A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Vitro Toxicity Tests and Artificial Inoculation of Fruit
2.3. Field Experiments
2.3.1. Orchard Site
2.3.2. Infection Period
2.3.3. Experimental Design
2.4. Sampling and Analysis of Fruit
2.4.1. Soft rot Parameters
severity value)/(Total No. of fruit × the highest disease severity value) × 100
control − Disease severity value of treatment)/Disease severity value of control × 100
2.4.2. Content and Enzyme Activity of Defense-Related Compounds
2.4.3. Development, Quality, and Fresh-Keeping Parameters
2.5. Data Analyses
3. Results
3.1. In Vitro Inhibitory Effects of CCF
3.2. Preventive Effects of CCF against Soft Rot in Artificially Inoculated Fruit
3.3. Curative Effects of CCF against Soft Rot in Artificially Inoculated Fruit
3.4. Infection Period
3.5. Incidence of Soft Rot in Kiwifruit
3.6. Defense-Related Compounds and Enzyme Activity
3.7. Growth and Quality Parameters
3.8. Firmness and Softening Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, H.L.; Zhou, H.S.; Li, P.X. Lacquer wax coating improves the sensory and quality attributes of kiwifruit during ambient storage. Sci. Hortic. 2019, 244, 31–41. [Google Scholar] [CrossRef]
- Zhang, M.L.; Xu, L.Y.; Zhang, L.Y.; Guo, Y.H.; Qi, X.; He, L. Effects of quercetin on postharvest blue mold control in kiwifruit. Sci. Hortic. 2018, 228, 18–25. [Google Scholar] [CrossRef]
- Fatemi, H.; Mohammadi, S.; Aminifard, M.H. Effect of postharvest salicylic acid treatment on fungal decay and some postharvest quality factors of kiwi fruit. Arch. Phytopathol. Plant Protect. 2013, 46, 1338–1345. [Google Scholar] [CrossRef]
- Hur, J.S.; Oh, S.O.; Lim, K.M.; Jung, J.S.; Kim, J.W.; Koh, Y.J. Novel effects of TiO2 photocatalytic ozonation on control of postharvest fungal spoilage of kiwifruit. Postharvest Biol. Technol. 2005, 35, 109–113. [Google Scholar] [CrossRef]
- Hawthorne, B.T.; Rees-George, J.; Samuels, G.J. Fungi associated with leaf spots and post-harvest fruit rots of kiwifruit (Actinidia chinensis) in New Zealand. N. Z. J. Bot. 1982, 20, 143–150. [Google Scholar] [CrossRef]
- Manning, M.A.; Meier, X.; Olsen, T.L.; Johnston, P.R. Fungi associated with fruit rots of Actinidia chinensis ‘Hort16A’ in New Zealand. N. Z. J. Crop. Hort. Sci. 2003, 31, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.J.; Hur, J.S.; Jung, J.S. Postharvest fruit rots of kiwifruit (Actinidia deliciosa) in Korea. N. Z. J. Crop. Hort. Sci. 2005, 22, 303–310. [Google Scholar] [CrossRef]
- Prodi, A.; Sandalo, S.; Tonti, S.; Nipoti, P.; Pisi, A. Phiaphora-like fungi associated with kiwifruit elephantiasis. J. Plant Pathol. 2008, 90, 487–494. [Google Scholar] [CrossRef]
- Luongo, L.; Santori, A.; Riccioni, L.; Belisario, A. Phomopsis sp. associated with post-harvest fruit rot of kiwifruit in Italy. J. Plant Pathol. 2011, 93, 205–209. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Long, Y.H.; Wu, X.M. Control of soft rot in kiwifruit by pre-harvest application of chitosan composite film and its effect on preserving and improving kiwifruit quality. Food Sci. 2016, 37, 274–281. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, Z.; Wisniewski, M.; Liu, Y.; Liu, J. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit. Environ. Sci. Pollut. Res. 2015, 19, 15037–15045. [Google Scholar] [CrossRef] [PubMed]
- Bardas, G.A.; Veloukas, T.; Koutita, O.; Karaoglanidis, G.S. Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag. Sci. 2010, 66, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Bi, Y.; Zhang, Z.; Xie, D.; Ge, Y.; Li, W.; Wang, J.; Wang, Y. Postharvest oxalic acid treatment induces resistance against pink rot by priming in muskmelon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 2015, 106, 53–61. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Li, H.; Wang, L.; Huang, K.; Chen, Z. Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biol. Control 2015, 89, 61–67. [Google Scholar] [CrossRef]
- Ali, A.; Zahid, N.; Manickam, S.; Siddiqui, Y.; Alderson, P.G.; Maqbool, M. Induction of lignin and pathogenesis related proteins in dragon fruit plants in response to submicron chitosan dispersions. Crop Prot. 2014, 63, 83–88. [Google Scholar] [CrossRef]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohyd. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef]
- Reglinski, T.; Elmer, P.A.G.; Taylor, J.T.; Wood, P.N.; Hoyte, S.M. Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathol. 2010, 59, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Boonlertnirun, S.; Suvannasara, R.; Promsomboon, P.; Boonlertnirun, K. Chitosan in combination with chemical fertilizer on agronomic traits and some physiological responses relating to yield potential of rice (Oryza sativa L.). Res. J. Biol. Sci. 2012, 7, 64–68. [Google Scholar] [CrossRef]
- Lopes, U.P.; Zambolim, L.; Costa, H.; Pereira, O.L.; Finger, F.L. Potassium silicate and chitosan application for gray mold management in strawberry during storage. Crop Prot. 2014, 63, 103–106. [Google Scholar] [CrossRef]
- Ma, Z.X.; Yang, L.Y.; Yan, H.X.; Kennedy, J.F.; Meng, X.H. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohyd. Polym. 2013, 94, 272–277. [Google Scholar] [CrossRef]
- Yan, J.Q.; Cao, J.K.; Jiang, W.B.; Zhao, Y.M. Effects of preharvest oligochitosan sprays on postharvest fungal diseases, storage quality, and defense responses in jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit. Sci. Hortic. 2012, 142, 196–204. [Google Scholar] [CrossRef]
- Landman, E.P.; Fock, W.W. Stearate intercalated layered double hydroxides: Effect on the physical properties of dextrin-alginate films. J. Mater. Sci. 2006, 44, 2271–2279. [Google Scholar] [CrossRef]
- Mondal, M.M.A.; Puteh, A.B.; Dafader, N.C.; Rafii, M.Y.; Malek, M.A. Foliar application of chitosan improves growth and yield in maize. J. Food Agri. Environ. 2013, 11, 520–523. [Google Scholar]
- Garcia, M.T.; Ventosa, A.; Mellado, E. Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol. Ecol. 2005, 54, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Neslihan, E.; Funda, Ö.; Engin, G. Effects of preharvest foliar calcium applications on the storage quality of ‘0900 Ziraat’ Sweet Cherry Cultivar. Erwerbs-Obstbau 2016, 20, 1–5. [Google Scholar] [CrossRef]
- Pirie, A.; Mullins, M.G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissue treated with sucrose and abscisic acid. Plant Physiol. 1976, 58, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, Z.; Qin, G.; Tian, S.P. Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol. Technol. 2010, 56, 50–55. [Google Scholar] [CrossRef]
- Zhou, Y.; Ming, J.; Deng, L.; Zeng, K. Effect of Pichia membranaefaciens in combination with salicylic acid on postharvest blue and green mold decay in citrus fruits. Biol. Control 2014, 74, 21–29. [Google Scholar] [CrossRef]
- Shi, Z.J.; Wang, F.; Lu, Y.Y.; Deng, J. Combination of chitosan and salicylic acid to control postharvest green mold caused by Penicillium digitatum in grapefruit fruit. Sci. Hortic. 2018, 223, 54–60. [Google Scholar] [CrossRef]
- Liang, W.L.; Yu, A.X.; Wang, G.D.; Zheng, F.; Hu, P.T.; Jia, J.L.; Xu, H.H. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohyd. Polym. 2018, 199, 437–444. [Google Scholar] [CrossRef]
- Liu, H.; Tian, W.X.; Li, B.; Wu, G.X.; Ibrahim, M.; Tao, Z.Y.; Wang, Y.L.; Xie, G.L.; Li, H.Y.; Sun, G.C. Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol. Lett. 2012, 34, 2291–2298. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.H.; Yang, L.Y.; Kennedy, J.F.; Tian, S.P. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohyd. Polym. 2010, 81, 70–75. [Google Scholar] [CrossRef]
- Chen, J.P.; Zou, X.; Liu, Q.; Wang, F.; Feng, W.; Wan, N. Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Prot. 2014, 56, 31–36. [Google Scholar] [CrossRef]
- Yang, L.Y.; Zhang, J.L.; Bassett, C.L.; Meng, X.H. Difference between chitosan and oligochitosan in growth of Monilinia fructicola and control of brown rot in peach fruit. Food Sci. Tech. 2012, 46, 254–259. [Google Scholar] [CrossRef]
- Kim, H.J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agri. Food Chem. 2005, 53, 3696–3701. [Google Scholar] [CrossRef]
- Wang, K.T.; Cao, S.F.; Di, Y.Q.; Liao, Y.X.; Zheng, Y.H. Effect of ethanol treatment on disease resistance against anthracnose rot in postharvest loquat fruit. Sci. Hortic. 2015, 188, 115–121. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, H. Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Sci. Hortic. 2017, 224, 367–373. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Liu, F.; Yang, Y.; Wu, Z.; Cai, H.; Zhang, Q.; Wang, Y.; Li, P. Effects of chitosan on control of postharvest blue mold decay of apple fruit and the possible mechanisms involved. Sci. Hortic. 2015, 186, 77–83. [Google Scholar] [CrossRef]
- Hengameh, H.; Mehdi, B. Applications of biopolymers I: Chitosan. Monatsh. Chem. 2009, 140, 1403–1420. [Google Scholar] [CrossRef]
- Katiyar, D.; Hemantaranjan, A.; Singh, B. Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian J. Plant Physiol. 2015, 22, 1–9. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, P.; Wang, L.; Filippus, I.; Meng, X. Synergistic effect of oligochitosan and silicon on inhibition of Monilinia fructicola infections. J. Sci. Food Agr. 2010, 90, 630–634. [Google Scholar] [CrossRef]
Treatments | Materials | Concentration (g L−1) | Spray time |
---|---|---|---|
T1 | CCF | 1.42 | 20 May and 1 August |
T2 | 0.71 | ||
T3 | 0.35 | ||
T4 | 1.42 | 1 August and 1 September | |
T5 | 0.71 | ||
T6 | 0.35 | ||
T7 | Calcium nitrate | 0.50 | 20 May and 1 August |
T8 | 80% Thiopsin-M WP | 1.50 | |
Control | Irrigation water | - |
Fungal Isolates | Regression Equation | Coefficient of Determination (R2) | EC50 (mg L−1) |
---|---|---|---|
B. dothidea | y = 6.0206 + 0.8746x | 0.9980 | 68.11 |
Phomopsis sp. | y = 5.8783 + 0.6764x | 0.9757 | 50.34 |
Fungal Isolates | Concentration (g L−1) | Lesion Diameter (cm) | ||
---|---|---|---|---|
Inoculation 1 Day After Spray | Inoculation 3 Days After Spray | Inoculation 7 Days After Spray | ||
B. dothidea | 1.42 | 0.97 ± 0.12 d | 0.82 ± 0.09 d | 0.79 ± 0.05 d |
0.71 | 1.58 ± 0.09 c | 1.37 ± 0.07 c | 1.17 ± 0.08 c | |
0.35 | 2.41 ± 0.07 b | 2.09 ± 0.09 b | 1.73 ± 0.07 b | |
Control | 3.89 ± 0.13 a | 3.89 ± 0.13 a | 3.89 ± 0.13 a | |
Phomopsis sp. | 1.42 | 0.62 ± 0.04 c | 0.54 ± 0.06 b,c | 0.37 ± 0.04 c |
0.71 | 0.87 ± 0.05 c | 0.63 ± 0.05 b | 0.52 ± 0.05 b | |
0.35 | 1.02 ± 0.04 b | 0.75 ± 0.05 b | 0.63 ± 0.05 b | |
Control | 2.16 ± 0.10 a | 2.16 ± 0.10 a | 2.16 ± 0.10 a |
Fungal Isolates | Concentration (g L−1) | Lesion diameter (cm) | ||
---|---|---|---|---|
Spray 1 Day After Inoculation | Spray 3 Days After Inoculation | Spray 7 Days After Inoculation | ||
B. dothidea | 1.42 | 0.37 ± 0.10 d | 0.84 ± 0.11 d | 1.68 ± 0.09 d |
0.71 | 0.83 ± 0.10 c | 1.29 ± 0.10 c | 2.31 ± 0.07 c | |
0.35 | 1.68 ± 0.07 b | 2.10 ± 0.10 b | 3.25 ± 0.07 b | |
Control | 4.90 ± 0.13 a | 4.90 ± 0.13 a | 4.90 ± 0.13 a | |
Phomopsis sp. | 1.42 | 0.00 ± 0.00 c | 0.41 ± 0.04 c | 0.83 ± 0.04 c |
0.71 | 0.35 ± 0.06 b | 0.76 ± 0.04 b,c | 0.92 ± 0.04 c | |
0.35 | 0.45 ± 0.06 b | 0.94 ± 0.04 b | 1.11 ± 0.04 b | |
Control | 2.22 ± 0.07 a | 2.22 ± 0.07 a | 2.22 ± 0.07 a |
Treatments | Incidence (%) | Disease Severity Value | Control Effect (%) |
---|---|---|---|
T1 | 17.78 ± 3.85 f | 6.67 ± 1.11 e | 82.13 ± 2.86 a |
T2 | 26.67 ± 3.85 e | 10.37 ± 0.64 d,e | 71.94 ± 1.01 b |
T3 | 35.56 ± 3.85 c,d | 14.44 ± 1.11 cd | 60.75 ± 2.91 c |
T4 | 33.33 ± 0.00 d,e | 12.96 ± 0.65 d | 64.85 ± 0.68 c |
T5 | 42.22 ± 3.85 b,c | 18.15 ± 1.28 b,c | 50.70 ± 1.52 d |
T6 | 46.67 ± 6.67 b | 22.59 ± 1.70 b | 38.35 ± 5.90 e |
T7 | 48.89 ± 3.85 b | 21.11 ± 2.94 b | 42.73 ± 5.89 e |
T8 | 31.11 ± 3.85 de | 12.59 ± 0.64 d | 65.72 ± 3.37 b,c |
Control | 71.11 ± 3.85 a | 36.67 ± 2.04 a |
Treatments | Diameter (mm) | Shape Index | Fruit Volume (cm3) | Fruit Weight (g) | ||
---|---|---|---|---|---|---|
Longitudinal | Transverse 1 | Transverse 2 | ||||
T1 | 77.53 ± 2.31 a | 53.71 ± 4.36 a | 40.98 ± 0.53 a | 1.64 ± 0.10 a,b | 71.42 ± 1.77 a | 81.07 ± 1.36 a |
T2 | 76.42 ± 0.73 a,b | 50.70 ± 0.65 a,b | 41.58 ± 0.74 a | 1.66 ± 0.02 a | 67.45 ± 1.92 b | 77.76 ± 1.63 b |
T3 | 74.55 ± 0.12 c | 51.89 ± 0.92 a,b | 40.84 ± 1.27 a | 1.61 ± 0.04 a,b | 66.15 ± 1.94 c | 75.85 ± 1.58 d |
T4 | 75.66 ± 0.32 b,c | 51.89 ± 0.93 a,b | 41.06 ± 1.56 a | 1.63 ± 0.05 a,b | 67.51 ± 1.48 b | 77.03 ± 1.41 c |
T5 | 72.48 ± 0.44 d | 51.80 ± 0.52 a,b | 42.02 ± 0.36 a | 1.55 ± 0.02 b | 66.04 ± 1.32 c | 75.83 ± 1.50 d |
T6 | 72.54 ± 0.48 d | 52.67 ± 0.70 a,b | 40.84 ± 3.46 a | 1.55 ± 0.08 b | 65.34 ± 1.94 c | 74.67 ± 1.09 e |
T7 | 75.36 ± 0.43 b,c | 50.27 ± 0.68 a,b | 41.07 ± 0.57 a | 1.65 ± 0.03 a,b | 65.14 ± 1.74 c | 74.63 ± 1.12 e |
T8 | 75.14 ± 0.68 b,c | 49.75 ± 2.77 b | 41.86 ± 0.50 a | 1.64 ± 0.06 a,b | 65.53 ± 1.10 c | 74.35 ± 1.46 e |
Control | 75.25 ± 1.18 b,c | 50.38 ± 0.85 a,b | 41.02 ± 0.61 a | 1.65 ± 0.01 a,b | 65.13 ± 1.89 c | 74.19 ± 1.20 e |
Treatments | Vitamin C (g kg−1) | Soluble Solids (%) | Dry Matter (%) | Total Soluble Sugar (%) | Titratable Acidity (%) | Soluble Protein(%) |
---|---|---|---|---|---|---|
T1 | 1.90 ± 0.01 a | 15.53 ± 0.06 a | 19.67 ± 0.10 a | 12.64 ± 0.10 a | 1.01 ± 0.01 g | 1.82 ± 0.02 a |
T2 | 1.86 ± 0.02 b | 14.70 ± 0.10 b | 19.18 ± 0.02 b | 12.32 ± 0.07 b | 1.09 ± 0.00 f | 1.79 ± 0.00 a,b |
T3 | 1.81 ± 0.00 c | 14.23 ± 0.06 c | 18.12 ± 0.03 d | 12.14 ± 0.04 b,c | 1.11 ± 0.01 e | 1.75 ± 0.00 b |
T4 | 1.82 ± 0.01 c | 14.20 ± 0.10 c | 18.98 ± 0.01 c | 12.19 ± 0.01 b,c | 1.09 ± 0.01 f | 1.76 ± 0.01 b |
T5 | 1.81 ± 0.01 c | 13.97 ± 0.06 d | 18.09 ± 0.06 d | 12.02 ± 0.02 c,d | 1.14 ± 0.01 d | 1.73 ± 0.01 b,c |
T6 | 1.81 ± 0.00 c | 13.80 ± 0.00 e | 17.42 ± 0.12 e | 11.45 ± 0.42 e | 1.18 ± 0.01 c | 1.70 ± 0.01 c |
T7 | 1.81 ± 0.00 c | 13.83 ± 0.06 e | 17.48 ± 0.10 e | 11.82 ± 0.01 d | 1.18 ± 0.00 c | 1.47 ± 0.02 d |
T8 | 1.81 ± 0.01 c | 13.80 ± 0.00 e | 16.72 ± 0.14 f | 11.74 ± 0.12 d | 1.22 ± 0.01 b | 1.41 ± 0.02 e |
Control | 1.80 ± 0.00 c,d | 13.63 ± 0.06 f | 16.57 ± 0.12 f | 11.37 ± 0.01 e | 1.27 ± 0.00 a | 1.39 ± 0.03 e |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Long, Y.; Li, J.; Li, M.; Xing, D.; An, H.; Wu, X.; Wu, Y. A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit. Agronomy 2020, 10, 265. https://doi.org/10.3390/agronomy10020265
Zhang C, Long Y, Li J, Li M, Xing D, An H, Wu X, Wu Y. A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit. Agronomy. 2020; 10(2):265. https://doi.org/10.3390/agronomy10020265
Chicago/Turabian StyleZhang, Cheng, Youhua Long, Jiaohong Li, Ming Li, Deke Xing, Huaming An, Xiaomao Wu, and Yanyou Wu. 2020. "A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit" Agronomy 10, no. 2: 265. https://doi.org/10.3390/agronomy10020265
APA StyleZhang, C., Long, Y., Li, J., Li, M., Xing, D., An, H., Wu, X., & Wu, Y. (2020). A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit. Agronomy, 10(2), 265. https://doi.org/10.3390/agronomy10020265