Dependence of Fresh Grapes and Wine Taste Scores on the Origin of Varieties and Weather Conditions of the Harvest Year in the Northern Zone of Industrial Viticulture in Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Materials
2.2. Data Analysis
2.3. Weather Conditions
3. Results
3.1. Variation of Taste Scores in the Sample
3.2. Correlation Analysis of Taste Scores of “Average Variety”
3.3. Regression Analysis of Taste Scores Year-to-Year Variation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amerine, M.A.; Pangborn, R.M.; Roessler, E.B. Principles of sensory evaluation of food. In Food Science and Technology Monographs; Academic Press: New York, NY, USA, 1965; pp. 399–431. [Google Scholar]
- Khalaphyan, A.A.; Temerdashev, Z.A.; Guguchkina, T.I.; Yakuba, Y.T. Computer analysis of expert evaluation of the organoleptic quality indexes of wines. Anal. Control 2017, 21, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Sonego, L.; Lurie, S.; Zuthi, Y.; Kaplonov, T.; Ben-Arie, R.; Kosto, I. Factors affecting taste scores of early season seedless table grape cv. Mystery and Prime. J. Agric. Food Chem. 2002, 50, 544–548. [Google Scholar] [CrossRef]
- Muñoz-Robredo, P.; Robledo, P.; Manríquez, D.; Molina, R.; Defilippi, B.G. Characterization of sugars and organic acids in commercial varieties of table grapes. Chil. J. Agric. Res. 2011, 71, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Francis, I.L.; Williamson, P.O. Application of consumer sensory science in wine research. Aust. J. Grape Wine Res. 2015, 21, 554–567. [Google Scholar] [CrossRef]
- Cortez, P.; Cerdeira, A.; Almeida, F.; Matos, T.; Reis, J. Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 2009, 47, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.-T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Champa, W.A.H.; Gill, M.I.S.; Mahajan, B.V.C.; Aror, N.K.; Bedi, S. Brassinosteroids Improve Quality of Table Grapes (Vitis vinifera L.) cv. Flame Seedless. Trop. Agric. Res. 2015, 26, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Jones, G. Climate, Grapes, and Wine: Structure and Suitability in a Changing Climate. Acta Hort. 2012, 931, 19–28. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- De Orduña, M.R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Bardaji, I.; Iraizoz, B. Uneven responses to climate and market influencing the geography of high-quality wine production in Europe. Reg. Env. Chang. 2015, 15, 79–92. [Google Scholar] [CrossRef]
- Biasi, R.; Brunori, E.; Ferrara, C.; Salvati, L. Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L.: The contribution of local knowledge. Plants 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewer, M.; Brunette, M. Climate Change Impact Assessment on Grape and Wine for Ontario, Canada’s Appellations of Origin. Reg. Environ. Chang. 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Novikova, L.Y.; Naumova, L.G. Structuring ampelographic collections by phenotypic characteristics and comparing the reaction of grape varieties to climate chane. Vavilov J. Genet. Breed. 2019, 23, 772–779. [Google Scholar] [CrossRef]
- Novikova, L.Y.; Naumova, L.G. Trends of changes in sugar content and acidity of grape varieties from the collection of All-Russian Scientific Research Institute of Viticulture and Winemaking named after Y.I. Potapenko. Winemak. Vitic. 2013, 6, 54–57. [Google Scholar]
- Petrov, V.S.; Aleynikova, G.Y.; Novikova, L.Y.; Naumova, L.G.; Lukyanova, A.A. The influence of climate changes on the grape phenology. Fruit Grow. Vitic. South Russ. 2019, 57, 29–50. [Google Scholar] [CrossRef]
- Safonov, G.; Safonova, Y. Economic analysis of the impact of climate change on agriculture in Russia national and regional aspects. Oxfam Res. Rep. 2013, 1–48. Available online: www.oxfam.org (accessed on 5 August 2020).
- Choudhury, A.; Jones, J. Crop yield prediction using time series models. J. Econ. Econ. Educ. Res. 2014, 15, 53–67. [Google Scholar]
- Molitor, D.; Junl, J.; Evers, D.; Hoffmann, L.; Beyer, M. A high-resolution cumulative degree day-based to simulate phonological development of grapevine. Am. J. Enol. Vitic. 2014, 65, 72–80. [Google Scholar] [CrossRef]
- Quenol, H.; Grosset, M.; Barbeau, G.; van Leeuwen, K.; Hofmann, M.; Foss, C.; Irimia, L.; Rochard, J.; Boulanger, J.-P.; Tissot, C.; et al. Adaptation of viticulture to climate change: High resolution observation of adaptation scenario for viticulture. Bull. de l’OIV. 2014, 87, 385–406. [Google Scholar]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: A multi-model assessment. Clim. Chang. 2019, 152, 179–193. [Google Scholar] [CrossRef]
- Costa, R.; Fraga, H.; Fonseca, A.; de Cortazar-Atauri, I.G.; Val, M.C.; Carlos, C.; Reis, S.; Santos, J.A. Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: Modelling and climate change projections. Agronomy 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Romero, P.; Gil-Muñoz, R.; del Amorc, F.M.; Valdés, E.; Fernández, J.I.; Martinez-Cutillasa, A. Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agric. Water Manag. 2013, 121, 85–101. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Litskas, V.; Stavrinides, M.; Heyman, L.; Demeestere, K.; Höfte, M.; Tzortzakis, N. Assessing the Impact of Drought Stress and Soil Cultivation in Chardonnay and Xynisteri Grape Cultivars. Agronomy 2020, 10, 670. [Google Scholar] [CrossRef]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; David, K.J.; Desai, A.R.; et al. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 2012, 18, 566–584. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Macqueen, R.W.; Meinert, L.D. (Eds.) Fine Wine and Terroir—The Geoscience Perspective; Geological Association of Canada Geoscience, Canada Reprint Series: St. John’s, NL, Canada, 2006; ISBN 978-1-897095-21-8. [Google Scholar]
- Gladstones, J. Wine, Terroir and Climate Change; Wakefield Press: Kent Town, South Australia, 2011; 280p. [Google Scholar]
- Foroni, F.; Vignando, M.; Aiello, M.; Parma, V.; Paoletti, M.G.; Squartini, A.; Rumiati, R. The smell of terroir! Olfactory discrimination between wines of different grape variety and different terroir. Food Qual. Prefer. 2017, 58, 18–23. [Google Scholar] [CrossRef]
- Zombardo, A.; Mica, E.; Puccioni, S.; Perria, R.; Valentini, P.; Mattii, G.B.; Cattivelli, L.; Storchi, P. Berry quality of grapevine under water stress as affected by rootstock–scion interactions through gene expression regulation. Agronomy 2020, 10, 680. [Google Scholar] [CrossRef]
- Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar]
- Davitaia, F.F. Climatic Zones of Grapes in the USSR; Pishchepromizdat: Moscow, Russia, 1948; 192p. (In Russian) [Google Scholar]
- Failla, O.; Mariani, L.; Brancadoro, L.; Minelli, R.; Scenza, A.; Murada, G.; Mancini, S. Spatial distribution of solar radiation and its effect on vine phenology and grape ripening in an Alpine environment. Am. J. Enol. Vitic. 2004, 55, 128–138. [Google Scholar]
- Lima, M.S.; Dutra, M.C.P.; Toaldo, I.A.; Corrêa, L.C.; Pereira, G.E.; Oliveira, D.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chem. 2015, 188, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.R.; Queiroz, M. Bioactive compounds of red grapes from Dão region (Portugal): Evaluation of phenolic and organic profile. Asian Pac. J. Trop. Biomed. 2016, 6, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Jones, G.V.; Martinez-Casasnovas, J.A. Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Davenport, J.R.; Keller, M.; Mills, L.J. How cold can you go? Frost and winter protection for grape. HortScience 2008, 43, 1966–1969. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.C.; Tarara, L.J.; Mills, L.J.; Groeve, G.G.; Keller, M. Dynamic thermal time model of codhardiness for dormant grapevine buds. Ann. Bot. 2011, 107, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, M.N.; Taboada, J.J.; Lorenzo, J.F.; Ramos, A.M. Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain. Reg. Environ. Chang. 2013, 13, 887–896. [Google Scholar] [CrossRef]
- Baeza, P.; Junquera, P.; Peiro, E.; Lissarrague, R.J.; Uriarte, D.; Vilanova, M. Effects of vine water status on yield components, vegetative response and must and wine composition. Adv. Grape Wine Biotechnol. IntechOpen 2019. [Google Scholar] [CrossRef] [Green Version]
- Lazarevsky, M.A. The Study of Grape Varieties; Publishing House of the Rostov University: Rostov-on-Don, Russia, 1963; 151p. (In Russian) [Google Scholar]
- Afonin, A.N.; Greene, S.L.; Dzyubenko, N.I.; Frolov, A.N. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and their Diseases, Pests and Weeds. 2008. Available online: http://www.agroatlas.ru/en (accessed on 5 October 2020).
- Office International de la Vigneet du Vin. O.I.V. Code des Caractères Descriptifs des Variétés et Espèces de Vitis—Descriptor List for Grape Vine Varieties and Vitis Species; Office International de la Vigneet du Vin. O.I.V: Paris, France, 1983; 553p. [Google Scholar]
- All-Union Scientific Research Institute of Winemaking and Viticulture “Magarach”. Collection of Technological Instructions, Rules and Regulatory Materials for the Wine Industry; Valuiko, G.G., Ed.; Agropromizdat: Moscow, Russia, 1985; 51p. (In Russian) [Google Scholar]
- GOST 32030-2013. Table Wines and Table Winestocks. General Specifications; Standartinform: Moscow, Russia, 2014; 12p. (In Russian) [Google Scholar]
- GOST 31782-2012. Fresh Grape of Combine and Hand Harvesting for Industrial Processing. Specifications; Standartinform: Moscow, Russia, 2014; 8p. (In Russian) [Google Scholar]
- GOST 32051-2013. Wine Products. Methods of Organoleptic Analysis; Standartinform: Moscow, Russia, 2013; 16p. (In Russian) [Google Scholar]
- State Commission for the Testing of Agricultural Crop Varieties, under the USSR Ministry of Agriculture. Methodology for State Variety Testing of Agricultural Crops. Issue V, Fruit, Berry, Subtropical, Citrus, Nut Crops, Grapes and Tea; Kolos Publishers: Moscow, Russia, 1970; 158p. (In Russian) [Google Scholar]
- GOST 27198-87. Fresh Grapes. Methods for Determination of Mass Concentration of Sugars; IPK Standards Publishing House: Moscow, Russia, 2000; 8p. (In Russian) [Google Scholar]
- GOST 32114-2013. The Alcohol Production and Raw Material for it Producing. Methods for Determination of Titrating Acids; Standartinform: Moscow, Russia, 2013; 8p. (In Russian) [Google Scholar]
- Prostoserdov, N.N. Study of Grapes for Determining Their Use (Uvology); Pishchepromizdat: Moscow, Russia, 1963; 79p. (In Russian) [Google Scholar]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature Science & Information for a Climate-Smart Nation. 2020. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 5 October 2020).
- Selyaninov, G.T. About climate agricultural estimation. Proc. Agric. Meteorol. 1928, 20, 165–177. (In Russian) [Google Scholar]
- Integrated Drought Management Program. 2018. Available online: https://www.droughtmanagement.info/hydro-thermal-coefficient-of-selyaninov-htc (accessed on 6 October 2020).
- Biasoto, A.C.T.; Netto, F.M.; Marques, E.J.N.; da Silva, M.A.A.P. Acceptability and preference drivers of red wines produced from Vitis labrusca and hybrid grapes. Food Res. Int. 2014, 62, 456–466. [Google Scholar] [CrossRef] [Green Version]
- Teissedre, P.-L. Composition of grape and wine from resistant vine varieties. OENO One 2018, 52, 189–195. [Google Scholar] [CrossRef]
- FAO. FAO-OIV Focus—Table and Dried Grapes; FAO: Rome, Italy, 2016; 64p, Available online: http://www.fao.org/3/a-i7042e.pdf (accessed on 24 June 2020).
- González-Fernández, E.; Piña-Rey, A.; Fernández-González, M.; Aira, M.J.; Rodríguez-Rajo, F.J. Prediction of Grapevine Yield Based on Reproductive Variables and the Influence of Meteorological Conditions. Agronomy 2020, 10, 714. [Google Scholar] [CrossRef]
- Parker, A.; de Cortazar-Atauri, I.; van Leeuwen, C.; Chuine, I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust. J. Grape Wine Res. 2011, 17, 206–216. [Google Scholar] [CrossRef]
- Lazarevsky, M.A. The Role of Heat in the Life of the European Vine; Publishing House of the Rostov University: Rostov-on-Don, Russia, 1961; 100p. (In Russian) [Google Scholar]
- Melnik, Y.S.; Gulinova, N.V.; Bedarev, S.A. Guide to Agrometeorological Forecasts. V.2. Commercial, Vegetable, Fruit, Subtropical Crops, Herbs, Pasturable Vegetation, Distant-Pasture Livestock Production; Gidrometeoizdat: Leningrad, Russia, 1984; 264p. (In Russian) [Google Scholar]
- Naumova, L.G.; Novikova, L.Y. Temperature analysis of interphase periods of grape varieties in the collection of All-Russian Scientific Research Institute of Viticulture and Winemaking named after Y. I. Potapenko. Winemak. Vitic. 2015, 5, 46–50. [Google Scholar]
- Vršič, S.; Vodovnik, T. Reactions of grape varieties to climate changes in North East Slovenia. Plant Soil Environ. 2012, 58, 34–41. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Schultz, H.R.; Jones, G.V. Climate induced historic and future changes in viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Roy, P.; Grenier, P.; Barriault, E.; Logan, T.; Blondlot, A.; Bourgeois, G.; Chaumont, D. Probabilistic climate change scenarios for viticultural potential in Québec. Clim. Chang. 2017, 143, 43–58. [Google Scholar] [CrossRef] [Green Version]
Type of Use | Fresh Grapes Taste Score, Points | Wine Taste Score, Points | ||||||
---|---|---|---|---|---|---|---|---|
Number of Varieties | Average | Min | Max | Number of Varieties | Average | Min | Max | |
Wine | 0 | - | - | - | 77 | 8.6 | 8.3 | 8.8 |
Multipurpose | 25 | 7.3 | 6.7 | 7.9 | 21 | 8.5 | 8.2 | 8.7 |
Table | 118 | 7.7 | 6.6 | 8.5 | 0 | - | - | - |
Total | 143 | 7.7 | 6.6 | 8.5 | 98 | 8.6 | 8.2 | 8.8 |
Indicator | Number of Varieties | Average | Min | Max | Correlation with Taste Scores for | |
---|---|---|---|---|---|---|
Fresh Grapes | Wine | |||||
Bud break—full ripening of berries (days) | 232 | 130.6 | 99.2 | 157.5 | 0.12 | 0.18 |
Number of normally developed shoots (pcs.) | 232 | 19.3 | 8.0 | 38.3 | −0.35 * | −0.13 |
Clusters per shoot | 232 | 0.9 | 0.2 | 2.2 | −0.30 * | −0.28 * |
Clusters per productive shoot | 190 | 1.5 | 1.1 | 2.2 | −0.19 | −0.11 |
Shoot productivity (g) | 173 | 227.3 | 20.6 | 612.0 | 0.21 * | −0.40 * |
Yield (kg per bush) | 232 | 4.2 | 1.0 | 13.9 | 0.02 | −0.34 * |
Cluster mass (g) | 232 | 251.0 | 72.4 | 738.7 | 0.54 * | −0.18 |
Berry mass (g) | 185 | 3.5 | 0.8 | 9.9 | 0.62 * | −0.48 * |
Sugar content (g 100 cm−3) | 232 | 18.8 | 14.8 | 24.7 | −0.23 * | 0.22 * |
Acidity (g dm−3) | 232 | 7.9 | 4.7 | 12.5 | −0.06 | 0.08 |
Berry separation force (g) | 41 | 273.1 | 71.0 | 476.6 | 0.48 * | - |
Berry crushing force (g) | 41 | 1461.7 | 317.8 | 2671.3 | 0.63 * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikova, L.Y.; Naumova, L.G. Dependence of Fresh Grapes and Wine Taste Scores on the Origin of Varieties and Weather Conditions of the Harvest Year in the Northern Zone of Industrial Viticulture in Russia. Agronomy 2020, 10, 1613. https://doi.org/10.3390/agronomy10101613
Novikova LY, Naumova LG. Dependence of Fresh Grapes and Wine Taste Scores on the Origin of Varieties and Weather Conditions of the Harvest Year in the Northern Zone of Industrial Viticulture in Russia. Agronomy. 2020; 10(10):1613. https://doi.org/10.3390/agronomy10101613
Chicago/Turabian StyleNovikova, Liubov Yu., and Lyudmila G. Naumova. 2020. "Dependence of Fresh Grapes and Wine Taste Scores on the Origin of Varieties and Weather Conditions of the Harvest Year in the Northern Zone of Industrial Viticulture in Russia" Agronomy 10, no. 10: 1613. https://doi.org/10.3390/agronomy10101613
APA StyleNovikova, L. Y., & Naumova, L. G. (2020). Dependence of Fresh Grapes and Wine Taste Scores on the Origin of Varieties and Weather Conditions of the Harvest Year in the Northern Zone of Industrial Viticulture in Russia. Agronomy, 10(10), 1613. https://doi.org/10.3390/agronomy10101613