0a | 0.8 ± 0.1d | 17.8 ± 0.3c | 14.3 ± 0.5c | 0.68 ± 0.01efg | |
Pelargonium | Plain | 166.9 ± 12.0a | 5.9 ± 0.6defg | 47.1 ± 3.8a | 80.9 ± 6.0a | 29.9 ± 2.1a | 0.65 ± 0.07fg |
Mountain | 57.1 ± 5.2ghij | 1.4 ± 0.2ij | 11.1 ± 1.7b | 14.5 ± 1.0cde | 20.6 ± 1.7b | 0.19 ± 0.04e | |
Laurel | Plain | 126.0 ± 6.6b | 11.3 ± 1.5c | 9.3 ± 1.2bc | 49.6 ± 4.1b | 18.9 ± 1.0b | 2.05 ± 0.39c |
Mountain | 100.0 ± 3.5cd | 5.0 ± 0.8efgh | 7.7 ± 0.8c | 15.4 ± 0.8cde | 12.3 ± 1.1cd | 3.30 ± 0.11a | |
Rosemary | Plain | 87.0 ± 4.7cde | 2.7 ± 1.2ghij | 0.56 ± 0.02d | 14.4 ± 2.7cde | 12.8 ± 1.5cd | 1.08 ± 0.07de |
Mountain | 80.8 ± 6.2def | 6.6 ± 1.2def | nd | 16.3 ± 1.0cd | 13.1 ± 1.0cd | 0.99 ± 0.08def | |
Spearmint | Plain | 41.9 ± 3.5ijk | 7.4 ± 1.8de | nd | 9.0 ± 0.9efg | 5.2 ± 0.7fg | 2.61 ± 0.04b |
Mountain | 62.7 ± 5.8fgh | 8.8 ± 1.5cd | nd | 13.5 ± 1.3cdef | 8.5 ± 2.2ef | 1.20 ± 0.06d | |
Lavender | Plain | 58.1 ± 3.3ghi | 17.0 ±1.0b | 0.90 ± 0.05d | 16.4 ± 0.8cd | 12.6 ± 0.9cd | 0.99 ± 0.13def |
Mountain | 64.0 ± 4.4fgh | 17.2 ± 1.9b | 0.91 ± 0.05d | 15.7 ± 1.2cde | 13.9 ± 1.4cd | 0.54 ± 0.01ge | |
Lemon verbena | Plain | 36.6 ± 1.8jk | 2.9 ± 1.6ghij | 0.15 ± 0.05d | 6.7 ± 0.4g | 4.1 ± 0.3g | 1.06 ± 0.07de |
Mountain | 30.3 ± 1.1k | 1.6 ± 0.3hij | 0.28 ± 0.09d | 5.5 ± 0.4g | 3.2 ± 0.2g | 0.73 ± 0.07efg | |
Sage | Plain | 70.1 ± 4.9efg | 3.8 ± 0.8fghi | 0.08 ± 0.04d | 15.7 ± 1.5cde | 10.14 ± 1.05de | 2.06 ± 0.02c |
Mountain | 48.9 ± 3.9hijk | 0.29 ± 0.03j | nd | 9.4 ± 0.9defg | 6.32 ± 0.97fg | 1.72 ± 0.13c | |
Species | (S) | *** | *** | *** | *** | *** | *** |
Altitude | (A) | ** | ns | *** | *** | ns | ** |
Interaction | S x A | *** | *** | *** | *** | *** | *** |
Components | RI | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
α-Pinene | 933 | 0.19 ± 0.097 | 0.39 ± 0.159 | 0.343 |
Camphene | 948 | 3.63 ± 0.151 | 2.76 ± 0.026 | <0.05 |
β-Pinene | 977 | 0.33 ± 0.017 | 0.60 ± 0.248 | 0.339 |
α-Terpinene | 1017 | 0.86 ± 0.159 | 0.26 ± 0.015 | <0.05 |
p-Cymene | 1024 | 5.69 ± 0.466 | 7.26 ± 0.364 | <0.05 |
β-Phellandrene | 1029 | 0.00± 0.000 | 0.12 ± 0.072 | 0.163 |
1,8-Cineole | 1031 | 19.63 ± 1.400 | 27.02 ± 0.341 | <0.01 |
γ-Terpinene | 1058 | nd | 0.37 ± 0.003 | - |
cis-Sabinene hydrate | 1067 | 0.23 ± 0.123 | nd | 0.132 |
trans-Sabinene hydrate | 1100 | 0.27 ± 0.144 | nd | 0.131 |
cis-p Menth-2-en-1-ol | 1121 | nd | 0.41 ± 0.017 | - |
trans-p Menth-2-en-1-ol | 1138 | 0.44 ± 0.02 | 0.54 ± 0.017 | <0.05 |
Camphor | 1145 | 8.59 ± 0.607 | 5.92 ± 0.12 | <0.05 |
Borneol | 1166 | 11.08 ± 0.68 | 10.88 ± 0.07 | 0.789 |
Terpinen-4-ol | 1178 | 0.74 ± 0.026 | 1.11 ± 0.026 | <0.001 |
Ascaridole | 1238 | 1.7 ± 0.536 | 0.82 ± 0.009 | 0.174 |
cis-Piperotone epoxide | 1254 | nd | 0.31 ± 0.012 | - |
trans-Piperotone epoxide | 1257 | nd | 0.57 ± 0.009 | - |
Isobornyl acetate | 1285 | 0.59 ± 0.137 | 0.49 ± 0.020 | 0.537 |
Carvacrol | 1300 | nd | 0.16 ± 0.095 | - |
Silphiperfol-5-ene | 1324 | 0.46 ± 0.070 | 0.61 ± 0.046 | 0.155 |
Presilphiperfol-7-ene | 1336 | nd | 0.08 ± 0.043 | - |
7-epi Silphiperfol-5-ene | 1343 | 0.21 ± 0.111 | 0.07 ± 0.040 | 0.312 |
Silphiperfol-4.7(14)-diene | 1359 | 0.32 ± 0.035 | 0.23 ± 0.029 | 0.108 |
Germacrene D | 1497 | 0.36 ± 0.180 | nd | - |
Silphiperfolan-6a-ol | 1518 | 0.67 ± 0.050 | 0.79 ± 0.038 | 0.143 |
cis-Dihydroagarofuran | 1533 | 13.00 ± 0.767 | 11.74 ± 0.191 | 0.187 |
Silphiperfol-5-en-3-ol B | 1544 | 1.90 ± 0.128 | 1.56 ± 0.032 | 0.058 |
Silphiperfol-5-en-3-one B | 1556 | 2.54 ± 0.074 | 1.85 ± 0.020 | <0.001 |
Silphiperfol-5-en-3-ol A | 1562 | 2.02 ± 0.156 | 1.55 ± 0.061 | <0.05 |
Silphiperfol-5-en-3-one A | 1581 | 13.06 ± 1.320 | 9.71 ± 0.294 | 0.068 |
Spathulenol | 1582 | 0.21 ± 0.207 | nd | - |
Presilphiperfol-8-ol | 1585 | 3.70 ± 0.199 | 3.17 ± 0.012 | 0.056 |
Caryophylla-4(12),8(13)-dien-5b-ol | 1638 | 1.22 ± 0.152 | 0.65 ± 0.058 | <0.05 |
epi-α-Bisabolol | 1685 | 0.70 ± 0.055 | nd | - |
Total Identified | 94.35 ± 0.981 | 92.01 ± 0.044 | 0.075 | |
Monoterpenes hydrocarbons | 10.70 ± 0.422 | 11.77 ± 0.109 | 0.070 | |
Sesquiterpenes hydrocarbons | 1.35 ± 0.321 | 0.98 ± 0.008 | 0.319 | |
Oxygenated monoterpenes | 42.69 ±1.301 | 47.75 ± 0.285 | <0.05 | |
Oxygenated sesquiterpenes | 39.03 ± 1.740 | 31.01 ± 0.326 | <0.05 | |
Others | 0.58 ±0.136 | 0.49 ± 0.020 | 0.537 |
Components | RI | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
α-Τhujene | 926 | 0.07 ± 0.043 | 0.10 ± 0.050 | 0.709 |
α-Pinene | 933 | 3.13 ± 0.191 | 4.03 ± 0.102 | <0.05 |
Camphene | 948 | 0.03 ± 0.027 | 0.02 ± 0.017 | 0.766 |
Sabinene | 973 | 1.52 ± 0.100 | 8.72 ± 0.067 | <0.001 |
β-Pinene | 977 | 3.00 ± 0.118 | 3.78 ± 0.044 | <0.01 |
Dehydro-1,8-cineole | 991 | 0.56 ± 0.040 | 0.52 ± 0.070 | 0.647 |
α-Terpinene | 1017 | 0.14 ± 0.034 | 0.34 ± 0.038 | <0.05 |
p-Cymene | 1024 | 2.97 ± 0.252 | 0.70 ± 0.009 | <0.001 |
Limonene | 1028 | 0.69 ± 0.067 | 1.44 ± 0.055 | <0.001 |
1,8-Cineole | 1031 | 69.48 ± 1.577 | 56.63 ± 0.591 | <0.01 |
γ-Terpinene | 1058 | 0.36 ± 0.062 | 0.77 ± 0.052 | <0.01 |
cis-Sabinene hydrate | 1067 | 0.06 ± 0.038 | 0.37 ± 0.038 | <0.01 |
Terpinolene | 1089 | nd | 0.14 ± 0.015 | - |
trans-Sabinene hydrate | 1100 | 0.10 ± 0.052 | 0.50 ± 0.029 | <0.01 |
trans-p Mentha-2,8-dienol | 1119 | 0.15 ± 0.077 | 0.18 ± 0.096 | 0.800 |
trans-Pinocarveol | 1139 | 0.89 ± 0.090 | 0.42 ± 0.096 | <0.05 |
Camphor | 1145 | 0.04 ± 0.037 | 0.28 ± 0.032 | <0.01 |
Pinocarvone | 1163 | 0.80 ± 0.120 | 0.30 ± 0.085 | <0.05 |
p-Mentha-1,5-dien-8-ol | 1165 | 0.59 ± 0.118 | 0.54 ± 0.084 | 0.732 |
Terpinen-4-ol | 1178 | 2.78 ± 0.364 | 1.98 ± 0.187 | 0.123 |
Thuj-3-en-10-al | 1184 | 0.11 ± 0.058 | 0.12 ± 0.033 | 0.962 |
cis-Pinocarveol | 1186 | 0.43 ± 0.060 | 0.07 ± 0.073 | <0.05 |
α-Terpineol | 1191 | 0.78 ± 0.171 | 1.21 ± 0.32 | 0.299 |
Myrtenal | 1197 | 1.14 ± 0.149 | 0.52 ± 0.115 | <0.05 |
trans-Carveol | 1219 | 0.11 ± 0.012 | nd | - |
cis-Carveol | 1231 | 0.47 ± 0.058 | 0.13 ± 0.078 | <0.05 |
Carvone | 1244 | 0.49 ± 0.107 | 1.21 ± 0.111 | <0.01 |
Bornyl acetate | 1285 | 0.03 ± 0.033 | 0.02 ± 0.017 | 0.678 |
δ-Terpinyl acetate | 1316 | 1.02 ± 0.222 | 0.95 ± 0.139 | 0.802 |
α-Terpinyl acetate | 1349 | 7.19 ± 0.948 | 13.07 ± 0.359 | <0.01 |
Eugenol | 1356 | nd | 0.14 ± 0.137 | - |
Eugenol methyl | 1404 | 0.07 ± 0.073 | nd | - |
Caryophyllene oxide | 1587 | 0.11 ± 0.107 | 0.03 ± 0.027 | 0.507 |
β-Εudesmol | 1651 | 0.31 ± 0.043 | 0.10 ± 0.050 | <0.05 |
Total Identified | 99.62 ± 0.188 | 99.34 ± 0.190 | 0.355 | |
Monoterpenes hydrocarbons | 11.91 ± 0.659 | 20.04 ± 0.274 | <0.001 | |
Sesquiterpenes hydrocarbons | 0.00 ± 0.000 | 0.00 ± 0.000 | - | |
Oxygenated monoterpenes | 78.08 ±1.528 | 64.70 ± 0.340 | <0.001 | |
Oxygenated sesquiterpenes | 0.41 ± 0.084 | 0.13 ± 0.068 | 0.059 | |
Others | 8.31 ±1.126 | 14.04 ± 0.402 | <0.01 |
Components | RI | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
α-Pinene | 933 | 1.21 ± 0.342 | 1.01 ± 0.049 | 0.606 |
Camphene | 948 | 1.23 ± 0.183 | 1.12 ± 0.032 | 0.575 |
Sabinene | 973 | 0.22 ± 0.015 | 0.07 ± 0.038 | <0.05 |
β-Pinene | 977 | 1.07 ± 0.193 | 1.15 ± 0.053 | 0.698 |
p-Cymene | 1024 | 1.28 ± 0.046 | 0.96 ± 0.031 | <0.01 |
Limonene | 1028 | 1.44 ± 0.362 | 1.98 ± 0.190 | 0.254 |
1,8-Cineole | 1031 | 45.31 ± 2.177 | 30.82 ± 1.099 | <0.01 |
γ-Terpinene | 1058 | 0.04 ± 0.037 | 0.17 ± 0.015 | <0.05 |
cis-Sabinene hydrate | 1067 | 0.31 ± 0.102 | nd | - |
Linalool | 1100 | 0.30 ± 0.137 | 7.47 ± 2.038 | <0.05 |
α-Campholenal | 1127 | 0.06 ± 0.063 | 0.08 ± 0.042 | 0.805 |
trans-Pinocarveol | 1139 | 0.36 ± 0.160 | 0.28 ± 0.025 | 0.647 |
Camphor | 1145 | 30.48 ± 0.935 | 34.29 ± 0.946 | <0.05 |
Pinocarvone | 1163 | 0.41 ± 0.160 | 0.30 ± 0.028 | 0.547 |
Borneol | 1166 | 5.48 ± 0.520 | 6.34 ± 0.239 | 0.206 |
Terpene-4-ol | 1178 | 0.48 ± 0.052 | 1.36 ± 0.228 | <0.05 |
meta-p-Cymen-8-ol | 1181 | 0.17 ± 0.091 | nd | - |
p-Cymen-8-ol | 1185 | 0.41 ± 0.058 | 0.21 ± 0.029 | <0.05 |
Cryptone | 1187 | 0.96 ± 0.513 | 0.90 ± 0.112 | 0.905 |
α-Terpineol | 1191 | 0.68 ± 0.083 | 0.84 ± 0.083 | 0.244 |
Myrtenal | 1197 | 0.73 ± 0.397 | 0.39 ± 0.041 | 0.446 |
Verbenone | 1211 | 0.09 ± 0.087 | nd | - |
trans-Carveol | 1219 | 0.06 ± 0.057 | 0.15 ± 0.078 | 0.371 |
Bornyl formate | 1229 | nd | 0.25 ± 0.010 | - |
Cumic aldehyde | 1241 | 0.75 ± 0.377 | 0.93 ± 0.050 | 0.655 |
Carvone | 1244 | 1.34 ± 0.003 | 5.53 ± 1.591 | <0.05 |
Linalool acetate | 1255 | nd | 0.61 ± 0.296 | - |
Bornyl acetate | 1285 | 0.21 ± 0.107 | 0.07 ± 0.070 | 0.326 |
Lavandulyl acetate | 1290 | 0.38 ± 0.010 | 0.14 ± 0.070 | <0.05 |
α-Santalene | 1423 | 0.22 ± 0.111 | 0.22 ± 0.041 | 0.979 |
γ-Cadinene | 1525 | 0.55 ± 0.423 | 0.11 ± 0.056 | 0.364 |
Caryophyllene oxide | 1587 | 1.10 ± 0.213 | 1.24 ± 0.088 | 0.576 |
Cubenol | 1616 | 0.06 ± 0.060 | nd | - |
tau-Cadinol | 1642 | 1.37 ± 0.794 | 0.55 ± 0.055 | 0.357 |
Bisabolol oxide II | 1656 | 0.24 ± 0.119 | 0.04 ± 0.043 | 0.201 |
α-Bisabolol | 1685 | 0.33 ± 0.167 | 0.06 ± 0.057 | 0.191 |
Muurol-5-en-4-one | 1689 | 0.21 ± 0.207 | nd | - |
Total Identified | 99.49 ± 0.177 | 99.67 ± 0.068 | 0.405 | |
Monoterpenes hydrocarbons | 5.26 ± 0.150 | 5.45 ± 0.281 | 0.590 | |
Sesquiterpenes hydrocarbons | 0.76 ± 0.320 | 0.33 ± 0.028 | 0.249 | |
Oxygenated monoterpenes | 87.39 ±1.279 | 89.28 ± 0.890 | 0.293 | |
Oxygenated sesquiterpenes | 3.10 ± 0.784 | 1.88 ± 0.195 | 0.205 | |
Others | 1.76 ±0.421 | 1.96 ± 0.353 | 0.730 |
Components | RI | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
α-Pinene | 933 | 1.21 ± 0.120 | 1.82 ± 0.699 | 0.440 |
Camphene | 948 | 0.42 ± 0.118 | 2.00 ± 1.155 | 0.244 |
Sabinene | 973 | 1.87 ± 0.119 | 0.68 ± 0.199 | <0.01 |
Oct-1-en-3-ol | 975 | nd | 0.19 ± 0.110 | - |
β-Pinene | 977 | 0.30 ± 0.055 | 0.70 ± 0.401 | 0.379 |
6-methyl-5 Hepten-2-one | 984 | 0.36 ± 0.045 | 0.06 ± 0.038 | <0.01 |
β-Myrcene | 989 | 0.27 ± 0.023 | 0.31 ± 0.124 | 0.767 |
p Cymene | 1006 | nd | 0.28 ± 0.162 | - |
Limonene | 1026 | 15.67 ± 0.616 | 8.81 ± 1.091 | <0.01 |
1,8-Cineole | 1031 | 6.85 ± 0.320 | 8.41 ± 2.327 | 0.543 |
cis-Sabinene hydrate | 1067 | 0.30 ± 0.006 | 0.09 ± 0.052 | <0.05 |
Linalool | 1100 | nd | 0.11 ± 0.066 | - |
α-Thujone | 1106 | 1.13 ± 0.312 | 5.25 ± 2.921 | 0.233 |
β-Thujone | 1116 | 0.23 ± 0.119 | 1.29 ± 0.745 | 0.231 |
Camphor | 1145 | 1.35 ± 0.341 | 5.87 ± 3.230 | 0.236 |
Borneol | 1166 | 0.11 ± 0.113 | 0.87 ± 0.358 | 0.114 |
Isocitral | 1177 | 0.20 ± 0.101 | 0.27 ± 0.101 | 0.665 |
α-Terpineol | 1191 | 1.02 ± 0.035 | 0.45 ± 0.139 | <0.05 |
Neral (β cis Citral) | 1240 | 16.03 ± 0.642 | 17.72 ± 3.014 | 0.612 |
Carvone | 1244 | 0.08 ± 0.080 | 0.06 ± 0.032 | 0.800 |
Geranial (α trans Citral) | 1271 | 22.42 ± 0.866 | 29.06 ± 3.398 | 0.131 |
α-Copaene | 1376 | 0.37 ± 0.025 | nd | - |
Geranyl acetate | 1383 | 0.81 ± 0.029 | 0.82 ± 0.228 | 0.967 |
β-Bourbonene | 1414 | 0.52 ± 0.018 | 0.08 ± 0.046 | <0.001 |
α-Cedrene | 1422 | nd | 0.10 ± 0.055 | - |
β-Caryophyllene | 1425 | 2.20 ± 0.226 | 0.51 ± 0.188 | <0.01 |
Alloaromadendrene | 1464 | 0.37 ± 0.030 | 0.13 ± 0.043 | <0.05 |
ar-Curcumene | 1496 | 7.42 ± 0.451 | 5.46 ± 1.103 | 0.176 |
Cubebol | 1527 | 0.28 ± 0.181 | nd | - |
Nerolidol E | 1568 | 0.32 ± 0.006 | 0.16 ± 0.092 | 0.159 |
Spathulenol | 1581 | 6.45 ± 0.264 | 3.08 ± 0.921 | <0.05 |
Caryophyllene oxide | 1587 | 9.38 ± 0.702 | 4.67 ± 0.990 | <0.05 |
Humulene epoxide II | 1608 | 0.28 ± 0.024 | nd | - |
epi-α-Cadinol | 1641 | 0.79 ± 0.047 | 0.24 ± 0.136 | <0.05 |
Total Identified | 98.99 ± 0.206 | 99.53 ± 0.089 | 0.075 | |
Monoterpenes hydrocarbons | 19.73 ± 0.833 | 14.60 ± 1.125 | <0.05 | |
Sesquiterpenes hydrocarbons | 10.87 ± 0.743 | 6.28 ± 1.431 | <0.05 | |
Oxygenated monoterpenes | 49.72 ±1.006 | 69.45 ± 2.782 | <0.01 | |
Oxygenated sesquiterpenes | 17.50 ± 1.116 | 8.13 ± 2.139 | <0.05 | |
Others | 1.16 ±0.069 | 1.07 ± 0.375 | 0.813 |
Components | RI | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
α-Pinene | 933 | 0.23 ± 0.015 | 6.64 ± 0.372 | <0.001 |
β-Pinene | 977 | nd | 0.67 ± 0.015 | - |
β-Myrcene | 989 | nd | 0.26 ± 0.006 | - |
Limonene | 1028 | nd | 0.41 ± 0.009 | - |
Artemisia ketone | 1059 | nd | 2.11 ± 0.041 | - |
Linalool | 1100 | 1.02 ± 0.225 | 0.88 ± 0.018 | 0.578 |
cis-Rose oxide | 1110 | 1.89 ± 0.288 | 5.79 ± 0.116 | <0.001 |
trans-Rose oxide | 1126 | 0.76 ± 0.132 | 1.88 ± 0.038 | <0.001 |
Camphor | 1145 | nd | 0.25 ± 0.003 | - |
Menthone | 1153 | 0.08 ± 0.040 | 0.16 ± 0.007 | 0.132 |
Isomenthone | 1164 | 5.78 ± 0.218 | 10.61 ± 0.217 | <0.001 |
Citronellol | 1227 | 36.69 ± 1.577 | 24.25 ± 0.495 | <0.01 |
Neral (β cis Citral) | 1240 | 0.27 ± 0.028 | 0.00 ± 0.000 | <0.001 |
Carvone | 1244 | nd | 0.74 ± 0.015 | - |
Geraniol | 1253 | 15.45 ± 1.697 | 11.13 ± 0.142 | <0.05 |
Geranial | 1271 | 0.86 ± 0.020 | 0.44 ± 0.009 | <0.001 |
Citronellyl formate | 1275 | 13.29 ± 0.212 | 14.11 ± 0.290 | 0.085 |
p-Menth-1-en-9-ol | 1299 | 0.09 ± 0.043 | 0.70 ± 0.015 | <0.001 |
Geranyl formate | 1302 | 4.21 ± 0.353 | 4.75 ± 0.099 | 0.215 |
Citronellyl acetate | 1352 | 0.21 ± 0.015 | nd | - |
Geranyl acetate | 1383 | 0.39 ± 0.048 | nd | - |
β-Bourbonene | 1386 | 0.97 ± 0.160 | nd | - |
β-Caryophyllene | 1425 | 0.35 ± 0.009 | nd | - |
Citronellyl propanoate | 1450 | 0.35 ± 0.009 | nd | - |
Geranyl proponoate | 1487 | 0.86 ± 0.099 | 0.49 ± 0.012 | <0.05 |
Germacrene D | 1497 | 1.35 ± 0.060 | 0.34 ± 0.009 | <0.001 |
Viridiflorene | 1509 | 0.88 ± 0.020 | nd | - |
δ-Cadinene | 1534 | 0.45 ± 0.031 | 0.42 ± 0.009 | 0.354 |
Citronellyl butanoate | 1537 | 0.51 ± 0.018 | nd | - |
Geranyl butanoate | 1565 | 0.60 ± 0.084 | 0.89 ± 0.020 | <0.05 |
Phenethyl tiglate | 1588 | 1.90 ± 0.165 | 2.50 ± 0.049 | <0.05 |
γ-Eudesmol | 1621 | 6.92 ± 0.079 | 5.92 ± 0.122 | <0.01 |
β-Εudesmol | 1651 | 0.39 ± 0.021 | 0.64 ± 0.015 | <0.001 |
Citronellyl tiglate | 1665 | 0.44 ± 0.083 | nd | - |
Geranyl tiglate | 1700 | 2.43 ± 0.052 | 1.58 ± 0.019 | <0.001 |
Farnesyl acetone | 2005 | nd | 1.22 ± 0.023 | - |
Total Identified | 99.65 ± 0.208 | 99.75 ± 0.128 | 0.713 | |
Monoterpenes hydrocarbons | 0.23 ± 0.015 | 7.97 ± 0.364 | <0.001 | |
Sesquiterpenes hydrocarbons | 4.01 ± 0.131 | 0.75 ± 0.014 | <0.001 | |
Oxygenated monoterpenes | 76.20 ±0.508 | 73.04 ± 0.620 | <0.05 | |
Oxygenated sesquiterpenes | 10.19 ± 0.032 | 8.13 ± 0.104 | <0.001 | |
Others | 9.03 ± 0.389 | 9.85 ± 0.095 | 0.111 |
Components | RΙ | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
Tricyclene | 922 | 0.22 ± 0.003 | 0.20 ± 0.006 | <0.05 |
α-Thujene | 926 | 0.01 ± 0.003 | 0.04 ± 0.034 | 0.341 |
α-Pinene | 933 | 12.01 ± 0.255 | 13.05 ± 0.625 | 0.196 |
Camphene | 948 | 8.29 ± 0.135 | 8.12 ± 0.273 | 0.614 |
β-Pinene | 977 | 1.67 ± 0.02 | 1.71 ± 0.513 | 0.942 |
n-Octanone | 984 | 0.01 ± 0.007 | 0.01 ± 0.007 | 0.519 |
β-Myrcene | 989 | 1.07 ± 0.007 | 1.18 ± 0.134 | 0.460 |
3-Octanol | 1003 | 0.03 ± 0.000 | 0.03 ± 0.030 | 1.000 |
α-Phellandrene | 1004 | 0.09 ± 0.000 | 0.14 ± 0.030 | 0.146 |
α-Terpinene | 1017 | 0.32 ± 0.000 | 0.53 ± 0.150 | 0.234 |
p-Cymene | 1024 | 3.03 ± 0.061 | 3.03 ± 0.248 | 0.990 |
Limonene | 1028 | 3.84 ± 0.050 | 3.94 ± 0.145 | 0.537 |
1,8-Cineole | 1031 | 32.94 ± 0.703 | 32.94 ± 0.927 | 0.996 |
γ-Terpinene | 1058 | 0.23 ± 0.018 | 0.63 ± 0.325 | 0.286 |
Terpinolene | 1089 | 0.22 ± 0.007 | 0.38 ± 0.084 | 0.118 |
Linalool | 1100 | 0.70 ± 0.043 | 0.63 ± 0.187 | 0.734 |
β-Thujone | 1116 | 0.02 ± 0.009 | 0.09 ± 0.035 | 0.100 |
Camphor | 1145 | 20.86 ± 0.401 | 19.21 ± 0.445 | <0.05 |
Borneol | 1166 | 8.94 ± 0.143 | 7.88 ± 1.071 | 0.385 |
Terpinen-4-ol | 1178 | 0.92 ± 0.035 | 0.97 ± 0.041 | 0.465 |
p-Cymen-8-ol | 1185 | 0.06 ± 0.006 | 0.03 ± 0.018 | 0.224 |
α-Terpineol | 1191 | 3.05 ± 0.107 | 2.58 ± 0.141 | <0.05 |
Bornyl acetate | 1285 | 0.56 ± 0.103 | 0.85 ± 0.254 | 0.355 |
Methyl eugenol | 1404 | 0.19 ± 0.035 | 0.19 ± 0.078 | 0.941 |
β-Caryophyllene | 1425 | 0.46 ± 0.059 | 1.14 ± 0.212 | <0.05 |
α-Caryophyllene | 1462 | 0.03 ± 0.013 | 0.12 ± 0.012 | <0.01 |
δ-Cadinene | 1534 | 0.03 ± 0.009 | 0.10 ± 0.017 | <0.05 |
Caryophyllene oxide | 1587 | 0.06 ± 0.015 | 0.04 ± 0.026 | 0.678 |
α-Bisabolol | 1685 | 0.05 ± 0.025 | 0.09 ± 0.019 | 0.238 |
Total Identified | 99.87 ± 0.050 | 99.87 ± 0.030 | 0.915 | |
Monoterpenes hydrocarbons | 30.97 ± 0.409 | 32.96 ± 1.774 | 0.335 | |
Sesquiterpenes hydrocarbons | 0.51 ± 0.078 | 1.36 ± 0.239 | <0.05 | |
Oxygenated monoterpenes | 67.48 ±0.233 | 64.33 ± 2.151 | 0.219 | |
Oxygenated sesquiterpenes | 0.11 ± 0.039 | 0.13 ± 0.044 | 0.638 | |
Others | 0.79 ± 0.133 | 1.07 ± 0.368 | 0.519 |
Components | RI | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
Salvene | 865 | 0.11 ± 0.015 | nd | - |
Tricyclene | 922 | 0.23 ± 0.012 | 0.23 ± 0.032 | 0.926 |
α-Thujene | 926 | 0.18 ± 0.006 | 0.13 ± 0.067 | 0.525 |
α-Pinene | 933 | 4.33 ± 0.133 | 5.62 ± 0.479 | <0.05 |
Camphene | 948 | 7.10 ± 0.258 | 8.13 ± 0.493 | 0.138 |
β-Pinene | 977 | 2.90 ± 0.101 | 3.31 ± 0.227 | 0.179 |
β-Myrcene | 989 | 1.69 ± 0.110 | 1.47 ± 0.043 | 0.136 |
α-Terpinene | 1017 | 0.12 ± 0.009 | 0.05 ± 0.050 | 0.222 |
o-Cymene | 1024 | 1.42 ± 0.115 | 0.71 ± 0.052 | <0.01 |
Limonene | 1028 | 2.15 ± 0.059 | 2.46 ± 0.055 | <0.05 |
1,8-Cineole | 1031 | 16.69 ± 0.524 | 15.28 ± 0.359 | 0.091 |
γ-Terpinene | 1058 | 0.20 ± 0.021 | 0.29 ± 0.010 | <0.05 |
Terpinolene | 1089 | 0.03 ± 0.030 | 0.18 ± 0.021 | <0.05 |
Linalool | 1100 | 0.14 ± 0.003 | 0.06 ± 0.057 | 0.202 |
α-Thujone | 1106 | 23.83 ± 0.071 | 5.34 ± 0.426 | <0.001 |
β-Thujone | 1116 | 5.23 ± 0.176 | 13.32 ± 0.665 | <0.001 |
iso-3-Thujanol | 1133 | nd | 0.33 ± 0.031 | - |
trans-Sabinol | 1140 | 0.30 ± 0.018 | 0.47 ± 0.006 | <0.001 |
Camphor | 1145 | 22.26 ± 1.025 | 16.98 ± 0.474 | <0.01 |
Borneol | 1166 | 3.54 ± 0.125 | 13.01 ± 0.656 | <0.001 |
Terpinen-4-ol | 1178 | 0.81 ± 0.049 | 0.41 ± 0.023 | <0.001 |
α-Terpineol | 1191 | 0.23 ± 0.024 | 0.15 ± 0.078 | 0.417 |
Estragol | 1197 | 0.16 ± 0.009 | nd | - |
Bornyl acetate | 1285 | 0.59 ± 0.049 | 2.21 ± 0.421 | <0.05 |
trans-sabinyl acetate | 1292 | 0.11 ± 0.009 | nd | - |
Copaene | 1349 | 0.02 ± 0.023 | 0.41 ± 0.067 | <0.01 |
β-Caryophyllene | 1425 | 0.48 ± 0.141 | 3.49 ± 0.360 | <0.001 |
α-Caryophyllene | 1462 | 0.86 ± 0.179 | 0.48 ± 0.052 | 0.111 |
γ-Cadinene | 1525 | nd | 0.29 ± 0.047 | - |
δ-Cadinene | 1534 | nd | 0.71 ± 0.115 | - |
Caryophyllene oxide | 1587 | 0.15 ± 0.033 | 0.27 ± 0.035 | 0.062 |
Viridiflorol | 1594 | 2.77 ± 0.297 | 0.88 ± 0.032 | <0.01 |
Humulene epoxide II | 1608 | 0.64 ± 0.065 | 0.00 ± 0.000 | <0.001 |
Cubenol | 1643 | nd | 0.42 ± 0.069 | - |
neo-5-Cedranol | 1699 | nd | 0.66 ± 0.174 | - |
Manool | 2055 | 0.72 ± 0.184 | 2.25 ± 0.514 | <0.05 |
Total Identified | 99.97 ± 0.030 | 100.00 ± 0.000 | 0.374 | |
Monoterpenes hydrocarbons | 20.35 ± 0.426 | 22.58 ± 1.284 | 0.174 | |
Sesquiterpenes hydrocarbons | 1.36 ± 0.304 | 5.38 ± 0.572 | <0.01 | |
Oxygenated monoterpenes | 73.20 ± 0.368 | 65.53 ± 0.228 | <0.001 | |
Oxygenated sesquiterpenes | 3.55 ± 0.324 | 2.23 ± 0.270 | <0.05 | |
Others | 1.53 ± 0.178 | 4.45 ± 0.840 | <0.05 |
Components | RI | Plain | Mountain | Student’s t-Test |
---|---|---|---|---|
α-Pinene | 933 | 1.01 ± 0.052 | 0.81 ± 0.040 | <0.05 |
Camphene | 948 | 0.08 ± 0.006 | 0.09 ± 0.006 | 0.288 |
Sabinene | 973 | 0.67 ± 0.032 | 1.26 ± 0.061 | <0.001 |
β-Pinene | 977 | 1.32 ± 0.046 | 0.88 ± 0.380 | 0.311 |
β-Myrcene | 989 | 0.63 ± 0.032 | 0.55 ± 0.026 | 0.123 |
3-octanol | 995 | 0.15 ± 0.009 | 0.30 ± 0.024 | <0.01 |
Limonene | 1028 | 12.07 ± 0.302 | 6.65 ± 0.055 | <0.001 |
1,8-Cineole | 1031 | 4.98 ± 0.234 | 5.68 ± 0.150 | <0.05 |
cis-β-Ocimene | 1036 | 0.13 ± 0.006 | 0.18 ± 0.009 | <0.05 |
trans-β-Ocimene | 1046 | nd | 0.06 ± 0.003 | - |
γ-Τerpinene | 1058 | 0.04 ± 0.003 | 0.09 ± 0.003 | <0.001 |
cis-Sabinene hydrate | 1067 | 0.19 ± 0.012 | 0.30 ± 0.017 | <0.01 |
3-Octanol acetate | 1121 | nd | 0.10 ± 0.003 | - |
iso-Μenthone | 1164 | 0.08 ± 0.003 | nd | - |
Borneol | 1166 | 0.26 ± 0.012 | 0.25 ± 0.009 | 0.670 |
Terpinen-4-ol | 1178 | 0.12 ± 0.009 | 0.23 ± 0.012 | <0.001 |
α-Τerpineol | 1191 | 0.19 ± 0.009 | 0.07 ± 0.006 | <0.001 |
cis-Dihydro carvone | 1198 | 0.65 ± 0.033 | 12.97 ± 0.613 | <0.001 |
neo-Dihydro carveol | 1194 | 0.38 ± 0.017 | 1.34 ± 0.042 | <0.001 |
trans-Carveol | 1219 | nd | 0.29 ± 0.015 | - |
cis-Carveol | 1231 | 0.13 ± 0.009 | 3.60 ± 0.159 | <0.001 |
Pulegone | 1240 | 0.70 ± 0.026 | 0.44 ± 0.020 | <0.001 |
Carvone | 1244 | 72.12 ± 0.911 | 50.12 ± 1.203 | <0.001 |
cis-Carvone oxide | 1262 | 0.07 ± 0.006 | nd | - |
trans-Carvone oxide | 1276 | 0.13 ± 0.006 | nd | - |
iso-Bornyl acetate | 1285 | nd | 0.08 ± 0.003 | - |
Dihydrocarveol acetate | 1325 | 0.43 ± 0.020 | 5.67 ± 0.278 | <0.001 |
trans-Carvyl acetate | 1335 | nd | 0.24 ± 0.012 | - |
cis-Carvyl acetate | 1360 | 0.27 ± 0.015 | 4.92 ± 0.187 | <0.001 |
β-Bourbonene | 1386 | 0.61 ± 0.019 | 0.61 ± 0.019 | 1.000 |
β-Elemene b | 1393 | 0.21 ± 0.009 | 0.19 ± 0.028 | 0.539 |
β-Caryophyllene | 1425 | 0.92 ± 0.068 | 0.91 ± 0.031 | 0.900 |
cis-Muurola-3,5-diene | 1456 | 0.42 ± 0.020 | 0.42 ± 0.018 | 1.000 |
Germacrene D | 1497 | 0.38 ± 0.023 | 0.31 ± 0.024 | 0.116 |
Bicyclogermacrene | 1512 | 0.16 ± 0.006 | 0.10 ± 0.038 | 0.179 |
Germacrene A | 1519 | 0.07 ± 0.003 | 0.07 ± 0.012 | 0.621 |
trans-Calamene | 1531 | 0.24 ± 0.015 | 0.20 ± 0.007 | 0.105 |
1,10-di-epi Cubenol | 1642 | 0.10 ± 0.000 | nd | - |
Total Identified | 99.91 ± 0.003 | 100.00 ± 0.000 | <0.001 | |
Monoterpenes hydrocarbons | 15.95 ± 0.429 | 10.58 ± 0.463 | <0.001 | |
Sesquiterpenes hydrocarbons | 3.01 ± 0.163 | 2.81 ± 0.087 | 0.034 | |
Oxygenated monoterpenes | 79.59 ± 0.640 | 74.03 ± 0.360 | <0.01 | |
Oxygenated sesquiterpenes | 0.10 ± 0.000 | nd | - | |
Others | 1.23 ± 0.057 | 12.56 ± 0.076 | <0.001 |
Species | Altitude | Antioxidant Activity Assay | Phenols | Flavonoids | Flavanols | Essential Oils (ΕO) | 1,8 Cineole | Camphor | Borneol | cis-Dihydro Agarofuran | Silphiperfol-5-En-3-One A |
---|---|---|---|---|---|---|---|---|---|---|---|
Artemisia | P | FRAP | |||||||||
DPPH | + | + | |||||||||
M | FRAP | + | |||||||||
DPPH | + | ||||||||||
Phenols | Flavonoids | Flavanols | EO | Isomenthone | Citronellol | Geraniol | Citronellyl formate | γ-Eudesmol | |||
Pelargonium | P | FRAP | + | + | |||||||
DPPH | + | ||||||||||
M | FRAP | + | + | ||||||||
DPPH | + | + | |||||||||
Phenols | Flavonoids | Flavanols | EO | α-Pinene | Sabinene | β-Pinene | 1,8-Cineole | Terpinyl acetate a | |||
Laurel | P | FRAP | + | + | + | + | - | ||||
DPPH | + | + | + | - | |||||||
M | FRAP | + | |||||||||
DPPH | + | + | + | ||||||||
Phenols | Flavonoids | Flavanols | EO | 1,8 Cineole | Linalool | Camphor | Borneol | Carvone | |||
Lavender | P | FRAP | + | + | |||||||
DPPH | + | + | |||||||||
M | FRAP | + | + | ||||||||
DPPH | + | ||||||||||
Phenols | Flavonoids | Flavanols | EO | D-Limonene | 1,8-Cineole | Neral | Geranial | Caryophyllene oxide | |||
Lemon verbena | P | FRAP | + | ||||||||
DPPH | + | + | |||||||||
M | FRAP | + | + | - | + | - | - | - | |||
DPPH | |||||||||||
Phenols | Flavonoids | Flavanols | EO | α-Pinene | Camphene | 1,8-Cineole | Camphor | Borneol | |||
Rosemary | P | FRAP | + | + | |||||||
DPPH | |||||||||||
M | FRAP | + | + | ||||||||
DPPH | + | + | |||||||||
Phenols | Flavonoids | Flavanols | EO | 1,8-Cineole | α-Thujone | β-Thujone | Camphor | Borneol | |||
Sage | P | FRAP | + | + | |||||||
DPPH | - | ||||||||||
M | FRAP | + | + | ||||||||
DPPH | |||||||||||
Phenols | Flavonoids | Flavanols | EO | D-limonene | 1,8-Cineole | cis-dihydro carvone | Carvone | Dihydrocarveol acetate | |||
Spearmint | P | FRAP | + | ||||||||
DPPH | |||||||||||
M | FRAP | + | + | ||||||||
DPPH | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy 2020, 10, 727. https://doi.org/10.3390/agronomy10050727
Chrysargyris A, Mikallou M, Petropoulos S, Tzortzakis N. Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy. 2020; 10(5):727. https://doi.org/10.3390/agronomy10050727
Chicago/Turabian StyleChrysargyris, Antonios, Maria Mikallou, Spyridon Petropoulos, and Nikolaos Tzortzakis. 2020. "Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions" Agronomy 10, no. 5: 727. https://doi.org/10.3390/agronomy10050727
APA StyleChrysargyris, A., Mikallou, M., Petropoulos, S., & Tzortzakis, N. (2020). Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy, 10(5), 727. https://doi.org/10.3390/agronomy10050727