Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Cultivation and Phenotypic Evaluation of the Traits
2.3. Data Analysis
2.4. QTL Detection
3. Results
3.1. Parents Phenotype and Heterosis
3.2. Analysis of Variance and Heritability
3.3. QTL Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/ (accessed on 12 September 2019).
- Gebhardt, C. The historical role of species from the Solanaceae plant family in genetic research. Theor. Appl. Genet. 2016, 129, 2281–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramazio, P.; Vilanova, S.; Prohens, J. Resequencing. In The Eggplant Genome; Chapman, M., Ed.; Springer: Basel, Switzerland, 2019; pp. 81–89. [Google Scholar]
- Hirakawa, H.; Shirasawa, K.; Miyatake, K.; Nunome, T.; Negoro, S.; Ohyama, A.; Yamaguchi, H.; Sato, S.; Isobe, S.; Tabata, S.; et al. Draft genome sequence of eggplant (Solanum melongena L.): The representative solanum species indigenous to the old world. DNA Res. 2014, 21, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Barchi, L.; Pietrella, M.; Venturini, L.; Minio, A.; Toppino, L.; Acquadro, A.; Andolfo, G.; Aprea, G.; Avanzato, C.; Bassolino, L.; et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Gramazio, P.; Yan, H.; Hasing, T.; Vilanova, S.; Prohens, J.; Bombarely, A. Whole-Genome resequencing of seven eggplant (Solanum melongena) and one wild relative (S. incanum) accessions provides new insights and breeding tools for eggplant enhancement. Front. Plant Sci. 2019, 10, 1220. [Google Scholar] [CrossRef] [PubMed]
- Gramazio, P.; Prohens, J.; Plazas, M.; Mangino, G.; Herraiz, F.J.; García-Fortea, E.; Vilanova, S. Genomic tools for the enhancement of vegetable crops: A case in eggplant. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Frary, A.; Frary, A.; Daunay, M.C.; Huvenaars, K.; Mank, R.; Doganlar, S. QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica 2014, 197, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Portis, E.; Cericola, F.; Barchi, L.; Toppino, L.; Acciarri, N.; Pulcini, L.; Sala, T.; Lanteri, S.; Rotino, G.L. Association mapping for fruit, plant and leaf morphology traits in eggplant. PLoS ONE 2015, 10, e0135200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchi, L.; Portis, E.; Toppino, L.; Rotino, G.L. Molecular Mapping, QTL Identification, and GWA Analysis. In The Eggplant Genome; Chapman, M., Ed.; Springer: Basel, Switzerland, 2019; pp. 41–54. [Google Scholar]
- Toppino, L.; Valè, G.; Rotino, G.L. Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Mol. Breed. 2008, 22, 237–250. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Z.; Zhou, X.; Feng, C.; Zhuang, Y. Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica 2015, 201, 463–469. [Google Scholar] [CrossRef]
- Kouassi, B.; Prohens, J.; Gramazio, P.; Kouassi, A.B.; Vilanova, S.; Galán-Ávila, A.; Herraiz, F.J.; Kouassi, A.; Seguí-Simarro, J.M.; Plazas, M. Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Sci. Hortic. 2016, 213, 199–207. [Google Scholar] [CrossRef]
- Plazas, M.; Vilanova, S.; Gramazio, P.; Rodríguez-Burruezo, A.; Fita, A.; Herraiz, F.J.; Ranil, R.; Fonseka, R.; Niran, L.; Fonseka, H.; et al. Interspecific hybridization between eggplant and wild relatives from different genepools. J. Am. Soc. Hortic. Sci. 2016, 141, 34–44. [Google Scholar] [CrossRef] [Green Version]
- García-Fortea, E.; Gramazio, P.; Vilanova, S.; Fita, A.; Mangino, G.; Villanueva, G.; Arrones, A.; Knapp, S.; Prohens, J.; Plazas, M. First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci. Hortic. 2019, 246, 563–573. [Google Scholar] [CrossRef]
- Gramazio, P.; Prohens, J.; Plazas, M.; Mangino, G.; Herraiz, F.J.; Vilanova, S. Development and genetic characterization of advanced backcross materials and an introgression line population of Solanum incanum in a S. melongena background. Front. Plant Sci. 2017, 8, 1477. [Google Scholar] [CrossRef] [PubMed]
- Syfert, M.M.; Castañeda-Álvarez, N.P.; Khoury, C.K.; Särkinen, T.; Sosa, C.C.; Achicanoy, H.A.; Bernau, V.; Prohens, J.; Daunay, M.C.; Knapp, S. Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. Am. J. Bot. 2016, 103, 635–651. [Google Scholar] [CrossRef] [Green Version]
- Vorontsova, M.S.; Knapp, S. A Revision of the “Spiny Solanums,” Solanum subgenus Leptostemonum (Solanaceae), in Africa and Madagascar; American Society of Plant Taxonomists: Ann Arbor, MI, USA, 2016; pp. 1–432. [Google Scholar]
- Daunay, M.C. Eggplant. In Vegetables II; Springer: New York, NY, USA, 2008; pp. 163–220. [Google Scholar]
- Knapp, S.; Vorontsova, M.S.; Prohens, J. Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New understanding of species names in a complex group. PLoS ONE 2013, 8, e57039. [Google Scholar] [CrossRef] [Green Version]
- Stommel, J.R.; Whitaker, B.D. Phenolic acid content and composition of eggplant fruit in a germplasm core subset. J. Am. Soc. Hortic. Sci. 2003, 128, 704–710. [Google Scholar] [CrossRef]
- Ma, C.; Dastmalchi, K.; Whitaker, B.D.; Kennelly, E.J. Two new antioxidant malonated caffeoylquinic acid isomers in fruits of wild eggplant relatives. J. Agric. Food Chem. 2011, 59, 9645–9651. [Google Scholar] [CrossRef]
- Prohens, J.; Whitaker, B.D.; Plazas, M.; Vilanova, S.; Hurtado, M.; Blasco, M.; Gramazio, P.; Stommel, J.R. Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incanum). Ann. Appl. Biol. 2013, 162, 242–257. [Google Scholar] [CrossRef]
- Meyer, R.S.; Whitaker, B.D.; Little, D.P.; Wu, S.B.; Kennelly, E.J.; Long, C.L.; Litt, A. Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry 2015, 115, 194–206. [Google Scholar] [CrossRef]
- Rotino, G.L.; Sala, T.; Toppino, L. Alien Gene Transfer in Crop Plants, Volume 2; Pratap, A., Kumar, J., Eds.; Springer: New York, NY, USA, 2014; pp. 381–409. [Google Scholar]
- Taher, D.; Solberg, S.Ø.; Prohens, J.; Chou, Y.; Rakha, M.; Wu, T. World Vegetable Center Eggplant Collection: Origin, composition, seed dissemination and utilization in breeding. Front. Plant Sci. 2017, 8, 1484. [Google Scholar] [CrossRef]
- Gisbert, C.; Prohens, J.; Raigón, M.D.; Stommel, J.R.; Nuez, F. Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Sci. Hortic. (Amsterdam). 2011, 128, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Salas, P.; Prohens, J.; Seguí-Simarro, J.M. Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 2011, 182, 261–274. [Google Scholar] [CrossRef]
- Gramazio, P.; Prohens, J.; Plazas, M.; Andjar, I.; Herraiz, F.J.; Castillo, E.; Knapp, S.; Meyer, R.S.; Vilanova, S. Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biol. 2014, 14, 350. [Google Scholar] [CrossRef] [Green Version]
- Gramazio, P.; Blanca, J.; Ziarsolo, P.; Herraiz, F.J.; Plazas, M.; Prohens, J.; Vilanova, S. Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics 2016, 17, 300. [Google Scholar] [CrossRef] [Green Version]
- Gramazio, P.; Prohens, J.; Borràs, D.; Plazas, M.; Herraiz, F.J.; Vilanova, S. Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica 2017, 213, 264. [Google Scholar] [CrossRef] [Green Version]
- Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Müller, J.V.; Toll, J. Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Prohens, J.; Gramazio, P.; Plazas, M.; Dempewolf, H.; Kilian, B.; Díez, M.J.; Fita, A.; Herraiz, F.J.; Rodríguez-Burruezo, A.; Soler, S.; et al. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 2017, 213, 158. [Google Scholar] [CrossRef]
- Eshed, Y.; Zamir, D. A genomic library of Lycopersicon pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica 1994, 79, 175–179. [Google Scholar] [CrossRef]
- Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2001, 2, 983–989. [Google Scholar] [CrossRef]
- Eduardo, I.; Arús, P.; Monforte, A.J. Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor. Appl. Genet. 2005, 112, 139–148. [Google Scholar] [CrossRef]
- Eshed, Y.; Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995, 141, 1147–1162. [Google Scholar]
- Alonso-Blanco, C.; Koornneef, M.; van Ooijen, J.W. QTL analysis. In Arabidopsis Protocols. Methods in Molecular Biology; Salinas, J., Sanchez-Serrano, J.J., Eds.; Humana Press, 2006; Volume 323, pp. 79–99. [Google Scholar] [CrossRef]
- Gur, A.; Zamir, D. Mendelizing all components of a pyramid of three yield QTL in tomato. Front. Plant Sci. 2015, 6, 1096. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Struik, P.C.; Gu, J.; Wang, H. Crop Systems Biology: Narrowing the Gaps Between Crop Modelling and Genetics; Yin, X., Struik, P., Eds.; Springer: Basel, Switzerland, 2015; pp. 193–218. [Google Scholar]
- Tanksley, S.D.; Nelson, J.C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 1996, 92, 191–203. [Google Scholar] [CrossRef]
- Ashikari, M.; Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 2006, 11, 344–350. [Google Scholar] [CrossRef]
- Calafiore, R.; Aliberti, A.; Ruggieri, V.; Olivieri, F.; Rigano, M.M.; Barone, A. Phenotypic and molecular selection of a superior Solanum pennellii introgression sub-line suitable for improving quality traits of cultivated tomatoes. Front. Plant Sci. 2019, 10, 190. [Google Scholar] [CrossRef]
- Eshed, Y.; Zamir, D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 1996, 143, 1807–1817. [Google Scholar]
- Jena, K.K.; Kochert, G.; Khush, G.S. RFLP analysis of rice (Oryza sativa L.) introgression lines. Theor. Appl. Genet. 1992, 84, 608–616. [Google Scholar] [CrossRef]
- Pestsova, E.G.; Börner, A.; Röder, M.S. Development of a Set of Triticum Aestivum-Aegilops Tauschii Introgression Lines. Hereditas 2004, 135, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Szalma, S.J.; Hostert, B.M.; LeDeaux, J.R.; Stuber, C.W.; Holland, J.B. QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 2007, 114, 1211–1228. [Google Scholar] [CrossRef]
- Eshed, Y.; Abu-Abied, M.; Saranga, Y.; Zamir, D. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theor. Appl. Genet. 1992, 83, 1027–1034. [Google Scholar] [CrossRef]
- Monforte, A.J.; Tanksley, S.D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome 2000, 43, 803–813. [Google Scholar] [CrossRef]
- Chetelat, R.T.; Qin, X.; Tan, M.; Burkart-Waco, D.; Moritama, Y.; Huo, X.; Wills, T.; Pertuzé, R. Introgression lines of Solanum sitiens, a wild nightshade of the Atacama Desert, in the genome of cultivated tomato. Plant J. 2019, 100, 836–850. [Google Scholar] [CrossRef]
- Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; Bruedigam, C.; Kopka, J.; et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotechnol. 2006, 24, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Rigano, M.M.; Raiola, A.; Tenore, G.C.; Monti, D.M.; Del Giudice, R.; Frusciante, L.; Barone, A. Quantitative trait loci pyramiding can improve the nutritional potential of tomato (Solanum lycopersicum) fruits. J. Agric. Food Chem. 2014, 62, 11519–11527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alseekh, S.; Tohge, T.; Wendenberg, R.; Scossa, F.; Omranian, N.; Li, J.; Kleessen, S.; Giavalisco, P.; Pleban, T.; Mueller-Roeber, B.; et al. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 2015, 27, 485–512. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.; Johnsen, H.R.; Pielach, A.; Lund, L.; Fischer, K.; Rose, J.K.C. Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder (Cuscuta reflexa). Physiol. Plant. 2018, 162, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.; Corneti, S.; Bellotti, M.; Carraro, N.; Sanguineti, M.C.; Castelletti, S.; Tuberosa, R. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol. 2011, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Fu, Y.; Zhao, X.; Jiang, L.; Zhu, Z.; Gu, P.; Xu, W.; Su, Z.; Sun, C.; Tan, L. Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Sci. Rep. 2016, 6, 27425. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, K.; Lv, W.; Ou, X.; Zhu, Y.; Xing, D.; Yang, L.; Fan, F.; Yang, J.; Xu, J.; et al. Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor. Appl. Genet. 2017, 130, 951–967. [Google Scholar] [CrossRef] [Green Version]
- De Leon, T.B.; Linscombe, S.; Subudhi, P.K. Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace “Pokkali”. PLoS ONE 2017, 12, e0175361. [Google Scholar] [CrossRef]
- Honsdorf, N.; March, T.J.; Pillen, K. QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines. PLoS ONE 2017, 12, e0185983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, G.; Nguyen, H.M.; Luu, S.N.; Wang, Y.; Zhang, Z. Construction of introgression lines of Oryza rufipogon and evaluation of important agronomic traits. Theor. Appl. Genet. 2019, 132, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Daygon, V.D.; McNally, K.L.; Hamilton, R.S.; Xie, F.; Reinke, R.F.; Fitzgerald, M.A. Identification of stable QTLs causing chalk in rice grains in nine environments. Theor. Appl. Genet. 2016, 129, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Ranil, R.H.G.; Niran, H.M.L.; Plazas, M.; Fonseka, R.M.; Fonseka, H.H.; Vilanova, S.; Andújar, I.; Gramazio, P.; Fita, A.; Prohens, J. Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Sci. Hortic. 2015, 193, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Van Der Weerden, G.M.; Barendse, G.W.M. A web-based searchable database developed for the EGGNET project and applied to the radboud university solanaceae database. In Proceedings of the VI International Solanaceae Conference: Genomics Meets Biodiversity, Madison, WI, USA, 30 June 2007. [Google Scholar]
- Wricke, G.; Weber, W.E. Quantitative Genetics and Selection in Plant Breeding; De Gruyer: Berlin, Germany, 1986. [Google Scholar]
- Balakrishnan, D.; Surapaneni, M.; Mesapogu, S.; Neelamraju, S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor. Appl. Genet. 2019, 132, 1–25. [Google Scholar] [CrossRef]
- Wang, J.X.; Gao, T.G.; Knapp, S. Ancient Chinese literature reveals pathways of eggplant domestication. Ann. Bot. 2008, 102, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Page, A.; Gibson, J.; Meyer, R.S.; Chapman, M.A. Eggplant Domestication: Pervasive gene flow, feralization, and transcriptomic divergence. Mol. Biol. Evol. 2019, 36, 1359–1372. [Google Scholar] [CrossRef]
- Kaushik, P.; Prohens, J.; Vilanova, S.; Gramazio, P.; Plazas, M. Phenotyping of eggplant wild relatives and interspecific hybrids with conventional and phenomics descriptors provides insight for their potential utilization in breeding. Front. Plant Sci. 2016, 7, 677. [Google Scholar] [CrossRef]
- Lester, R.N. Taxonomy of scarlet eggplants, Solanum aethiopicum L. In Proceedings of the I International Symposium on Taxonomy of Cultivated Plants, Wageningen, The Netherlands, 1 July 1986. [Google Scholar]
- Prohens, J.; Plazas, M.; Raigón, M.D.; Seguí-Simarro, J.M.; Stommel, J.R.; Vilanova, S. Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica 2012, 186, 517–538. [Google Scholar] [CrossRef]
- Doganlar, S.; Frary, A.; Daunay, M.C.; Lester, R.N.; Tanksley, S.D. Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 2002, 161, 1713–1726. [Google Scholar]
- Frary, A.; Nesbitt, T.C.; Frary, A.; Grandillo, S.; Van Der Knaap, E.; Cong, B.; Liu, J.; Meller, J.; Elber, R.; Alpert, K.B.; et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 2000, 289, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Schouten, H.J.; Tikunov, Y.; Verkerke, W.; Finkers, R.; Bovy, A.; Bai, Y.; Visser, R.G.F. Breeding has increased the diversity of cultivated tomato in The Netherlands. Front. Plant Sci. 2019, 10, 1606. [Google Scholar] [CrossRef]
- Kearsey, M.J.; Farquhar, A.G.L. QTL analysis in plants; where are we now? Heredity (Edinb). 1998, 80, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Frary, A.; Doganlar, S.; Daunay, M.C.; Tanksley, S.D. QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor. Appl. Genet. 2003, 107, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Fassio, C.; Cautin, R.; Pérez-Donoso, A.; Bonomelli, C.; Castro, M. Propagation techniques and grafting modify the morphological traits of roots and biomass allocation in avocado trees. Horttechnology 2016, 26, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Wilkie, J.; Kelly, A.; Hardner, C.; Topp, B. Genetic diversity and variability in graft success in Australian Macadamia rootstocks. In Proceedings of the International Macadamia Research Symposium, Honolulu, HI, USA, 13–14 September 2017. [Google Scholar]
- Chen, K.Y.; Tanksley, S.D. High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus lycopersicon. Genetics 2004, 168, 1563–1573. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Driedonks, N.; Rutten, M.J.M.; Vriezen, W.H.; de Boer, G.J.; Rieu, I. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Mol. Breed. 2017, 37. [Google Scholar] [CrossRef]
- Portis, E.; Barchi, L.; Toppino, L.; Lanteri, S.; Acciarri, N.; Felicioni, N.; Fusari, F.; Barbierato, V.; Cericola, F.; Valè, G.; et al. QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS ONE 2014, 9, e89499. [Google Scholar] [CrossRef] [Green Version]
- Grandillo, S.; Ku, H.M.; Tanksley, S.D. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 1999, 99, 978–987. [Google Scholar] [CrossRef]
- Illa-Berenguer, E.; Van Houten, J.; Huang, Z.; van der Knaap, E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor. Appl. Genet. 2015, 128, 1329–1342. [Google Scholar] [CrossRef]
- Cambiaso, V.; Gimenez, M.D.; Pereira da Costa, J.H.; Vazquez, D.V.; Picardi, L.A.; Pratta, G.R.; Rodríguez, G.R. Selected genome regions for fruit weight and shelf life in tomato RILs discernible by markers based on genomic sequence information. Breed. Sci. 2019, 69, 447–454. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Zhang, N.; Sauvage, C.; Muños, S.; Blanca, J.; Cañizares, J.; Diez, M.J.; Schneider, R.; Mazourek, M.; McClead, J.; et al. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc. Natl. Acad. Sci. USA 2013, 110, 17125–17130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, Q.; Huang, Z.; Chakrabarti, M.; Illa-Berenguer, E.; Liu, X.; Wang, Y.; Ramos, A.; van der Knaap, E. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet. 2017, 13, e1006930. [Google Scholar] [CrossRef]
ILs | Chr. | Donor Parent (%) | IL Size (Mb) | IL Position (Mb) | Chr. IL Size (%) | Total chr. ILs Size (Mb) | Total chr. ILs Size (%) |
---|---|---|---|---|---|---|---|
SMI_1.1 | 1 | 9.9 | 114 | 19–133 | 83.8 | 114 | 83.8 |
SMI_1.3 | 1 | 0.7 | 9 | 27–36 | 6.5 | ||
SMI_2.4 | 2 | 0.5 | 6 | 75–81 | 7.2 | 6 | 7.2 |
SMI_3.1 | 3 | 6.9 | 79 | 7–86 | 81.4 | 82 | 84.5 |
SMI_3.5 | 3 | 0.6 | 8 | 78–86 | 8.3 | ||
SMI_3.6 | 3 | 0.2 | 3 | 93–96 | 3.1 | ||
SMI_4.1 | 4 | 7.0 | 81 | 4–105 | 96.1 | 101 | 96.1 |
SMI_4.3 | 4 | 8.8 | 101 | 4–85 | 75.2 | ||
SMI_5.1 | 5 | 0.6 | 8 | 35–43 | 18.6 | 8 | 18.6 |
SMI_7.1 | 7 | 10.5 | 121 | 14–139 | 88.0 | 125 | 88.0 |
SMI_7.2 | 7 | 10.9 | 125 | 14–135 | 85.2 | ||
SMI_7.5 | 7 | 0.8 | 10 | 129–139 | 7.0 | ||
SMI_8.1 | 8 | 9.2 | 106 | 3–109 | 97.2 | 106 | 97.2 |
SMI_9.1 | 9 | 2.5 | 29 | 5–34 | 64.4 | 29 | 64.4 |
SMI_10.1 | 10 | 0.1 | 2 | 0–2 | 1.8 | 2 | 1.8 |
SMI_12.6 | 12 | 8.1 | 93 | 3–96 | 93.0 | 93 | 93.0 |
Mean | 4.8 | 55.9 | 51.1 | 66.6 | 63.5 | ||
Total | 666.0 |
Descriptor Code | Trait | Descriptor Scale/Unit |
Plant descriptors | ||
PH | Plant height 1 month after transplanting | cm |
SD1 | Stem diameter 1 month after transplanting | cm |
SD5 | Stem diameter 5 months after transplanting | cm |
SP | Stem prickles | 0–9 a |
Leaf descriptors | ||
LCC | Leaf chlorophyll concentration | SPAD unit |
LBL | Leaf blade Lobing | 0–9 b |
LSS | Leaf surface shape | 1–9 c |
LPU | Leaf prickles on the upper surface | 0–9 a |
LPL | Leaf prickles on the lower surface | 0–9 a |
Flower descriptors | ||
CD | Corolla diameter | cm |
PL | Peduncle length | cm |
SL | Stigma length | cm |
FLCP | Flower calyx prickles | 0–9 a |
Fruit descriptors | ||
FCL | Fruit calyx length | cm |
FPL | Fruit pedicel length | cm |
TY | Total yield | g |
FW | Fruit weight | g |
Trait | Open Field | Screenhouse | ||||
---|---|---|---|---|---|---|
SM | SI a | HMP (%) a | SM | SI a | HMP (%) a | |
Plant | ||||||
PH | 45.78 | 35.24 * | 28.8 * | 48.04 | 47.34 ns | 50.1 *** |
SD1 | 1.28 | 0.87 * | 38.0 * | 1.08 | 0.88 * | 38.5 ** |
SD5 | 1.60 | 2.24 *** | 100.6 *** | 1.37 | 1.82 ** | 107.3 *** |
SP | 0.00 | 9.00 *** | 100.0 *** | 0.00 | 9.00 *** | 100.0 *** |
Leaf | ||||||
LCC | 48.44 | 55.49 * | 35.1 * | 47.35 | 48.75 ns | 12.3 ** |
LBL | 5.00 | 5.00 ns | 40.0 *** | 5.00 | 5.00 ns | 40.0 *** |
LSS | 1.00 | 5.00 *** | −66.6 *** | 1.00 | 5.00 *** | −66.6 *** |
LPU | 0.00 | 1.00 *** | 900.0 *** | 0.00 | 1.00 *** | 9000 *** |
LPL | 0.00 | 1.00 *** | 900.0 *** | 0.00 | 1.00 *** | 900.0 *** |
Flower | ||||||
CD | 4.71 | 3.58 * | 22.8 ** | 4.95 | 3.84 *** | 21.8 ** |
PL | 2.85 | 1.76 * | 15.5 ns | 2.68 | 1.87 ** | 11.4 ns |
SL | 0.20 | 0.60 * | 80.4 * | 0.22 | 0.69 ** | 67.8 *** |
FLCP | 0.00 | 5.00 *** | 260.0 *** | 0.00 | 5.00 *** | 260.0 *** |
Fruit | ||||||
FCL | 6.33 | 1.22 *** | −10.1 ns | 5.39 | na | na |
FPL | 7.66 | 1.92 *** | −43.4 *** | 7.27 | na | na |
TY | 1,919.40 | 28.40 ** | −3.5 ns | 1,429.20 | na | na |
FW | 73.10 | 3.73 *** | −55.4 *** | 64.58 | na | na |
Trait | Open Field | Screenhouse | Open Field + Screenhouse | |||||
---|---|---|---|---|---|---|---|---|
Genotype a | H2 | Genotype a | H2 | Genotype a | Environment a | G × E a | H2 | |
Plant | ||||||||
PH | 4.65 *** | 0.43 | 9.89 *** | 0.64 | 11.05 *** | 353.63 *** | 2.95 *** | 0.38 |
SD1 | 2.34 ** | 0.21 | 5.33 *** | 0.46 | 6.06 *** | 0.38 ns | 1.75 * | 0.27 |
SD5 | 4.44 *** | 0.41 | 2.45 ** | 0.23 | 5.36 *** | 5.47 * | 1.96 * | 0.22 |
Leaf | ||||||||
LCC | 2.82 ** | 0.27 | 2.52 ** | 0.23 | 4.03 *** | 6.23 * | 1.30 ns | 0.20 |
Flower | ||||||||
CD | 2.50 ** | 0.23 | 1.47 ns | 0.09 | 2.10 * | 62.12 *** | 1.74 * | 0.03 |
PL | 3.65 *** | 0.35 | 9.70 *** | 0.63 | 9.50 *** | 0.64 ns | 2.19 ** | 0.36 |
SL | 4.42 *** | 0.41 | 18.82 *** | 0.78 | 15.60 *** | 6.50 * | 2.81 *** | 0.50 |
FLCP | 3.20 *** | 0.31 | 6.46 *** | 0.52 | 7.92 *** | 8.07 ** | 2.11 * | 0.31 |
Fruit | ||||||||
FCL | 6.69 *** | 0.54 | 2.88 ** | 0.30 | 6.86 *** | 0.50 ns | 0.96 ns | 0.38 |
FPL | 11.86 *** | 0.69 | 8.20 *** | 0.62 | 16.20 *** | 10.16 ** | 2.38 ** | 0.53 |
TY | 2.12 * | 0.18 | 3.86 *** | 0.39 | 2.39 ** | 51.11 *** | 1.76 * | 0.05 |
FW | 5.44 *** | 0.47 | 2.96 ** | 0.31 | 6.35 *** | 38.25 *** | 1.63 ns | 0.30 |
Trait | Environment | QTL | Chr. | Position (Mb) | Increase over SM (%) | Allelic Effect (units) | IL | |
---|---|---|---|---|---|---|---|---|
Plant | ||||||||
PH | Open field | ph8 | 8 | 3–109 | 30.9 | 7.07 (cm) | SMI_8.1 | |
Screenhouse | ph8 | 8 | 3–109 | 34.3 | 8.23 (cm) | SMI_8.1 | ||
SD5 | Open field | sd5.2 | 2 | 75–81 | 40.8 | 0.33 (cm) | SMI_2.4 | |
Screenhouse | sd5.2 | 2 | 75–81 | 25.6 | 0.17 (cm) | SMI_2.4 | ||
Flower | ||||||||
PL | Open field | pl1 | 1 | 27–36 | −35.8 | −0.51 (cm) | SMI_1.3 | |
Screenhouse | pl1 | 1 | 27–36 | −26.8 | −0.36 (cm) | SMI_1.3 | ||
SL | Open field | sl8 | 8 | 3–109 | 86.9 | 0.09 (cm) | SMI_8.1 | |
Screenhouse | sl8 | 8 | 3–109 | 196.4 | 0.22 (cm) | SMI_8.1 | ||
FLCP | Open field | flcp3 | 3 | 7–86 | 240.0 | 1.2 a | SMI_3.1 | |
Screenhouse | flcp3 | 3 | 7–86 | 180.0 | 0.9 a | SMI_3.1 | ||
Open field | flcp5 | 5 | 35–43 | 300.0 | 1.5 a | SMI_5.1 | ||
Screenhouse | flcp5 | 5 | 35–43 | 180.0 | 0.9 a | SMI_5.1 | ||
Fruit | ||||||||
FPL | Open field | fpl4 | 4 | 4–105 | −35.9 | −1.37 (cm) | SMI_4.1 | |
Screenhouse | fpl4 | 4 | 4–105 | −34.3 | −1.25 (cm) | SMI_4.1 | ||
Open field | fpl8 | 8 | 3–109 | −41.3 | −1.58 (cm) | SMI_8.1 | ||
Screenhouse | fpl8 | 8 | 3–109 | −31.4 | −1.14 (cm) | SMI_8.1 | ||
Open field | fpl12 | 12 | 3–96 | −38.4 | −1.47 (cm) | SMI_12.6 | ||
Screenhouse | flp12 | 12 | 3–96 | −41.6 | −1.51 (cm) | SMI_12.6 | ||
FW | Open field | fw2 | 2 | 75–81 | −39.5 | −14.45 (g) | SMI_2.4 | |
Screenhouse | fw2 | 2 | 75–81 | −39.1 | −12.64 (g) | SMI_2.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangino, G.; Plazas, M.; Vilanova, S.; Prohens, J.; Gramazio, P. Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. Agronomy 2020, 10, 467. https://doi.org/10.3390/agronomy10040467
Mangino G, Plazas M, Vilanova S, Prohens J, Gramazio P. Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. Agronomy. 2020; 10(4):467. https://doi.org/10.3390/agronomy10040467
Chicago/Turabian StyleMangino, Giulio, Mariola Plazas, Santiago Vilanova, Jaime Prohens, and Pietro Gramazio. 2020. "Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs" Agronomy 10, no. 4: 467. https://doi.org/10.3390/agronomy10040467
APA StyleMangino, G., Plazas, M., Vilanova, S., Prohens, J., & Gramazio, P. (2020). Performance of a Set of Eggplant (Solanum melongena) Lines With Introgressions From Its Wild Relative S. incanum Under Open Field and Screenhouse Conditions and Detection of QTLs. Agronomy, 10(4), 467. https://doi.org/10.3390/agronomy10040467