Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oil Extraction
2.3. PAH Isolation and Determination
2.4. PAH Quantification and Validation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Oil Uptake
3.2. PAH Determination
3.3. Effect of Cultivar
3.4. Effect of Processing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santeramo, F.G.; Carlucci, D.; De Devitiis, B.; Seccia, A.; Stasi, A.; Viscecchia, R.; Nardone, G. Emerging trends in European food, diets and food industry. Food Res. Int. 2018, 104, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–36. [Google Scholar] [CrossRef]
- Farina, V.; Passafiume, R.; Tinebra, I.; Palazzolo, E.; Sortino, G. Use of Aloe Vera Gel-Based Edible Coating with Natural Anti-Browning and Anti-Oxidant Additives to Improve Post-Harvest Quality of Fresh-Cut ‘Fuji’Apple. Agronomy 2020, 10, 515. [Google Scholar] [CrossRef] [Green Version]
- FAO. Faostat: Food and Agriculture Data; Food and Agriculture Organization of United Nations: Rome, Italy, 2018. [Google Scholar]
- Bobo-García, G.; Arroqui, C.; Merino, G.; Vírseda, P. Antibrowning Compounds for Minimally Processed Potatoes: A Review. Food Rev. Int. 2019, 36, 1–18. [Google Scholar] [CrossRef]
- Rocculi, P.; Galindo, F.G.; Mendoza, F.; Wadsö, L.; Romani, S.; Dalla Rosa, M.; Sjöholm, I. Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes. Postharvest Biol. Technol. 2007, 43, 151–157. [Google Scholar] [CrossRef]
- Cabezas-Serrano, A.B.; Amodio, M.L.; Cornacchia, R.; Rinaldi, R.; Colelli, G. Suitability of five different potato cultivars (Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol. Technol. 2009, 53, 138–144. [Google Scholar] [CrossRef]
- Beltrán, D.; Selma, M.V.; Tudela, J.A.; Gil, M.I. Effect of different sanitizers on microbial and sensory quality of fresh-cut potato strips stored under modified atmosphere or vacuum packaging. Postharvest Biol. Technol. 2005, 37, 37–46. [Google Scholar] [CrossRef]
- Cantos, E.; Tudela, J.A.; Gil, M.I.; Espín, J.C. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J. Agric. Food Chem. 2002, 50, 3015–3023. [Google Scholar] [CrossRef]
- Tudela, J.A.; Espın, J.C.; Gil, M.I. Vitamin C retention in fresh-cut potatoes. Postharvest Biol. Technol. 2002, 26, 75–84. [Google Scholar] [CrossRef]
- Wang, Y.; Naber, M.R.; Crosby, T.W. Effects of Wound-Healing Management on Potato Post-Harvest Storability. Agronomy 2020, 10, 512. [Google Scholar] [CrossRef] [Green Version]
- Dite Hunjek, D.; Repajić, M.; Ščetar, M.; Karlović, S.; Vahčić, N.; Ježek, D.; Galić, K.; Levaj, B. Effect of anti-browning agents and package atmosphere on the quality and sensory of fresh-cut Birgit and Lady Claire potato during storage at different temperatures. J. Food Process. Preserv. 2020, 44, e14391. [Google Scholar] [CrossRef]
- Stott-Miller, M.; Neuhouser, M.L.; Stanford, J.L. Consumption of deep-fried foods and risk of prostate cancer. Prostate 2013, 73, 960–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer, A.; Bast, A. Demanding safe foods–Safety testing under the novel food regulation (2015/2283). Trends Food Sci. Technol. 2018, 72, 125–133. [Google Scholar] [CrossRef]
- Arslan, M.; Xiaobo, Z.; Shi, J.; Rakha, A.; Hu, X.; Zareef, M.; Zhai, X.; Basheer, S. Oil uptake by potato chips or French fries: A review. Eur. J. Lipid Sci. Technol. 2018, 120, 1800058. [Google Scholar] [CrossRef]
- Todd, C.S.; Williams, D.M.; Guo, J. Characterization of the Distribution of Oil Uptake in French Fries. Micros. Today 2018, 26, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Arya, A.M.; Chandra, S.; Samsher, J.S.; Chauhan, N.; Kumar, T. Moisture loss and oil uptake kinetics in French fries (var. Kufri bahar) during frying in different oils and treatments. IJCS 2017, 5, 594–596. [Google Scholar]
- Sirot, V.; Rivière, G.; Leconte, S.; Vin, K.; Traore, T.; Jean, J.; Carne, G.; Gorecki, S.; Veyrand, B.; Marchand, P. French infant total diet study: Dietary exposure to heat-induced compounds (acrylamide, furan and polycyclic aromatic hydrocarbons) and associated health risks. Food Chem. Toxicol. 2019, 130, 308–316. [Google Scholar] [CrossRef]
- Singh, L.; Varshney, J.G.; Agarwal, T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 2016, 199, 768–781. [Google Scholar] [CrossRef]
- Hanedar, A.; Alp, K.; Kaynak, B.; Avşar, E. Toxicity evaluation and source apportionment of polycyclic aromatic hydrocarbons (PAHs) at three stations in Istanbul, Turkey. Sci. Total Environ. 2014, 488, 437–446. [Google Scholar] [CrossRef]
- Abou-Arab, A.A.K.; Abou-Donia, M.A.M.; El-Dars, F.; Ali, O.I.M.; Hossam, A.G. Levels of polycyclic aromatic hydrocarbons (PAHS) in some Egyptian vegetables and fruits and their influences by some treatments. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 277–293. [Google Scholar]
- Samsøe-Petersen, L.; Larsen, E.H.; Larsen, P.B.; Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ. Sci. Technol. 2002, 36, 3057–3063. [Google Scholar] [CrossRef] [PubMed]
- Wennrich, L.; Popp, P.; Zeibig, M. Polycyclic aromatic hydrocarbon burden in fruit and vegetable species cultivated in allotments in an industrial area. Int. J. Environ. Anal. Chem. 2002, 82, 667–690. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, M. Some polycyclic aromatic hydrocarbons in vegetables from northern China. J. Environ. Sci. Health Part A 2002, 37, 287–296. [Google Scholar] [CrossRef] [PubMed]
- EU Regulation 835/2011. Commission Regulation (EU) No 835/2011 of 19 August 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic; European Comission: Bruxelles, Belgium, 2011. [Google Scholar]
- Dite Hunjek, D.; Pranjić, T.; Repajić, M.; Levaj, B. Fresh-cut potato quality and sensory: Effect of cultivar, age, processing, and cooking during storage. J. Food Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting. Supplement; Association of Official Analytical Chemists: Rockvilleu, MD, USA, 1990; Volume 15. [Google Scholar]
- Purcaro, G.; Navas, J.A.; Guardiola, F.; Conte, L.S.; Moret, S. Polycyclic aromatic hydrocarbons in frying oils and snacks. J. Food Prot. 2006, 69, 199–204. [Google Scholar] [CrossRef]
- Neđeral, S.; Pukec, D.; Škevin, D.; Kraljić, K.; Obranović, M.; Zrinjan, P. On-line DACC-HPLC analysis of polycyclic aromatic hydrocarbons in edible oils. Hrvat. Časopis Prehrambenu Tehnol. Biotehnol. Nutr. 2013, 8, 74–81. [Google Scholar]
- Guideline, I.C.H.H.T. Validation of analytical procedures: Text and methodology Q2 (R1). In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 10 November 2005; Volume 11. [Google Scholar]
- Krokida, M.K.; Oreopoulou, V.; Maroulis, Z.B. Water loss and oil uptake as a function of frying time. J. Food Eng. 2000, 44, 39–46. [Google Scholar] [CrossRef]
- Ziaiifar, A.-M. Oil Absorption during Deep-Fat Frying: Mechanisms and Important Factors; AgroParisTech: Paris, France, 2008. [Google Scholar]
- Elfnesh, F.; Tekalign, T.; Solomon, W. Processing quality of improved potato (Solanum tuberosum L.) cultivars as influenced by growing environment and blanching. Afr. J. Food Sci. 2011, 5, 324–332. [Google Scholar]
- Oner, M.E.; Walker, P.N. Effects of processing conditions on quality of refrigerated potato strips. Trans. ASABE 2010, 53, 1661–1666. [Google Scholar] [CrossRef]
- Krokida, M.K.; Oreopoulou, V.; Maroulis, Z.B.; Marinos-Kouris, D. Effect of pre-treatment on viscoelastic behaviour of potato strips. J. Food Eng. 2001, 50, 11–17. [Google Scholar] [CrossRef]
- (EFSA), E.F.S.A. Findings of the efsa data collection on polycyclic aromatic hydrocarbons in food. EFSA J. 2007, 5, 33r. [Google Scholar]
- EFSA. EFSA Opinion on Suitable Indicators for Both the Occurrence and Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) in Food; European Food Safety Administration: Parma, Italy, 2008. [Google Scholar]
- Kumosani, T.A.; Moselhy, S.S.; Asseri, A.M.; Asseri, A.H. Detection of polycyclic aromatic hydrocarbons in different types of processed foods. Toxicol. Ind. Health 2013, 29, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Camargo, M.C.R.; Antoniolli, P.R.; Vicente, E. Evaluation of polycyclic aromatic hydrocarbons content in different stages of soybean oils processing. Food Chem. 2012, 135, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.-K.; Zhang, D.-D.; Liu, Y.-L. Survey of polycyclic aromatic hydrocarbons of vegetable oils and oilseeds by GC-MS in China. Food Addit. Contam. Part A 2016, 33, 603–611. [Google Scholar] [CrossRef]
- Cejpek, K.; Hajšlová, J.; Kocourek, V.; Tomaniová, M.; Cmolik, J. Changes in PAH levels during production of rapeseed oil. Food Addit. Contam. 1998, 15, 563–574. [Google Scholar] [CrossRef]
- Molle, D.R.D.; Abballe, C.; Gomes, F.M.L.; Furlani, R.P.Z.; Tfouni, S.A.V. Polycyclic aromatic hydrocarbons in canola, sunflower and corn oils and estimated daily intake. Food Control 2017, 81, 96–100. [Google Scholar] [CrossRef]
- Pandey, M.K.; Mishra, K.K.; Khanna, S.K.; Das, M. Detection of polycyclic aromatic hydrocarbons in commonly consumed edible oils and their likely intake in the Indian population. J. Am. Oil Chem. Soc. 2004, 81, 1131–1136. [Google Scholar] [CrossRef]
- Rose, M.; Holland, J.; Dowding, A.; Petch, S.R.G.; White, S.; Fernandes, A.; Mortimer, D. Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem. Toxicol. 2015, 78, 1–9. [Google Scholar] [CrossRef]
- Bansal, V.; Kim, K.-H. Review of PAH contamination in food products and their health hazards. Environ. Int. 2015, 84, 26–38. [Google Scholar] [CrossRef]
- Ashraf, M.W.; Salam, A. Polycyclic aromatic hydrocarbons (PAHs) in vegetables and fruits produced in Saudi Arabia. Bull. Environ. Contam. Toxicol. 2012, 88, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Kulhánek, A.; Trapp, S.; Sismilich, M.; Janků, J.; Zimová, M. Crop-specific human exposure assessment for polycyclic aromatic hydrocarbons in Czech soils. Sci. Total Environ. 2005, 339, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ierna, A.; Pellegrino, A.; Di Silvestro, I.; Buccheri, M. Sensory and physico-chemical characteristics of minimally processed “early” potato tubers as affected by anti-browning treatments and cultivar. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2016; pp. 229–236. [Google Scholar]
- Pardo, J.E.; Alvarruiz, A.; Perez, J.I.; Gomez, R.; Varon, R. Physical-chemical and sensory quality evaluation of potato varieties (Solanum tuberosum L.). J. Food Qual. 2000, 23, 149–160. [Google Scholar] [CrossRef]
- Amrein, T.M.; Bachmann, S.; Noti, A.; Biedermann, M.; Barbosa, M.F.; Biedermann-Brem, S.; Grob, K.; Keiser, A.; Realini, P.; Escher, F. Potential of acrylamide formation, sugars, and free asparagine in potatoes: A comparison of cultivars and farming systems. J. Agric. Food Chem. 2003, 51, 5556–5560. [Google Scholar] [CrossRef] [PubMed]
- European Cultivated Potato Database. Available online: https://www.europotato.org/ (accessed on 19 December 2019).
- Elmore, J.S.; Briddon, A.; Dodson, A.T.; Muttucumaru, N.; Halford, N.G.; Mottram, D.S. Acrylamide in potato crisps prepared from 20 UK-grown varieties: Effects of variety and tuber storage time. Food Chem. 2015, 182, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tfouni, S.A.V.; Serrate, C.S.; Leme, F.M.; Camargo, M.C.R.; Teles, C.R.A.; Cipolli, K.M.; Furlani, R.P.Z. Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. LWT Food Sci. Technol. 2013, 50, 526–530. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Xia, W.; Li, X.; Lin, J.; Wu, J.; Xu, J. Dissipation of phenanthrene and pyrene at the aerobic–anaerobic soil interface: Differentiation induced by the rhizosphere of PAH-tolerant and PAH-sensitive rice (Oryza sativa L.) cultivars. Environ. Sci. Pollut. Res. 2015, 22, 3908–3919. [Google Scholar] [CrossRef]
- Fismes, J.; Perrin-Ganier, C.; Empereur-Bissonnet, P.; Morel, J.L. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J. Environ. Qual. 2002, 31, 1649–1656. [Google Scholar] [CrossRef]
- Francis, G.A.; Gallone, A.; Nychas, G.J.; Sofos, J.N.; Colelli, G.; Amodio, M.L.; Spano, G. Factors affecting quality and safety of fresh-cut produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [Google Scholar] [CrossRef]
- Calder, B.L.; Kash, E.A.; Davis-Dentici, K.; Bushway, A.A. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes. J. Food Sci. 2011, 76, S164–S169. [Google Scholar] [CrossRef]
- Rocculi, P.; Romani, S.; Gómez Galindo, F.; Dalla Rosa, M. Effect of minimal processing on physiology and quality of fresh-cut potatoes: A review. Food 2009, 3, 18–30. [Google Scholar]
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N.; Viñas, I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables—A review. Trends Food Sci. Technol. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- Rocha, A.M.C.N.; Coulon, E.C.; Morais, A.M.M.B. Effects of vacuum packaging on the physical quality of minimally processed potatoes. Food Serv. Technol. 2003, 3, 81–88. [Google Scholar] [CrossRef]
Time (min) | Flow (mL min−1) | %A (Water) | %B (Ethyl-Acetate) | %C (Acetonitrile) |
---|---|---|---|---|
0 | 0.4 | 20 | 0 | 80 |
2.49 | 0.4 | 20 | 0 | 80 |
2.50 | 1 | 20 | 0 | 80 |
3.90 | 1 | 20 | 0 | 80 |
17.90 | 1 | 0 | 0 | 100 |
45.99 | 1 | 0 | 0 | 100 |
46.00 | 1 | 0 | 30 | 70 |
68.00 | 1 | 0 | 30 | 70 |
69.00 | 1 | 0 | 0 | 100 |
73.00 | 1 | 0 | 0 | 100 |
83.00 | 1 | 20 | 0 | 80 |
90.00 | 0.40 | 20 | 0 | 80 |
Time (min) | Excitation (nm) | Emission (nm) | PAH Detected |
---|---|---|---|
0.0 | 225 | 320 | - |
14.5 | 256 | 390 | Fluorene, phenanthrene, anthracene |
16.7 | 240 | 460 | Fluoranthene |
18.0 | 240 | 390 | Pyrene |
19.5 | 270 | 385 | Benzo(a)anthracene, chrysene |
24.0 | 290 | 430 | Benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene |
39.0 | 305 | 480 | Benzo(g,h,i)perylene, indeno(1,2,3,-c,d)pyrene |
55.0 | 305 | 480 | - |
Source of Variation | Naphthalene | Acenaphthene | Fluorene | Phenanthrene | Anthracene | Fluoranthene | Benzo(a)- Anthracene | Chrysene | Pyrene |
---|---|---|---|---|---|---|---|---|---|
Cultivar | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p = 0.58 | p = 0.34 | p < 0.01 * | p < 0.01 * | p < 0.01 * |
Birgit | 2.02 ± 0.36 b | 1.48 ± 0.12 a | 0.01 ± 0.05 b | 0.38 ± 0.27 b | 0.32 ± 0.13 a | 1.10 ± 0.19 a | 0.17 ± 0.02 b | 0.07 ± 0.02 b | 0.02 ± 0.04 b |
Lady Claire | 5.03 ± 0.36 a | 0.22 ± 0.12 b | 0.87 ± 0.05 a | 2.79 ± 0.27 a | 0.43 ± 0.13 a | 0.84 ± 0.19 a | 0.40 ± 0.02 a | 0.29 ± 0.02 a | 0.74 ± 0.04 a |
Anti-browning agent | p = 0.34 | p = 0.38 | p = 0.09 | p = 0.87 | p = 0.37 | p = 0.38 | p = 0.19 | p = 0.99 | p = 0.73 |
1% sodium chloride | 3.78 ± 0.36 a | 0.93 ± 0.12 a | 0.38 ± 0.05 a | 1.62 ± 0.27 a | 0.46 ± 0.13 a | 0.85 ± 0.19 a | 0.26 ± 0.02 a | 0.18 ± 0.02 a | 0.39 ± 0.04 a |
2% sodium ascorbate | 3.26 ± 0.36 a | 0.77 ± 0.12 a | 0.50 ± 0.05 a | 1.55 ± 0.27 a | 0.29 ± 0.13 a | 1.09 ± 0.19 a | 0.31 ± 0.02 a | 0.18 ± 0.02 a | 0.37 ± 0.04 a |
Package atmosphere | p = 0.04 * | p = 0.66 | p = 0.03 * | p = 0.25 | p = 0.34 | p = 0.79 | p = 0.07 | p = 0.09 | p = 0.02 * |
Vacuum | 2.92 ± 0.36 b | 0.81 ± 0.12 a | 0.36 ± 0.05 b | 1.35 ± 0.27 a | 0.28 ± 0.13 a | 1.01 ± 0.19 a | 0.25 ± 0.02 a | 0.15 ± 0.02 a | 0.30 ± 0.04 b |
Modified | 4.12 ± 0.36 a | 0.89 ± 0.12 a | 0.52 ± 0.05 a | 1.82 ± 0.27 a | 0.47 ± 0.13 a | 0.94 ± 0.19 a | 0.32 ± 0.02 a | 0.21 ± 0.02 a | 0.46 ± 0.04 a |
Storage (days) | p = 0.47 | p = 0.23 | p = 0.16 | p = 0.63 | p = 0.23 | p = 0.32 | p = 0.08 | p = 0.73 | p = 0.81 |
0 | 3.10 ± 0.51 a | 0.70 ± 0.17 a | 0.58 ± 0.07 a | 1.81 ± 0.38 a | 0.25 ± 0.19 a | 0.55 ± 0.26 a | 0.31 ± 0.03 a | 0.17 ± 0.03 a | 0.42 ± 0.06 a |
2 | 4.20 ± 0.51 a | 1.18 ± 0.17 a | 0.39 ± 0.07 a | 1.33 ± 0.38 a | 0.30 ± 0.19 a | 1.26 ± 0.26 a | 0.34 ± 0.03 a | 0.21 ± 0.03 a | 0.37 ± 0.06 a |
4 | 3.24 ± 0.51 a | 0.80 ± 0.17 a | 0.41 ± 0.07 a | 1.33 ± 0.38 a | 0.21 ± 0.19 a | 1.04 ± 0.26 a | 0.23 ± 0.03 a | 0.18 ± 0.03 a | 0.35 ± 0.06 a |
8 | 3.55 ± 0.51 a | 0.72 ± 0.17 a | 0.39 ± 0.07 a | 1.87 ± 0.38 a | 0.73 ± 0.19 a | 1.03 ± 0.26 a | 0.25 ± 0.03 a | 0.16 ± 0.03 a | 0.38 ± 0.06 a |
Cultivar x Package atmosphere | p = 0.01 * | p = 0.41 | p = 0.03 * | p = 0.01 * | p = 0.23 | p = 0.06 | p = 0.14 | p = 0.14 | p < 0.01 * |
Birgit × Vacuum | 2.26 ± 0.51 b | 1.51 ± 0.17 a | 0.01 ± 0.07 c | 0.75 ± 0.38 bc | 0.34 ± 0.19 a | 1.41 ± 0.26 a | 0.16 ± 0.03 b | 0.06 ± 0.03 b | 0.05 ± 0.06 c |
Birgit × Modified | 1.78 ± 0.51 b | 1.44 ± 0.17 a | 0.01 ± 0.07 c | 0.01 ± 0.38 c | 0.30 ± 0.19 a | 0.79 ± 0.26 a | 0.18 ± 0.03 b | 0.07 ± 0.03 b | 0.00 ± 0.06 c |
Lady Claire × Vacuum | 3.58 ± 0.51 b | 0.11 ± 0.17 b | 0.71 ± 0.07 b | 1.96 ± 0.38 bc | 0.21 ± 0.19 a | 0.60 ± 0.26 a | 0.34 ± 0.03 a | 0.24 ± 0.03 a | 0.56 ± 0.06 b |
Lady Claire × Modified | 6.47 ± 0.51 a | 0.34 ± 0.17 b | 1.03 ± 0.07 a | 3.62 ± 0.38 a | 0.64 ± 0.19 a | 1.08 ± 0.26 a | 0.45 ± 0.03 a | 0.35 ± 0.03 a | 0.91 ± 0.06 a |
Grand mean (n = 32) | 3.52 | 0.85 | 0.44 | 1.58 | 0.37 | 0.97 | 0.28 | 0.18 | 0.38 |
Source of Variation | Benzo(b)- Fluoranthene | Benzo(k)- Fluoranthene | Benzo(a)- Pyrene | Dibenzo(a,h)- Anthracene | Benzo(g,h,i)- Perylene |
---|---|---|---|---|---|
Cultivar | p < 0.01 * | p = 0.14 | p = 0.02 * | p = 0.97 | p < 0.01 * |
Birgit | 0.06 ± 0.02 b | 0.05 ± 0.01 a | 0.08 ± 0.03 b | 0.14 ± 0.05 a | 0.19 ± 0.06 b |
Lady Claire | 0.22 ± 0.02 a | 0.08 ± 0.01 a | 0.18 ± 0.03 a | 0.14 ± 0.05 a | 0.57 ± 0.06 a |
Anti-browning agent | p = 0.23 | p = 0.17 | p = 0.79 | p = 0.95 | p = 0.12 |
1% sodium chloride | 0.12 ± 0.02 a | 0.06 ± 0.01 a | 0.12 ± 0.03 a | 0.14 ± 0.05 a | 0.31 ± 0.06 a |
2% sodium ascorbate | 0.15 ± 0.02 a | 0.08 ± 0.01 a | 0.13 ± 0.03 a | 0.14 ± 0.05 a | 0.45 ± 0.06 a |
Package atmosphere | p = 0.05 * | p = 0.66 | p = 0.19 | p = 0.76 | p = 0.14 |
Vacuum | 0.11 ± 0.02 b | 0.07 ± 0.01 a | 0.15 ± 0.03 a | 0.13 ± 0.05 a | 0.45 ± 0.06 a |
Modified | 0.17 ± 0.02 a | 0.06 ± 0.01 a | 0.10 ± 0.03 a | 0.15 ± 0.05 a | 0.32 ± 0.06 a |
Storage (days) | p = 0.95 | p = 0.67 | p = 0.07 | p = 0.49 | p = 0.18 |
0 | 0.13 ± 0.03 a | 0.07 ± 0.02 a | 0.10 ± 0.04 a | 0.13 ± 0.07 a | 0.46 ± 0.08 a |
2 | 0.15 ± 0.03 a | 0.08 ± 0.02 a | 0.22 ± 0.04 a | 0.19 ± 0.07 a | 0.50 ± 0.08 a |
4 | 0.13 ± 0.03 a | 0.05 ± 0.02 a | 0.11 ± 0.04 a | 0.19 ± 0.07 a | 0.29 ± 0.08 a |
8 | 0.14 ± 0.03 a | 0.07 ± 0.02 a | 0.08 ± 0.04 a | 0.06 ± 0.07 a | 0.27 ± 0.08 a |
Cultivar x Package atmosphere | p = 0.32 | p = 0.14 | p = 0.02 * | p = 0.81 | p = 0.21 |
Birgit × Vacuum | 0.04 ± 0.03 b | 0.07 ± 0.02 a | 0.15 ± 0.04 ab | 0.16 ± 0.07 a | 0.69 ± 0.08 ab |
Birgit × Modified | 0.07 ± 0.03 b | 0.04 ± 0.02 a | 0.00 ± 0.04 b | 0.15 ± 0.07 a | 0.45 ± 0.08 ab |
Lady Claire × Vacuum | 0.18 ± 0.03 a | 0.07 ± 0.02 a | 0.15 ± 0.04 ab | 0.12 ± 0.07 a | 0.20 ± 0.08 b |
Lady Claire × Modified | 0.26 ± 0.03 a | 0.09 ± 0.02 a | 0.20 ± 0.04 a | 0.14 ± 0.07 a | 0.18 ± 0.08 b |
Grand mean (n = 32) | 0.14 | 0.07 | 0.13 | 0.14 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbino, S.; Repajić, M.; Solarić, T.; Dite Hunjek, D.; Škevin, D.; Kraljić, K.; Obranović, M.; Levaj, B. Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions. Agronomy 2020, 10, 1773. https://doi.org/10.3390/agronomy10111773
Balbino S, Repajić M, Solarić T, Dite Hunjek D, Škevin D, Kraljić K, Obranović M, Levaj B. Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions. Agronomy. 2020; 10(11):1773. https://doi.org/10.3390/agronomy10111773
Chicago/Turabian StyleBalbino, Sandra, Maja Repajić, Tea Solarić, Draženka Dite Hunjek, Dubravka Škevin, Klara Kraljić, Marko Obranović, and Branka Levaj. 2020. "Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions" Agronomy 10, no. 11: 1773. https://doi.org/10.3390/agronomy10111773
APA StyleBalbino, S., Repajić, M., Solarić, T., Dite Hunjek, D., Škevin, D., Kraljić, K., Obranović, M., & Levaj, B. (2020). Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions. Agronomy, 10(11), 1773. https://doi.org/10.3390/agronomy10111773