Assessing the Ability of Durum Wheat-Thinopyrum ponticum Recombinant Lines to Suppress Naturally Occurring Weeds under Different Sowing Densities
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Location and Experimental Design
2.3. Sampling and Measurements
2.3.1. Yield and Yield-Related Traits
2.3.2. Competitive Ability against Weeds
2.3.3. Light Interception
2.3.4. Optical Measurement of Physiological Traits
2.3.5. Morphological Traits
2.4. Statistical Analyses
3. Results
3.1. Yield and Yield-Related Traits
3.2. Competitive Ability against Weeds
3.3. Light Interception and Flag Leaf Chlorophyll Content
3.4. Morphological Traits: Flag Leaf and Plant Height
4. Discussion
4.1. Genotypes and Weed Competition
4.2. Sowing Density: Effect on Yield and Weed Competition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO Addressing Sustainable Crop Production Priorities in National Adaptation Plans. Available online: http://www.http//www.fao.org/in-action/naps/resources/detail/en/c/1178545/ (accessed on 4 April 2020).
- Brar, D.S.; Khush, G.S. Biotechnological Approaches for Increasing Productivity and Sustainability of Rice Production. In Agricultural Sustainability; Bhullar, G.S., Bhullar, N.K., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 151–175. ISBN 9780124045606. [Google Scholar]
- Poudel, D.D.; Horwath, W.; Lanini, W.; Temple, S.; Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 2002, 90, 125–137. [Google Scholar] [CrossRef]
- FAO Agriculture, Food and Water. A Contribution to the World Water Development Report; FAO: Rome, Italy, 2003; ISBN 92-5-104943-2 / 0258-6150.
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Rapisarda, P.; Fallico, B.; Arena, E. Partial Replacement of NaCl in Bread from Durum Wheat (Triticum turgidum L subsp. durum Desf.) with KCl and Yeast Extract: Evaluation of Quality Parameters During Long Storage. Food Bioprocess Technol. 2015, 8, 1089–1101. [Google Scholar] [CrossRef]
- Sall, A.T.; Chiari, T.; Legesse, W.; Ahmed, S.; Ortiz, R.; Van Ginkel, M.; Bassi, F.M. Durum Wheat (Triticum durum Desf.): Origin, Cultivation and Potential Expansion in Sub-Saharan Africa. Agronomy 2019, 9, 263. [Google Scholar] [CrossRef]
- Worthington, M.; Reberg-Horton, S.C. Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability. J. Chem. Ecol. 2013, 39, 213–231. [Google Scholar] [CrossRef]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Jha, P.; Kumar, V.; Godara, R.K.; Chauhan, B.S. Weed management using crop competition in the United States: A review. Crop. Prot. 2017, 95, 31–37. [Google Scholar] [CrossRef]
- Lutman, P.J.W.; Moss, S.R.; Cook, S.; Welham, S.J. A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res. 2013, 53, 299–313. [Google Scholar] [CrossRef]
- Carrubba, A.; Labruzzo, A.; Comparato, A.; Muccilli, S.; Spina, A. Use of Plant Water Extracts for Weed Control in Durum Wheat (Triticum turgidum L. Subsp. durum Desf.). Agronomy 2020, 10, 364. [Google Scholar] [CrossRef]
- Korres, N.; Norsworthy, J.K.; Tehranchian, P.; Gitsopoulos, T.K.; Loka, D.A.; Oosterhuis, D.M.; Gealy, D.R.; Moss, S.R.; Burgos, N.R.; Miller, M.R.; et al. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 2016, 36, 1–22. [Google Scholar] [CrossRef]
- Donley, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ. Heal. 2019, 18, 44. [Google Scholar] [CrossRef]
- Lemerle, D.; Gill, G.S.; Murphy, C.E.; Walker, S.R.; Cousens, R.D.; Mokhtari, S.; Peltzer, S.J.; Coleman, R.; Luckett, D.J. Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Aust. J. Agric. Res. 2001, 52, 527. [Google Scholar] [CrossRef]
- Andrew, I.K.S.; Storkey, J.; Sparkes, D.L. A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res. 2015, 55, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanović, L.; Ruggeri, R.; Able, J.A.; Bassi, F.M.; Maccaferri, M.; Tuberosa, R.; De Vita, P.; Rossini, F.; Ceoloni, C. Yield of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines in a range of contrasting rain-fed environments. Field Crop. Res. 2018, 228, 147–157. [Google Scholar] [CrossRef]
- Ceoloni, C.; Kuzmanović, L.; Ruggeri, R.; Rossini, F.; Forte, P.; Cuccurullo, A.; Bitti, A. Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities. Diversity 2017, 9, 55. [Google Scholar] [CrossRef]
- Kuzmanović, L.; Ruggeri, R.; Virili, M.E.; Rossini, F.; Ceoloni, C. Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crop. Res. 2016, 186, 86–98. [Google Scholar] [CrossRef]
- Ceoloni, C.; Forte, P.; Kuzmanović, L.; Tundo, S.; Moscetti, I.; De Vita, P.; Virili, M.E.; D’Ovidio, R. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theor. Appl. Genet. 2017, 130, 2005–2024. [Google Scholar] [CrossRef]
- Stougaard, R.N.; Xue, Q. Spring wheat seed size and seeding rate effects on yield loss due to wild oat (Avena fatua) interference. Weed Sci. 2004, 52, 133–141. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Cousens, R.; Coombes, N.E. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Wilson, R.G.; Orloff, S.B.; Lancaster, D.L.; Kirby, D.W.; Carlson, H.L. Integrating Herbicide Use and Perennial Grass Revegetation to Suppress Weeds in Noncrop Areas. Invasive Plant Sci. Manag. 2010, 3, 81–92. [Google Scholar] [CrossRef]
- Monsen, S.B.; Stevens, R.; Shaw, N.L. Grasses. In Restoring Western Ranges and Wildlands; U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2004; Volume 2, pp. 295–424. [Google Scholar]
- Doll, H.; Holm, U.; Søsgaard, B. Effect of crop density on competition by wheat and barley with Agrostemma githago and other weeds. Weed Res. 1995, 35, 391–396. [Google Scholar] [CrossRef]
- Kristensen, L.; Olsen, J.; Weiner, J. Crop Density, Sowing Pattern, and Nitrogen Fertilization Effects on Weed Suppression and Yield In Spring Wheat. Weed Sci. 2008, 56, 97–102. [Google Scholar] [CrossRef]
- Lazzaro, M.; Costanzo, A.; Farag, D.H.; Bàrberi, P. Grain yield and competitive ability against weeds in modern and heritage common wheat cultivars are differently influenced by sowing density. Ital. J. Agron. 2017, 11, 343–349. [Google Scholar] [CrossRef]
- Beavers, R.L.; Hammermeister, A.M.; Frick, B.; Astatkie, T.; Martin, R.C. Spring wheat yield response to variable seeding rates in organic farming systems at different fertility regimes. Can. J. Plant Sci. 2008, 88, 43–52. [Google Scholar] [CrossRef]
- Swanton, C.; Nkoa, R.; Blackshaw, R.E. Experimental Methods for Crop–Weed Competition Studies. Weed Sci. 2015, 63, 2–11. [Google Scholar] [CrossRef]
- Whaley, J.M.; Sparkes, D.L.; Foulkes, M.; Spink, J.H.; Semere, T.; Scott, R.K. The physiological response of winter wheat to reductions in plant density. Ann. Appl. Boil. 2000, 137, 165–177. [Google Scholar] [CrossRef]
- Freeze, D.M.; Bacon, R.K. Row-Spacing and Seeding-Rate Effects on Wheat Yields in the Mid-South. J. Prod. Agric. 1990, 3, 345. [Google Scholar] [CrossRef]
- Arduini, I.; Masoni, A.; Ercoli, L.; Mariotti, M. Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. Eur. J. Agron. 2006, 25, 309–318. [Google Scholar] [CrossRef]
- Flagella, Z.; Giuliani, M.M.; Giuzio, L.; Volpi, C.; Masci, S. Influence of water deficit on durum wheat storage protein composition and technological quality. Eur. J. Agron. 2010, 33, 197–207. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef]
- Uphoff, N.; Fasoula, V.; Iswandi, A.; Kassam, A.; Thakur, A.K. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding. Crop. J. 2015, 3, 174–189. [Google Scholar] [CrossRef]
- Van Der Meulen, A.; Chauhan, B.S. A review of weed management in wheat using crop competition. Crop. Prot. 2017, 95, 38–44. [Google Scholar] [CrossRef]
- Korres, N.; Froud-Williams, R.J. The Interrelationships of Winter Wheat Cultivars, Crop Density and Competition of Naturally Occurring Weed Flora. Boil. Agric. Hortic. 2004, 22, 1–20. [Google Scholar] [CrossRef]
- Ceoloni, C.; Forte, P.; Gennaro, A.; Micali, S.; Carozza, R.; Bitti, A. Recent developments in durum wheat chromosome engineering. Cytogenet. Genome Res. 2005, 109, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Pandino, G.; Mattiolo, E.; Lombardo, S.; Lombardo, G.; Mauromicale, G. Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat. Agriculture 2020, 10, 46. [Google Scholar] [CrossRef]
- Pittaluga, E. Valutazione del comportamento in campo di linee di frumento duro recanti segmenti cromosomici, singoli e multipli, trasferiti da specie affini tramite ingegneria cromosomica. B. Sc. Thesis, (unpublished). University of Tuscia, Viterbo, Italy, 2017. (In Italian). [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Langeroudi, A.S.; Kamkar, B. Field screening of canola (Brassica napus) cultivars against wild mustard (Sinapis arvensis) using competition indices and some empirical yield loss models in Golestan Province, Iran. Crop. Prot. 2009, 28, 577–582. [Google Scholar] [CrossRef]
- Wilson, J.B. Shoot Competition and Root Competition. J. Appl. Ecol. 1988, 25, 279. [Google Scholar] [CrossRef]
- Mullan, D.; Pietragalla, J. Light interception. In Physiological Breeding II: A Field Guide to Wheat Phenotyping; Pask, A., Pietragalla, J., Mullan, D., Reynolds, M., Eds.; Cimmyt: Mexico City, Mexico, 2012; pp. 54–57. ISBN 978-970-648-182-5. [Google Scholar]
- Cartelat, A.; Cerovic, Z.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Dodig, D.; Zorić, M.; Kobiljski, B.; Šurlan-Momirović, G.; Quarrie, S. Assessing drought tolerance and regional patterns of genetic diversity among spring and winter bread wheat using simple sequence repeats and phenotypic data. Crop. Pasture Sci. 2010, 61, 812. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 9 February 2020).
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Lemerle, D.; Luckett, D.J.; Lockley, P.; Koetz, E.; Wu, H. Competitive ability of Australian canola (Brassica napus) genotypes for weed management. Crop. Pasture Sci. 2014, 65, 1300–1310. [Google Scholar] [CrossRef]
- Cousens, R.D.; Mokhtari, S. Seasonal and site variability in the tolerance of wheat cultivars to interference from Lolium rigidum. Weed Res. 1998, 38, 301–307. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Orchard, B. Ranking the ability of wheat varieties to compete with Lolium rigidum. Weed Res. 2001, 41, 197–209. [Google Scholar] [CrossRef]
- Jordan, N. Prospects for Weed Control Through Crop Interference. Ecol. Appl. 1993, 3, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.K.; Gill, G.S.; Rebetzke, G. Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust. J. Agric. Res. 2001, 52, 1235. [Google Scholar] [CrossRef]
- Seavers, G.P.; Wright, K.J. Crop canopy development and structure influence weed suppression. Weed Res. 1999, 39, 319–328. [Google Scholar] [CrossRef]
- Huel, D.G.; Hucl, P. Genotypic variation for competitive ability in spring wheat. Plant Breed. 1996, 115, 325–329. [Google Scholar] [CrossRef]
- Mason, H.E.; Spaner, D. Competitive ability of wheat in conventional and organic management systems: A review of the literature. Can. J. Plant Sci. 2006, 86, 333–343. [Google Scholar] [CrossRef]
- Lazzaro, M.; Bàrberi, P.; Dell’Acqua, M.; Pè, M.E.; Limonta, M.; Barabaschi, D.; Cattivelli, L.; Laino, P.; Vaccino, P. Unraveling diversity in wheat competitive ability traits can improve integrated weed management. Agron. Sustain. Dev. 2019, 39, 6. [Google Scholar] [CrossRef]
- Champion, G.T.; Holland, J.M.; Froud-Williams, R.J. Interactions between wheat (Triticum aestivum L.) cultivar, row spacing and density and the effect on weed suppression and crop yield. Ann. Appl. Boil. 1998, 133, 443–453. [Google Scholar] [CrossRef]
- Drews, S.; Neuhoff, D.; Köpke, U. Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions. Weed Res. 2009, 49, 526–533. [Google Scholar] [CrossRef]
- Burnside, O.C.; Wicks, G.A.; Johnson, V.A. Competition Between Winter Wheat (Triticum aestivum) Cultivars and Downy Brome (Bromus tectorum). Weed Sci. 1986, 34, 689–693. [Google Scholar] [CrossRef]
- López-Castañeda, C.; Richards, R. Variation in temperate cereals in rainfed environments III. Water use and water-use efficiency. Field Crop. Res. 1994, 39, 85–98. [Google Scholar] [CrossRef]
- Loss, S.P.; Siddique, K. Morphological and Physiological Traits Associated with Wheat Yield Increases in Mediterranean Environments. Adv. Agron. 1994, 52, 229–276. [Google Scholar] [CrossRef]
- Isidro, J.; Knox, R.E.; Clarke, F.; Singh, A.; Depauw, R.; Clarke, J.; Somers, D.; Isidro-Sánchez, J. Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta 2012, 236, 1713–1723. [Google Scholar] [CrossRef]
- Liu, K.; Cao, J.; Yu, K.; Liu, X.; Gao, Y.; Chen, Q.; Zhang, W.; Peng, H.; Du, J.; Xin, M.; et al. Wheat TaSPL8 Modulates Leaf Angle Through Auxin and Brassinosteroid Signaling. Plant Physiol. 2019, 181, 179–194. [Google Scholar] [CrossRef]
- Belz, R.G. Allelopathy in crop/weed interactions—An update. Pest Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Fragasso, M.; Iannucci, A.; Papa, R. Durum wheat and allelopathy: Toward wheat breeding for natural weed management. Front. Plant Sci. 2013, 4, 4. [Google Scholar] [CrossRef]
- Bertholdsson, N.-O.; Andersson, S.C.; Merker, A. Allelopathic potential of Triticum spp., Secale spp. and Triticosecale spp. and use of chromosome substitutions and translocations to improve weed suppression ability in winter wheat. Plant Breed. 2011, 131, 75–80. [Google Scholar] [CrossRef]
- Merker, A.; Lantai, K. Hybrids between wheats and perennial Leymus and Thinopyrum species. Acta Agric. Scand. Sect. B Soil Plant Sci. 1997, 47, 48–51. [Google Scholar] [CrossRef]
- Fradgley, N.S.; Creissen, H.; Pearce, H.; Howlett, S.A.; Pearce, B.D.; Döring, T.; Girling, R.D. Weed Suppression and Tolerance in Winter Oats. Weed Technol. 2017, 31, 740–751. [Google Scholar] [CrossRef]
- Christensen, S. Weed suppression ability of spring barley varieties. Weed Res. 2006, 35, 241–247. [Google Scholar] [CrossRef]
- Didon, U.M.E.; Boström, U. Growth and Development of Six Barley (Hordeum vulgare ssp. vulgare L.) Cultivars in Response to a Model Weed (Sinapis alba L.). J. Agron. Crop. Sci. 2003, 189, 409–417. [Google Scholar] [CrossRef]
- Bertholdsson, N.-O. Early vigour and allelopathy - two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res. 2005, 45, 94–102. [Google Scholar] [CrossRef]
- Vandeleur, R.K.; Gill, G.S. The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Aust. J. Agric. Res. 2004, 55, 855–861. [Google Scholar] [CrossRef]
- Ceoloni, C.; Kuzmanovic, L.; Forte, P.; Virili, M.E.; Bitti, A. Wheat-Perennial Triticeae Introgressions: Major Achievements and Prospects. In Alien Introgression in Wheat- Cytogenetics, Molecular Biology, and Genomics; Molnár-Láng, M., Ceoloni, C., Doležel, J., Eds.; Springer: Cham, Switzerland, 2015; pp. 273–313. [Google Scholar]
- Evans, L.E.; Bhatt, G.M. Influence of seed size, protein content and cultivar on early seedling vigor em wheat. Can. J. Plant Sci. 1977, 57, 929–935. [Google Scholar] [CrossRef]
- Grieve, C.M.; Francois, L.E. The importance of initial seed size in wheat plant response to salinity. Plant Soil 1992, 147, 197–205. [Google Scholar] [CrossRef]
- Lafond, G.P.; Baker, R.J. Effects of Genotype and Seed Size on Speed of Emergence and Seedling Vigor in Nine Spring Wheat Cultivars 1. Crop. Sci. 1986, 26, 341–346. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, B.; Turner, N.C.; Li, F.-M. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning. Eur. J. Agron. 2010, 33, 257–266. [Google Scholar] [CrossRef]
- Tompkins, D.K.; Hultgreen, G.E.; Wright, A.T.; Fowler, D.B. Seed Rate and Row Spacing of No-Till Winter Wheat. Agron. J. 1907, 83, 684–689. [Google Scholar] [CrossRef]
- Geleta, B.; Atak, M.; Baenziger, P.S.; Nelson, L.A.; Baltenesperger, D.D.; Eskridge, K.M.; Shipman, M.J.; Shelton, D.R. Seeding Rate and Genotype Effect on Agronomic Performance and End-Use Quality of Winter Wheat. Crop. Sci. 2002, 42, 827–832. [Google Scholar] [CrossRef]
- Wang, J.; Araus, J.L.; Wan, J. Breeding to Optimize Agriculture in a Changing World. Crop. J. 2015, 3, 169–173. [Google Scholar] [CrossRef][Green Version]
- Tollenaar, M.; Dibo, A.A.; Aguilara, A.; Weise, S.F.; Swanton, C.J. Effect of Crop Density on Weed Interference in Maize. Agron. J. 1907, 86, 591–595. [Google Scholar] [CrossRef]
- Korres, N.; Froud-Williams, R.J. Effects of winter wheat cultivars and seed rate on the biological characteristics of naturally occurring weed flora. Weed Res. 2002, 42, 417–428. [Google Scholar] [CrossRef]
- Olsen, J.M.; Griepentrog, H.-W.; Nielsen, J.; Weiner, J. How Important are Crop Spatial Pattern and Density for Weed Suppression by Spring Wheat? Weed Sci. 2012, 60, 501–509. [Google Scholar] [CrossRef]
- Kuzmanović, L.; Rossini, F.; Ruggeri, R.; Pagnotta, M.A.; Ceoloni, C. Engineered Durum Wheat Germplasm with Multiple Alien Introgressions: Agronomic and Quality Performance. Agronomy 2020, 10, 486. [Google Scholar] [CrossRef]
Source of Variation | Grain Yield | Spikes m−2 | Kernels Spike−1 | Thousand Grain Weight |
---|---|---|---|---|
Year (Y) | *** | ** | n.s. | * |
Sowing density (D) | ** | *** | n.s. | n.s. |
Genotype (G) | n.s. | *** | *** | *** |
Weed presence (W) | *** | *** | * | * |
Y × D | ** | ** | n.s. | n.s. |
Y × G | ** | *** | n.s. | ** |
D × G | ** | *** | n.s. | n.s. |
Y × W | n.s. | ** | n.s. | n.s. |
G × W | n.s. | *** | n.s. | n.s. |
Y × G × W | * | * | n.s. | n.s. |
Treatments | Genotype | Weed Presence | Sowing Density (seeds m−2) | Year | |||||
---|---|---|---|---|---|---|---|---|---|
R112 | R5 | Tirex | Weeded | Weedy | 250 | 350 | 2015 | 2016 | |
Spikes m−2 | 212.6 b | 196.3 c | 239.4 a | 229.5 a | 202.7 b | 205.3 b | 226.9 a | 194.6 b | 237.6 a |
Kernels spike−1 | 37.7 a | 34.2 b | 31.4 c | 35.5 a | 33.4 b | 36.0 n.s. | 32.8 n.s. | 33.1 ns | 35.7 n.s. |
TGW (g) | 51.8 b | 56.8 a | 47.1 c | 52.9 a | 50.9 b | 52.1 n.s. | 51.7 n.s. | 46.8 b | 57.1 a |
Source of Variation | DW Biomass (Weedy) | DW Biomass (Weeded) | Weed Biomass | Cb |
---|---|---|---|---|
Year (Y) | ** | ** | ** | * |
Sowing density (D) | n.s. | n.s. | ** | * |
Genotype (G) | n.s. | n.s. | *** | *** |
Y × D | n.s. | n.s. | * | n.s. |
Y × G | * | * | *** | ** |
GYL | Cb | GYw | GYwf | |
---|---|---|---|---|
GYL | 1 | |||
Cb | −0.53 * | |||
GYw | −0.69 * | 0.57 * | ||
GYwf | −0.21 | 0.36 * | 0.84 * | 1 |
IPAR | CHL | FLAV | NBI | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variation | B | H | A | F | B | H | A | F | B | H | A | F | B | H | A | F |
Year (Y) | * | * | ** | ** | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Sowing density (D) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Genotype (G) | n.s. | n.s. | ** | n.s. | ** | * | ** | *** | * | n.s. | * | *** | * | n.s. | n.s. | n.s. |
Weed presence (W) | *** | *** | *** | *** | n.s. | n.s. | n.s. | n.s. | * | n.s. | * | n.s. | * | * | * | n.s. |
Y × D | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. |
Y × G | *** | ** | *** | ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Y × W | * | ** | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
D × G | n.s. | n.s. | *** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. |
D × W | n.s. | * | n.s. | ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
G × W | n.s. | n.s. | n.s. | ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Y × G × W | ** | * | ** | * | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Source of Variation | Flag Leaf Width | Flag Leaf Length | Flag Leaf Area | Plant Height |
---|---|---|---|---|
Year (Y) | ** | ** | * | ** |
Sowing density (D) | n.s. | n.s. | n.s. | n.s. |
Genotype (G) | *** | * | *** | * |
Weed presence (W) | n.s. | n.s. | n.s. | n.s. |
Trait | R112 | R5 | Tirex |
---|---|---|---|
Flag leaf width (cm) | 1.84 ± 0.04 a | 1.87 ± 0.03 a | 1.61 ± 0.02 b |
Flag leaf length (cm) | 22.75 ± 0.26 b | 23.95 ± 0.22 a | 23.03 ± 0.20 b |
Flag leaf area (cm2) | 31.84 ± 1.11 a | 33.77 ± 0.92 a | 27.72 ± 0.70 b |
Plant height (cm) | 72.9 ± 1.70 b | 75.5 ± 1.51 a | 75.0 ± 1.47 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossini, F.; Provenzano, M.E.; Kuzmanović, L.; Ceoloni, C.; Ruggeri, R. Assessing the Ability of Durum Wheat-Thinopyrum ponticum Recombinant Lines to Suppress Naturally Occurring Weeds under Different Sowing Densities. Agronomy 2020, 10, 709. https://doi.org/10.3390/agronomy10050709
Rossini F, Provenzano ME, Kuzmanović L, Ceoloni C, Ruggeri R. Assessing the Ability of Durum Wheat-Thinopyrum ponticum Recombinant Lines to Suppress Naturally Occurring Weeds under Different Sowing Densities. Agronomy. 2020; 10(5):709. https://doi.org/10.3390/agronomy10050709
Chicago/Turabian StyleRossini, Francesco, Maria Elena Provenzano, Ljiljana Kuzmanović, Carla Ceoloni, and Roberto Ruggeri. 2020. "Assessing the Ability of Durum Wheat-Thinopyrum ponticum Recombinant Lines to Suppress Naturally Occurring Weeds under Different Sowing Densities" Agronomy 10, no. 5: 709. https://doi.org/10.3390/agronomy10050709
APA StyleRossini, F., Provenzano, M. E., Kuzmanović, L., Ceoloni, C., & Ruggeri, R. (2020). Assessing the Ability of Durum Wheat-Thinopyrum ponticum Recombinant Lines to Suppress Naturally Occurring Weeds under Different Sowing Densities. Agronomy, 10(5), 709. https://doi.org/10.3390/agronomy10050709