Reduction of Ryegrass (Lolium multiflorum Lam.) Natural Re-Sowing with Herbicides and Plant Growth Regulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Details and Treatment Descriptions
2.3. Procedure
2.4. Seed Production and Quality
2.5. Statistical Analysis
3. Results and Discussion
3.1. Inflorescence Emergence Stage
3.1.1. Seed Production
3.1.2. Seed Quality
3.2. Flowering Stage
3.2.1. Seed Production
3.2.2. Seed Quality
3.3. Fruit Development Stage
3.3.1. Seed Production
3.3.2. Seed Quality
3.4. Practical Implications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agostinetto, D.; Tarouco, C.P.; Langaro, A.C.; Gomes, J.; Vargas, L. Competition between wheat and ryegrass under different levels of nitrogen fertilization. Planta Daninha 2017, 35. [Google Scholar] [CrossRef] [Green Version]
- Olsen, J.; Kristensen, L.; Weiner, J. Influence of sowing density and spatial pattern of spring wheat (Triticum aestivum) on the suppression of different weed species. Weed Biol. Manag. 2006, 6, 165–173. [Google Scholar] [CrossRef]
- Bararpour, T.; Bond, J.A.; Singh, G.; Hale, R.R.; Edwards, M.; Lawrence, B.H. Glyphosate-resistant Italian ryegrass (Lolium perenne L. spp. Multiflorum) control and seed suppression in Mississippi. Agronomy 2020, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- El-Rokiek, K.G.; El-Awady, M.S.; El-Wahed, M.S.A. Physiological responses of wheat plants and accompanied weeds to derby herbicide and β-sitosterol bioregulator. J. Appl. Sci. Res. 2012, 8, 1918–1926. [Google Scholar]
- Scursoni, J.A.; Palmano, M.; De Notta, A.; Delfino, D. Italian ryegrass (Lolium multiflorum Lam.) density and N fertilization on wheat (Triticum aestivum L.) yield in Argentina. Crop Prot. 2012, 32, 36–40. [Google Scholar] [CrossRef]
- Niinomi, Y.; Ikeda, M.; Yamashita, M.; Ishida, Y.; Asai, M.; Shimono, Y.; Tominaga, T.; Sawada, H. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) on rice paddy levees in Japan: Glyphosate-resistant ryegrass in Japan. Weed Biol. Manag. 2013, 13, 31–38. [Google Scholar] [CrossRef]
- Hashem, A.; Radosevich, S.R.; Roush, M.L. Effect of proximity factors on competition between winter wheat (Triticum aestivum) and Italian ryegrass (Lolium multiflorum). Weed Sci. 1998, 46, 181–190. [Google Scholar] [CrossRef]
- Paula, J.M.; Agostinetto, D.; Schaedler, C.E.; Vargas, L.; Silva, D.R.O. Competição de trigo com azevém em função de épocas de aplicação e doses de nitrogênio. Planta Daninha 2011, 29, 557–563. [Google Scholar] [CrossRef]
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Swanton, C.; Zollinger, R. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llewellyn, R.S.; Nichols, R.L.; Webster, T.M.; Bradley, K.W.; Frisvold, G.; Powles, S.B.; Burgos, N.R.; et al. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2012, 60, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Jabran, K.; Mahmood, K.; Melander, B.; Bajwa, A.A.; Kudsk, P. Chapter Three—Weed dynamics and management in wheat. Adv. Agron. 2017, 145, 97–166. [Google Scholar] [CrossRef]
- Brutnell, T.P.; Bennetzen, J.L.; Vogel, J.P. Brachypodium distachyon and Setaria viridis: Model genetic systems for the grasses. Ann. Rev. Plant Biol. 2015, 66, 465–485. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, S.; Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. USA 2007, 104, 3883–3888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallandt, E.R. How can we target the weed seedbank? Weed Sci. 2006, 54, 588–596. [Google Scholar] [CrossRef]
- Goggin, D.E.; Powles, S.B.; Steadman, K.J. Understanding Lolium rigidum seeds: The key to managing a problem weed? Agronomy 2012, 2, 222–239. [Google Scholar] [CrossRef]
- Schwartz-Lazaro, L.M.; Copes, J.T. A review of the soil seedbank from a weed scientists perspective. Agronomy 2019, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Bararpour, M.T.; Norsworthy, J.K.; Burgos, N.R.; Korres, N.E.; Gbur, E.E. Identification and biological characteristics of Ryegrass (Lolium spp.) accessions in Arkansas. Weed Sci. 2017, 65, 350–360. [Google Scholar] [CrossRef]
- Gundel, P.E.; Martínez-Ghersa, M.A.; Ghersa, C.M. Dormancy, germination and ageing of Lolium multiflorum seeds following contrasting herbicide selection regimes. Eur. J. Agron. 2008, 28, 606–613. [Google Scholar] [CrossRef]
- Recasens, J.; Caimons, O.; Torra, J.; Taberner, A. Variation in seed germination and early growth between and within acetolactate synthase herbicide resistant and susceptible Lolium rigidum accessions. Seed Sci. Technol. 2007, 35, 32–47. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bagavathiannan, M.V.; Norsworthy, J.K. Late-Season seed production in arable weed communities: Management implications. Weed Sci. 2012, 60, 325–334. [Google Scholar] [CrossRef]
- Krenchinski, F.H.; Cesco, V.J.S.; Rodrigues, D.M.; Pereira, V.G.C.; Albrecht, A.J.P.; Albrecht, L.P. Yield and physiological quality of wheat seeds after desiccation with different herbicides. J. Seed Sci. 2017, 39, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.C.; Shaw, D.R. Effect of preharvest desiccants on weed seed production and viability. Weed Technol. 2000, 14, 530–538. [Google Scholar] [CrossRef]
- Clay, P.A.; Griffin, J.L. Weed seed production and seedling emergence responses to late-season glyphosate applications. Weed Sci. 2000, 48, 481–486. [Google Scholar] [CrossRef]
- Steadman, K.J.; Eaton, D.M.; Plummer, J.A.; Ferris, D.G.; Powles, S.B. Late-season non-selective herbicide application reduces Lolium rigidum seed numbers, seed viability, and seedling fitness. Aust. J. Agric. Res. 2006, 57, 133. [Google Scholar] [CrossRef]
- Johnson, D.B.; Norsworthy, J.K. Johnsongrass (Sorghum halepense) management as influenced by herbicide selection and application timing. Weed Technol. 2014, 28, 142–150. [Google Scholar] [CrossRef]
- Jones, R.E.; Vere, D.T.; Alemseged, Y.; Medd, R.W. Estimating the economic cost of weeds in Australian annual winter crops. Agric. Econ. 2005, 32, 253–265. [Google Scholar] [CrossRef]
- Boutsalis, P.; Gill, G.S.; Preston, C. Incidence of Herbicide Resistance in Rigid Ryegrass (Lolium rigidum) across Southeastern Australia. Weed Technol. 2012, 26, 391–398. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: www.weedscience.com (accessed on 11 May 2020).
- Köppen, W. Climatologia: Con un Estudio de Los Climas de la Tierra; Fondo de Cultura Econômica: Pánuco, México, 1948. [Google Scholar]
- Moreno, J.A. Clima do Rio Grande do Sul; Secretaria da Agricultura: Porto Alegre, Brazil, 1961. [Google Scholar]
- Kuinchtner, A.; Buriol, G.A. Clima do estado do Rio Grande do Sul segundo a classificação climática de Köppen e Thornthwaite. Discip. Sci. 2001, 2, 171–182. [Google Scholar]
- Treck, E.V.; Kampf, N.; Diniz, R.S. Solos do Rio Grande do Sul, 2nd ed.; EMATER: Porto Alegre, Brazil, 2008. [Google Scholar]
- Hess, M.; Barralis, G.; Bleiholder, H.; Buhr, L.; Eggers, T.; Hack, H.; Stauss, R. Use of the extended BBCH scale-general for the descriptions of the growth stages of mono- and dicotyledonous weed species. Weed Res. 1997, 37, 433–441. [Google Scholar] [CrossRef]
- Brasil—Ministério da Agricultura, Pecuária e Abastecimento. Regras Para Análise de Sementes, 1st ed.; Ministério da Agricultura, Pecuária e Abastecimento, Secretária de Defesa Agropecuária: Brasília, Brazil, 2009. [Google Scholar]
- Marcos Filho, J. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Soares, V.N.; Elias, S.G.; Gadotti, G.I.; Garay, A.E.; Villela, F.A. Can the tetrazolium test be used as an alternative to the germination test in determining seed viability of grass species? Crop Sci. 2016, 56, 9. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 24 August 2020).
- Davis, A.S. When does it make sense to target the weed seed bank? Weed Sci. 2006, 54, 558–565. [Google Scholar] [CrossRef]
- Walsh, M.; Newman, P.; Powles, S. Targeting weed seeds in-crop: A new weed control paradigm for global agriculture. Weed Technol. 2013, 27, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Jha, P.; Norsworthy, J.K. Influence of late-season herbicide applications on control, fecundity, and progeny fitness of glyphosate-resistant Palmer Amaranth (Amaranthus palmeri) Biotypes from Arkansas. Weed Technol. 2012, 26, 807–812. [Google Scholar] [CrossRef]
- Kleemann, S.G.L.; Preston, C.; Gill, G.S. Influence of Management on Long-Term Seedbank Dynamics of Rigid Ryegrass (Lolium rigidum) in Cropping Systems of Southern Australia. Weed Sci. 2016, 64, 303–311. [Google Scholar] [CrossRef]
- Christoffoleti, P.; Trentin, R.; Tocchetto, S.; Marochi, A.; Galli, A.J.; López-Ovejero, R.; Nicolai, M. Alternative Herbicides to Manage Italian Ryegrass (Lolium multiflorum Lam) Resistant to Glyphosate at Different Phenological Stages. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2005, 40, 59–67. [Google Scholar] [CrossRef]
- Pereira, T.; Coelho, C.M.M.; Souza, C.A.; Mantovani, A.; Mathias, V. Chemical desiccation for early harvest in soybean cultivars. Semin. Ciênc. Agrár. 2015, 36, 2383–2394. [Google Scholar] [CrossRef] [Green Version]
- Ganie, Z.A.; Kaur, S.; Jha, P.; Kumar, V.; Jhala, A.J. Effect of Late-Season Herbicide Applications on Inflorescence and Seed Production of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida). Weed Technol. 2018, 32, 159–165. [Google Scholar] [CrossRef]
- Gauvrit, C.; Chauvel, B. Sensitivity of Ambrosia artemisiifolia to glufosinate and glyphosate at various developmental stages: Glufosinate and glyphosate on Ambrosia artemisiifolia. Weed Res. 2010, 50, 503–510. [Google Scholar] [CrossRef]
- Bae, J.; Nurse, R.E.; Simard, M.-J.; Page, E.R. Managing glyphosate-resistant common ragweed (Ambrosia artemisiifolia): Effect of glyphosate-phenoxy tank mixes on growth, fecundity, and seed viability. Weed Sci. 2017, 65, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Shuma, J.M.; Quick, W.A.; Raju, M.V.S.; Hsiao, A.I. Germination of seeds from plants of Avena fatua L. treated with glyphosate. Weed Res. 1995, 35, 249–255. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, P. Influence of herbicides applied postharvest in wheat stubble on control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains. Crop Prot. 2015, 71, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Biniak, B.M.; Aldrich, R.J. Reducing Velvetleaf (Abutilon theophrasti) and Giant Foxtail (Setaria faberi) Seed Production with Simulated-Roller Herbicide Applications. Weed Sci. 1986, 34, 256–259. [Google Scholar] [CrossRef]
- Fawcett, R.S.; Slife, F.W. Effects of 2,4-D and Dalapon on Weed Seed Production and Dormancy. Weed Sci. 1978, 26, 543–547. [Google Scholar] [CrossRef]
- Taylor, S.E.; Oliver, L.R. Sicklepod (Senna obtusifolia) seed production and viability as influenced by late-season postemergence herbicide applications. Weed Sci. 1997, 45, 497–501. [Google Scholar] [CrossRef]
- Walker, E.R.; Oliver, L.R. Weed Seed Production as Influenced by Glyphosate Applications at Flowering Across a Weed Complex. Weed Technol. 2008, 22, 318–325. [Google Scholar] [CrossRef]
- Madafiglio, G.P.; Medd, R.W.; Cornish, P.S.; Ven, R. Seed production of Raphanus raphanistrum following herbicide application during reproduction and effects on wheat yield. Weed Res. 2006, 46, 50–60. [Google Scholar] [CrossRef]
- Andersson, L. Characteristics of seeds and seedlings from weeds treated with sublethal herbicide doses. Weed Res. 1996, 36, 55–64. [Google Scholar] [CrossRef]
- Qi, Y.; Yan, B.; Fu, G.; Guan, X.; Du, L.; Li, J. Germination of Seeds and Seedling Growth of Amaranthus retroflexus L. Following Sublethal Exposure of Parent Plants to Herbicides. Sci. Rep. 2017, 7, 157. [Google Scholar] [CrossRef]
- Perboni, L.T.; Agostinetto, D.; Vargas, L.; Cechin, J.; Zandoná, R.R.; Farias, H.D.S. Yield, germination and herbicide residue in seeds of preharvest desiccated wheat. J. Seed Sci. 2018, 40, 304–312. [Google Scholar] [CrossRef]
- Yenish, J.P.; Young, F.L. Effect of Preharvest Glyphosate Application on Seed and Seedling Quality of Spring Wheat (Triticum aestivum). Weed Technol. 2000, 14, 212–217. [Google Scholar] [CrossRef]
- Maun, M.A.; Cavers, P.B. Effects of 2,4-D on Seed Production and Embryo Development of Curly Dock. Weed Sci. 1969, 17, 533–536. [Google Scholar] [CrossRef]
- Chastain, T.G.; Young, W.C.; Silberstein, T.B.; Garbacik, C.J. Performance of trinexapac-ethyl on Lolium perenne seed crops in diverse lodging environments. Field Crops Res. 2014, 157, 65–70. [Google Scholar] [CrossRef]
- de Campos, C.F.; Martins, D.; da Costa, A.C.P.R.; Pereira, M.R.R.; Cardoso, L.A.; Martins, C.C. Effect of herbicides on desiccation of Lolium multiflorum L. plants and seed germination. Semin. Ciênc. Agrár. 2012, 33, 2067–2074. [Google Scholar] [CrossRef] [Green Version]
- Da Rosa Ulguim, A.; Agostinetto, D.; Vargas, L.; Dias Gomes da Silva, J.; Schneider, T.; Moncks da Silva, B. Mixture of glufosinate and atrazine for ryegrass (Lolium multiflorum Lam.) control and its effect on seeds’ quality. Rev. Fac. Nac. Agron. Medellín 2019, 72, 8655–8661. [Google Scholar] [CrossRef]
- Barros, A.F.; Pimentel, L.D.; Freitas, F.C.L.; Cecon, P.R.; Tomaz, A.C.; Sousa, E.A.M.; Ladeira, L.M.; Biesdorf, E.M. Dessecação pré-colheita em sorgo granífero: Qualidade fisiológica das sementes e efeito sobre a rebrota. Agraria 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Bellé, C.; Kulczynski, S.M.; Basso, C.J.; Edu Kaspary, T.; Lamego, F.P.; Pinto, M.A.B. Yield and quality of wheat seeds as a function of desiccation stages and herbicides. J. Seed Sci. 2014, 36, 63–70. [Google Scholar] [CrossRef]
- He, Y.; Cheng, J.; Liu, L.; Li, X.; Yang, B.; Zhang, H.; Wang, Z. Effects of pre-harvest chemical application on rice desiccation and seed quality. J. Zhejiang Univ. Sci. B 2015, 16, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Fipke, G.M.; Martin, T.N.; Nunes, U.R.; Stecca, J.D.; Winck, J.E.; Grando, L.F.; da Costa Rossato, A. Application of Non-Selective Herbicides in the Pre-Harvest of Wheat Damages Seed Quality. AJPS 2018, 9, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Appleby, A.P.; Brenchley, R.G. Influence of Paraquat on Seed Germination. Weed Sci. 1968, 16, 484–485. [Google Scholar] [CrossRef]
- Goggin, D.E.; Powles, S.B.; Steadman, K.J. Selection for low or high primary dormancy in Lolium rigidum Gaud seeds results in constitutive differences in stress protein expression and peroxidase activity. J. Exp. Bot. 2011, 62, 1037–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subedi, M.; Willenborg, C.J.; Vandenberg, A. Influence of Harvest Aid Herbicides on Seed Germination, Seedling Vigor and Milling Quality Traits of Red Lentil (Lens culinaris L.). Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szemruch, C.L.; Renteria, S.J.; Moreira, F.; Cantamutto, M.A.; Ferrari, L.; Rondanini, D.P. Germination, vigour and dormancy of sunflower seeds following chemical desiccation of female plants. Seed Sci. Technol. 2014, 42, 454–460. [Google Scholar] [CrossRef]
- Neve, P.; Norsworthy, J.K.; Smith, K.L.; Zelaya, I.A. Modeling Glyphosate Resistance Management Strategies for Palmer Amaranth (Amaranthus palmeri) in Cotton. Weed Technol. 2011, 25, 335–343. [Google Scholar] [CrossRef]
- Castellanos-Frías, E.; Garcia De León, D.; Bastida, F.; Gonzalez-Andujar, J.L. Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change. J. Agric. Sci. 2016, 154, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Vargas, L.; Roman, E.S.; Rizzardi, M.A.; Silva, V.C. Identification of glyphosate-resistant ryegrass (Lolium multiflorum) biotypes in apple orchards. Planta Daninha 2004, 22, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.D.; Steckel, L.E.; Hayes, R.M.; Mueller, T.C. Evaluation of POST-Harvest Herbicide Applications for Seed Prevention of Glyphosate-Resistant Palmer amaranth (Amaranthus palmeri). Weed Technol. 2015, 29, 405–411. [Google Scholar] [CrossRef] [Green Version]
Treatment | Site of Action | Dose 1 | Reduced Dose 2 |
---|---|---|---|
g ha−1 | |||
Untreated control | - | - | - |
Ammonium glufosinate | GS inhibitor | 400 | 200 |
Clethodim | ACCase inhibitor | 108 | 54 |
Glyphosate | EPSP inhibitor | 720 | 360 |
Iodosulfuron-methyl | ALS inhibitor | 5 | 2.5 |
Paraquat | PSI electron diverter | 400 | 200 |
2,4-D | Synthetic Auxin | 1340 | 670 |
Ethephon | PGR 3 | 720 | 360 |
Trinexapac-ethyl | PGR 3 | 400 | 200 |
Treatment | Dose 1 | Seed Production | TSW | Viability 3 | Germination Test (%) 2 | |||
---|---|---|---|---|---|---|---|---|
V | G | D | M | |||||
g ha−1 | kg ha−1 | g | % | % | ||||
Untreated control | - | 580.5 a | 1.94 ns | 77 ns | 68 ns | 69 ns | 11 ns | 20 ns |
2,4-D | 1340 | 589.7 a | 1.97 | 82 | 71 | 74 | 17 | 9 |
2,4-D | 670 | 566.1 a | 2.04 | 81 | 64 | 68 | 13 | 19 |
Ethephon 4 | 360 | 544.2 a | 2.02 | 83 | 67 | 70 | 13 | 17 |
Trinexapac-ethyl 4 | 200 | 438.2 b | 1.97 | 75 | 71 | 73 | 14 | 13 |
Trinexapac-ethyl 4 | 400 | 434.5 b | 1.97 | 74 | 55 | 61 | 23 | 16 |
Ethephon 4 | 720 | 77.2 c | 1.69 | 79 | 63 | 73 | 10 | 17 |
Clethodim | 54 | 0.0 d | - | - | - | - | - | - |
Clethodim | 108 | 0.0 d | - | - | - | - | - | - |
Glyphosate | 360 | 0.0 d | - | - | - | - | - | - |
Glyphosate | 720 | 0.0 d | - | - | - | - | - | - |
Ammonium glufosinate | 200 | 0.0 d | - | - | - | - | - | - |
Ammonium glufosinate | 400 | 0.0 d | - | - | - | - | - | - |
Iodosulfuron-methyl | 2.5 | 0.0 d | - | - | - | - | - | - |
Iodosulfuron-methyl | 5 | 0.0 d | - | - | - | - | - | - |
Paraquat | 200 | 0.0 d | - | - | - | - | - | - |
Paraquat | 400 | 0.0 d | - | - | - | - | - | - |
CV (%) | - | 16.4 | 7.2 | 6.7 | 8.7 | 6.6 | 17.1 | 24.2 |
Treatment | Dose 1 | Seed Production | TSW | Viability 3 | Germination Test (%) 2 | |||
---|---|---|---|---|---|---|---|---|
V | G | D | M | |||||
g ha−1 | kg ha−1 | g | % | % | ||||
Ethephon 4 | 360 | 587.4 a | 2.13 a | 90 a | 67 a | 77 a | 13 b | 10 b |
2,4-D | 670 | 561.6 a | 2.03 a | 97 a | 70 a | 76 a | 9 b | 15 b |
Ethephon 4 | 720 | 506.5 a | 2.40 a | 77 b | 76 a | 80 a | 9 b | 11 b |
Trinexapac-ethyl 4 | 400 | 445.0 b | 1.81 b | 84 a | 60 b | 66 b | 21 a | 13 b |
Untreated control | - | 414.4 b | 2.27 a | 91 a | 70 a | 74 a | 8 b | 18 b |
Trinexapac-ethyl 4 | 200 | 380.4 b | 2.03 a | 75 b | 61 b | 70 a | 20 a | 10 b |
2,4-D | 1340 | 358.7 b | 2.19 a | 85 a | 72 a | 79 a | 13 b | 8 b |
Iodosulfuron-methyl | 2.5 | 27.1 c | 1.75 b | 81 b | 54 b | 63 b | 13 b | 24 a |
Iodosulfuron-methyl | 5 | 20.7 c | 1.66 b | 67 b | 43 b | 49 c | 19 a | 32 a |
Clethodim | 54 | 0.0 d | - | - | - | - | - | - |
Clethodim | 108 | 0.0 d | - | - | - | - | - | - |
Glyphosate | 360 | 0.0 d | - | - | - | - | - | - |
Glyphosate | 720 | 0.0 d | - | - | - | - | - | - |
Ammonium glufosinate | 200 | 0.0 d | - | - | - | - | - | - |
Ammonium glufosinate | 400 | 0.0 d | - | - | - | - | - | - |
Paraquat | 200 | 0.0 d | - | - | - | - | - | - |
Paraquat | 400 | 0.0 d | - | - | - | - | - | - |
CV (%) | - | 18.3 | 4.6 | 6.7 | 10.9 | 8.6 | 19.4 | 41.7 |
Treatment | Dose 1 | Seed Production | TSW | Viability 3 | Germination Test (%) 2 | |||
---|---|---|---|---|---|---|---|---|
V | G | D | M | |||||
g ha−1 | kg ha−1 | g | % | % | ||||
Untreated control | - | 823.4 a | 2.09 b | 78 b | 51 a | 53 b | 19 b | 28 b |
Trinexapac-ethyl 4 | 200 | 557.3 b | 2.00 b | 88 a | 63 a | 66 a | 25 b | 9 b |
2,4-D | 1340 | 520.2 b | 1.80 c | 89 a | 58 a | 59 b | 20 b | 21 b |
2,4-D | 670 | 514.6 b | 1.97 b | 85 a | 55 a | 57 b | 18 b | 25 b |
Trinexapac-ethyl 4 | 400 | 349.8 c | 2.01 b | 86 a | 61 a | 67 a | 21 b | 12 b |
Ethephon 4 | 360 | 348.8 c | 2.32 a | 89 a | 73 a | 73 a | 16 b | 11 b |
Ethephon 4 | 720 | 321.8 c | 2.22 a | 88 a | 69 a | 70 a | 16 b | 14 b |
Iodosulfuron-methyl | 2.5 | 309.5 c | 1.81 c | 71 b | 47 a | 49 b | 19 b | 32 a |
Iodosulfuron-methyl | 5 | 193.4 d | 1.71 c | 63 c | 31 b | 38 c | 25 b | 37 a |
Clethodim | 108 | 152.8 d | 1.53 d | 43 d | 19 b | 22 c | 29 b | 49 a |
Clethodim | 54 | 137.3 d | 1.80 c | 48 d | 31 b | 38 c | 22 b | 40 a |
Ammonium glufosinate | 200 | 126.4 d | 1.52 d | 51 d | 34 b | 35 c | 23 b | 42 a |
Glyphosate | 720 | 96.2 d | 1.37 d | 79 b | 34 b | 36 c | 19 b | 45 a |
Glyphosate | 360 | 90.9 d | 1.73 c | 79 b | 34 b | 36 c | 31 a | 33 a |
Ammonium glufosinate | 400 | 74.0 d | 1.21 d | 37 d | 10 c | 13 d | 34 a | 53 a |
Paraquat | 200 | 45.3 d | 1.40 d | 77 b | 7 c | 9 d | 43 a | 48 a |
Paraquat | 400 | 21.9 d | 1.34 d | 73 b | 9 c | 10 d | 51 a | 39 a |
CV (%) | - | 28.3 | 9.1 | 10.3 | 15.8 | 15.6 | 20.0 | 31.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaeffer, A.H.; Schaeffer, O.A.; Silveira, D.C.; Bertol, J.A.G.; Rocha, D.K.; dos Santos, F.M.; Vargas, L.; Lângaro, N.C. Reduction of Ryegrass (Lolium multiflorum Lam.) Natural Re-Sowing with Herbicides and Plant Growth Regulators. Agronomy 2020, 10, 1960. https://doi.org/10.3390/agronomy10121960
Schaeffer AH, Schaeffer OA, Silveira DC, Bertol JAG, Rocha DK, dos Santos FM, Vargas L, Lângaro NC. Reduction of Ryegrass (Lolium multiflorum Lam.) Natural Re-Sowing with Herbicides and Plant Growth Regulators. Agronomy. 2020; 10(12):1960. https://doi.org/10.3390/agronomy10121960
Chicago/Turabian StyleSchaeffer, Afonso Henrique, Otávio Augusto Schaeffer, Diógenes Cecchin Silveira, João Arthur Guareschi Bertol, Debora Kelli Rocha, Fernando Machado dos Santos, Leandro Vargas, and Nadia Canali Lângaro. 2020. "Reduction of Ryegrass (Lolium multiflorum Lam.) Natural Re-Sowing with Herbicides and Plant Growth Regulators" Agronomy 10, no. 12: 1960. https://doi.org/10.3390/agronomy10121960
APA StyleSchaeffer, A. H., Schaeffer, O. A., Silveira, D. C., Bertol, J. A. G., Rocha, D. K., dos Santos, F. M., Vargas, L., & Lângaro, N. C. (2020). Reduction of Ryegrass (Lolium multiflorum Lam.) Natural Re-Sowing with Herbicides and Plant Growth Regulators. Agronomy, 10(12), 1960. https://doi.org/10.3390/agronomy10121960